Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (3): 348-360.DOI: 10.17521/cjpe.2022.0201
Special Issue: 光合作用
• Research Articles • Previous Articles Next Articles
DU Ying-Dong, YUAN Xiang-Yang(), FENG Zhao-Zhong
Received:
2022-05-18
Accepted:
2022-09-28
Online:
2023-03-20
Published:
2022-09-28
Contact:
YUAN Xiang-Yang
Supported by:
DU Ying-Dong, YUAN Xiang-Yang, FENG Zhao-Zhong. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar[J]. Chin J Plant Ecol, 2023, 47(3): 348-360.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0201
参数 Parameter | 氮处理 N treatment | 基因型 Clones | 氮处理 × 基因型 N treatment × clones |
---|---|---|---|
净光合速率 Net photosynthetic rate | <0.01 | 0.97 | 0.09 |
气孔导度 Stomatal conductance | <0.01 | 0.12 | 0.08 |
胞间CO2浓度 Intercellular CO2 concentration | <0.01 | 0.54 | 0.36 |
蒸腾速率 Transpiration rate | <0.05 | 0.75 | 0.56 |
开放的光系统II反应中心激发能捕获效率 The efficiency of excitation energy capture by open photosystem II reaction center | <0.01 | 0.46 | 0.43 |
光化学淬灭系数 Photochemical quenching coefficient | <0.01 | 0.21 | 0.66 |
光系统II实际光量子产量 Photosystem II actual photochemical quantum yield | <0.01 | 0.67 | 0.67 |
流经光系统II的电子传递速率 Electron transport rate of photosystem II | <0.01 | 0.68 | 0.67 |
比叶面积 Specific leaf area | <0.01 | <0.01 | <0.01 |
株高变化率 Change rate in plant height | <0.01 | <0.01 | 0.37 |
基径变化率 Change rate in branch diameter | <0.01 | <0.01 | <0.01 |
叶生物量 Leaf biomass | <0.01 | <0.01 | 0.34 |
茎生物量 Stem biomass | <0.01 | <0.01 | 0.85 |
根生物量 Root biomass | 0.46 | <0.01 | 0.27 |
总生物量 Total biomass | <0.01 | <0.01 | 0.57 |
根冠比 Root-shoot ratio | <0.01 | <0.01 | <0.05 |
Table 1 Analysis of variance results (p values) of photosynthetic characteristics and growth indicators of poplar (Populus spp.) with different nitrogen (N) forms and clones
参数 Parameter | 氮处理 N treatment | 基因型 Clones | 氮处理 × 基因型 N treatment × clones |
---|---|---|---|
净光合速率 Net photosynthetic rate | <0.01 | 0.97 | 0.09 |
气孔导度 Stomatal conductance | <0.01 | 0.12 | 0.08 |
胞间CO2浓度 Intercellular CO2 concentration | <0.01 | 0.54 | 0.36 |
蒸腾速率 Transpiration rate | <0.05 | 0.75 | 0.56 |
开放的光系统II反应中心激发能捕获效率 The efficiency of excitation energy capture by open photosystem II reaction center | <0.01 | 0.46 | 0.43 |
光化学淬灭系数 Photochemical quenching coefficient | <0.01 | 0.21 | 0.66 |
光系统II实际光量子产量 Photosystem II actual photochemical quantum yield | <0.01 | 0.67 | 0.67 |
流经光系统II的电子传递速率 Electron transport rate of photosystem II | <0.01 | 0.68 | 0.67 |
比叶面积 Specific leaf area | <0.01 | <0.01 | <0.01 |
株高变化率 Change rate in plant height | <0.01 | <0.01 | 0.37 |
基径变化率 Change rate in branch diameter | <0.01 | <0.01 | <0.01 |
叶生物量 Leaf biomass | <0.01 | <0.01 | 0.34 |
茎生物量 Stem biomass | <0.01 | <0.01 | 0.85 |
根生物量 Root biomass | 0.46 | <0.01 | 0.27 |
总生物量 Total biomass | <0.01 | <0.01 | 0.57 |
根冠比 Root-shoot ratio | <0.01 | <0.01 | <0.05 |
Fig. 1 Effects of different nitrogen forms on gas exchange parameters of poplar (Populus spp.) leaves (mean ± SE, n = 6). CK, water control; CK-Cl, CaCl2 solution; CO(NH2)2-N, amido nitrogen; NO3--N, nitrate nitrogen; NH4+-N, ammonium nitrogen; NH4NO3-N, ammonia-nitrogen mixed state nitrogen. Different lowercase letters indicate significant differences among treatments (p < 0.05).
Fig. 2 Effects of different nitrogen forms on chlorophyll fluorescence parameters of poplar (Populus spp.) leaves (mean ± SE, n = 6). CK, water control; CK-Cl, CaCl2 solution; CO(NH2)2-N, amido nitrogen; NO3--N, nitrate nitrogen; NH4+-N, ammonium nitrogen; NH4NO3-N, ammonia-nitrogen mixed state nitrogen. Different lowercase letters indicate significant differences among treatments (p < 0.05).
Fig. 3 Effects of different nitrate forms on plant height, branch diameter and specific leaf area of poplar (Populus spp.) leaves (mean ± SE, n = 6). CK, water control; CK-Cl, CaCl2 solution; CO(NH2)2-N, amido nitrogen; NO3--N, nitrate nitrogen; NH4+-N, ammonium nitrogen; NH4NO3-N, ammonia-nitrogen mixed state nitrogen. Different lowercase letters indicate significant differences among treatments (p < 0.05).
基因型 Clones | 氮处理 N treatment | 叶生物量 Leaf biomass (g) | 茎生物量 Stem biomass (g) | 根生物量 Root biomass (g) | 总生物量 Total biomass (g) | 根冠比 Root-shoot ratio |
---|---|---|---|---|---|---|
杨树‘107’ P. euramericana cv. ‘74/76’ | 清水 CK | 43.68 ± 1.40abc | 58.51 ± 1.94cd | 43.74 ± 2.02ab | 146.12 ± 5.33bcd | 0.43 ± 0.02c |
氯化钙 CK-Cl | 38.38 ± 1.41bcd | 54.30 ± 2.19d | 36.93 ± 1.30b | 132.38 ± 3.11cd | 0.44 ± 0.05c | |
铵态氮 NH4+-N | 46.75 ± 1.90ab | 72.55 ± 3.34ab | 40.66 ± 2.40ab | 161.71 ± 4.15ab | 0.35 ± 0.01c | |
硝态氮 NO3--N | 46.46 ± 0.83ab | 72.19 ± 1.92ab | 39.95 ± 2.37ab | 154.93 ± 9.71abc | 0.35 ± 0.02c | |
硝铵态氮 NH4NO3-N | 44.86 ± 0.53abc | 69.82 ± 2.97abc | 39.98 ± 1.90ab | 154.81 ± 4.38abc | 0.35 ± 0.02c | |
酰胺态氮 CO(NH2)2-N | 51.43 ± 2.62a | 79.60 ± 3.78a | 45.01 ± 2.44ab | 172.55 ± 3.07a | 0.36 ± 0.03c | |
杨树‘546’ P. deltoides cv. ‘55/56’ × P. deltoides cv. ‘Imperial’ | 清水 CK | 33.04 ± 2.30cd | 40.88 ± 2.17e | 51.91 ± 2.77a | 130.03 ± 4.48cd | 0.67 ± 0.04a |
氯化钙 CK-Cl | 33.05 ± 1.43d | 40.38 ± 1.72e | 46.41 ± 2.65ab | 120.03 ± 2.76d | 0.64 ± 0.05ab | |
铵态氮 NH4+-N | 42.55 ± 1.27bc | 64.24 ± 2.51bcd | 42.71 ± 2.65ab | 147.36 ± 7.33abc | 0.42 ± 0.04c | |
硝态氮 NO3--N | 43.87 ± 2.58abc | 57.75 ± 3.47d | 49.78 ± 5.01ab | 151.53 ± 5.62abc | 0.49 ± 0.04bc | |
硝铵态氮 NH4NO3-N | 43.43 ± 1.48abc | 58.47 ± 1.96cd | 47.75 ± 2.57ab | 149.77 ± 4.01abc | 0.47 ± 0.03c | |
酰胺态氮 CO(NH2)2-N | 44.69 ± 2.16abc | 62.05 ± 1.33bcd | 44.02 ± 1.66ab | 150.89 ± 7.96abc | 0.42 ± 0.02c |
Table 2 Growth indicators of poplars (Populus spp.) with different nitrogen (N) forms and clones (mean ± SE, n = 6)
基因型 Clones | 氮处理 N treatment | 叶生物量 Leaf biomass (g) | 茎生物量 Stem biomass (g) | 根生物量 Root biomass (g) | 总生物量 Total biomass (g) | 根冠比 Root-shoot ratio |
---|---|---|---|---|---|---|
杨树‘107’ P. euramericana cv. ‘74/76’ | 清水 CK | 43.68 ± 1.40abc | 58.51 ± 1.94cd | 43.74 ± 2.02ab | 146.12 ± 5.33bcd | 0.43 ± 0.02c |
氯化钙 CK-Cl | 38.38 ± 1.41bcd | 54.30 ± 2.19d | 36.93 ± 1.30b | 132.38 ± 3.11cd | 0.44 ± 0.05c | |
铵态氮 NH4+-N | 46.75 ± 1.90ab | 72.55 ± 3.34ab | 40.66 ± 2.40ab | 161.71 ± 4.15ab | 0.35 ± 0.01c | |
硝态氮 NO3--N | 46.46 ± 0.83ab | 72.19 ± 1.92ab | 39.95 ± 2.37ab | 154.93 ± 9.71abc | 0.35 ± 0.02c | |
硝铵态氮 NH4NO3-N | 44.86 ± 0.53abc | 69.82 ± 2.97abc | 39.98 ± 1.90ab | 154.81 ± 4.38abc | 0.35 ± 0.02c | |
酰胺态氮 CO(NH2)2-N | 51.43 ± 2.62a | 79.60 ± 3.78a | 45.01 ± 2.44ab | 172.55 ± 3.07a | 0.36 ± 0.03c | |
杨树‘546’ P. deltoides cv. ‘55/56’ × P. deltoides cv. ‘Imperial’ | 清水 CK | 33.04 ± 2.30cd | 40.88 ± 2.17e | 51.91 ± 2.77a | 130.03 ± 4.48cd | 0.67 ± 0.04a |
氯化钙 CK-Cl | 33.05 ± 1.43d | 40.38 ± 1.72e | 46.41 ± 2.65ab | 120.03 ± 2.76d | 0.64 ± 0.05ab | |
铵态氮 NH4+-N | 42.55 ± 1.27bc | 64.24 ± 2.51bcd | 42.71 ± 2.65ab | 147.36 ± 7.33abc | 0.42 ± 0.04c | |
硝态氮 NO3--N | 43.87 ± 2.58abc | 57.75 ± 3.47d | 49.78 ± 5.01ab | 151.53 ± 5.62abc | 0.49 ± 0.04bc | |
硝铵态氮 NH4NO3-N | 43.43 ± 1.48abc | 58.47 ± 1.96cd | 47.75 ± 2.57ab | 149.77 ± 4.01abc | 0.47 ± 0.03c | |
酰胺态氮 CO(NH2)2-N | 44.69 ± 2.16abc | 62.05 ± 1.33bcd | 44.02 ± 1.66ab | 150.89 ± 7.96abc | 0.42 ± 0.02c |
[1] |
Brix H, Dyhr-Jensen K, Lorenzen B (2002). Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate. Journal of Experimental Botany, 53, 2441-2450.
DOI URL |
[2] | Cai ZJ, Sun N, Wang BR, Xu MG, Huang J, Zhang HM (2011). Effects of long-term fertilization on pH of red soil, crop yields and uptakes of nitrogen, phosphorous and potassium. Plant Nutrition and Fertilizer Science, 17, 71-78. |
[蔡泽江, 孙楠, 王伯仁, 徐明岗, 黄晶, 张会民 (2011). 长期施肥对红壤pH、作物产量及氮、磷、钾养分吸收的影响. 植物营养与肥料学报, 17, 71-78.] | |
[3] | Chang XC, Liu Y, Li JY, Li SA, Sun MH, Wan FF, Zhang J, Song XH (2018). Effects of different nitrogen forms and ratios on growth of male Populus tomentosa seedlings. Journal of Beijing Forestry University, 40(9), 63-71. |
[常笑超, 刘勇, 李进宇, 李世安, 孙明慧, 万芳芳, 张劲, 宋协海 (2018). 不同形态氮素配比对雄性毛白杨苗木生长的影响. 北京林业大学学报, 40(9), 63-71.] | |
[4] | Chen YL, Liu MH, Li XL (2005). Effects of different nitrogen forms and ratios on the photosynthetic characteristics of Pinus koraiensis seedlings. Journal of Nanjing Forestry University (Natural Sciences), 29(3), 77-80. |
[陈永亮, 刘明河, 李修岭 (2005). 不同形态氮素配比对红松幼苗光合特性的影响. 南京林业大学学报(自然科学版), 29(3), 77-80.] | |
[5] | Dai TF, Xi BY, Yan XL, Jia LM (2015). Effects of fertilization method and nitrogen application rate on soil nitrogen vertical migration in a Populus × euramericana cv. ‘Guariento’ plantation. Chinese Journal of Applied Ecology, 26, 1641-1648. |
[戴腾飞, 席本野, 闫小莉, 贾黎明 (2015). 施肥方式和施氮量对欧美108杨人工林土壤氮素垂向运移的影响. 应用生态学报, 26, 1641-1648.] | |
[6] | Deng SL, Di XY, Wang MB, Chen JW, Zhang WF, Ren JZ, Zhou YQ, Liu CP (2006). A comparison of photosynthetic characteristics in four poplar clones. Bulletin of Botanical Research, 26, 600-608. |
[邓松录, 狄晓艳, 王孟本, 陈建文, 张伟峰, 任建中, 周玉泉, 刘存平 (2006). 杨树无性系光合特征的研究. 植物研究, 26, 600-608.]
DOI |
|
[7] | Fan J, Zhao HX, Li M (2003). The specific leaf weight and its relationship with photosynthetic capacity. Journal of Northeast Forestry University, 31(5), 37-39. |
[范晶, 赵惠勋, 李敏 (2003). 比叶重及其与光合能力的关系. 东北林业大学学报, 31(5), 37-39.] | |
[8] | Fan QJ, Zhang Y, Yang SM, Yuan JC, Zheng SL, Zhou H, Ma YY, Jiang GH (2010). Effect of nitrogen forms on the growth, yield, content of ferulic acid and total alkaloids of Ligusticum chuanxiong. Plant Nutrition and Fertilizer Science, 16, 720-724. |
[范巧佳, 张毅, 杨世民, 袁继超, 郑顺林, 周虹, 马逾英, 蒋桂华 (2010). 氮素形态对川芎生长、产量与阿魏酸和总生物碱含量的影响. 植物营养与肥料学报, 16, 720-724.] | |
[9] | Fan WG, Ge HM (2015). Effects of nitrogen fertilizer of different forms and ratios on the growth, nitrogen absorption and utilization of young navel orange trees grafted on Poncirus trifoliata. Scientia Agricultura Sinica, 48, 2666-2675. |
[樊卫国, 葛会敏 (2015). 不同形态及配比的氮肥对枳砧脐橙幼树生长及氮素吸收利用的影响. 中国农业科学, 48, 2666-2675.]
DOI |
|
[10] | Fan WG, Ge HM, Wu SF, Yang TT, Luo Y (2013). Effect of nitrogen forms and the ratios on growth and nutrient absorption of Juglans sigillata seedling. Scientia Silvae Sinicae, 49(5), 77-84. |
[樊卫国, 葛慧敏, 吴素芳, 杨婷婷, 罗燕 (2013). 氮素形态及配比对铁核桃苗生长及营养吸收的影响. 林业科学, 49(5), 77-84.] | |
[11] | Fan WG, Liu JP, Xiang L, Luo C (1998). Effects of nitrogen form on the growth and development of Rosa roxburghii. Acta Horticulturae Sinica, 25, 27-32. |
[樊卫国, 刘进平, 向灵, 罗充 (1998). 不同形态氮素对刺梨生长发育的影响. 园艺学报, 25, 27-32.] | |
[12] |
Frink CR, Waggoner PE, Ausubel JH (1999). Nitrogen fertilizer: retrospect and prospect. Proceedings of the National Academy of Sciences of the United States of America, 96, 1175-1180.
DOI PMID |
[13] | Fu S, Liu XM, Ma Y, Li H, Zhen YM, Zhang ZX, Wang YQ, Men MX, Peng ZP (2022). Effects of nitrogen supply forms on the quality and yield of strong and medium gluten wheat cultivars. Journal of Plant Nutrition and Fertilizers, 28, 83-93. |
[付帅, 刘晓明, 马阳, 李皓, 甄怡铭, 张子旋, 王艳群, 门明新, 彭正萍 (2022). 氮素形态对强筋和中筋小麦产量和品质的影响. 植物营养与肥料学报, 28, 83-93.] | |
[14] |
Garnett TP, Smethurst PJ (1999). Ammonium and nitrate uptake by Eucalyptus nitens: effects of pH and temperature. Plant and Soil, 214, 133-140.
DOI URL |
[15] |
Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wirén N (1999). Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. The Plant Cell, 11, 937-948.
DOI URL |
[16] |
Giǵon A, Rorison IH (1972). The response of some ecologically distinct plant species to nitrate- and to ammonium- nitrogen. Journal of Ecology, 60, 93-102.
DOI URL |
[17] |
Guo S, Zhou Y, Shen Q, Zhang F (2007). Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth, photosynthesis, photorespiration, and water relations. Plant Biology, 9, 21-29.
DOI PMID |
[18] | Han SJ (2018). Effects of Different Nitrogen Forms and Application Rate on the Production Performance, Quality and Soil of Bothriochloa ischaemum Pasture. Master degree dissertation, Shanxi Agricultural University, Taigu, Shanxi. |
[韩世洁 (2018). 不同形态氮及施氮量对白羊草生产性能、品质及土壤的影响. 硕士学位论文, 山西农业大学, 山西太谷.] | |
[19] | Hunt R(Translated by LuXH (1980). Plant Growth Analysis. Science Press, Beijing. 22. |
[Hunt R (陆宪辉译) (1980). 植物生长分析. 科学出版社, 北京. 22.] | |
[20] | Huo CF, Sun HL, Fan ZQ, Wang ZQ (2007). Physiological processes and major regulating factors of nitrogen uptake by plant roots. Chinese Journal of Applied Ecology, 18, 1356-1364. |
[霍常富, 孙海龙, 范志强, 王政权 (2007). 根系氮吸收过程及其主要调节因子. 应用生态学报, 18, 1356-1364.] | |
[21] | Jia WJ, Jiang W, Liu J, Qu Y (2019). Effects of different nitrogen forms on growth and photosynthesis of Meconopsis racemosa seedlings. Journal of West China Forestry Science, 48(6), 72-79. |
[贾维嘉, 蒋伟, 刘建, 屈燕 (2019). 不同氮素形态对总状绿绒蒿幼苗生长与光合作用的影响. 西部林业科学, 48(6), 72-79.] | |
[22] | Jin WW, Zhang HH, Li X, Teng ZY, Zhang SB, Zhang XL, Xu N, Sun GY (2018). Responses of photosynthetic characteristics in leaves of Populus simonii × P. nigra and Morus alba to nitrogen forms. Journal of Central South University of Forestry & Technology, 38(5), 98-103. |
[金微微, 张会慧, 李鑫, 滕志远, 张书博, 张秀丽, 许楠, 孙广玉 (2018). 小黑杨和桑树叶片光合特性对不同氮素形态的响应. 中南林业科技大学学报, 38(5), 98-103.] | |
[23] |
Kobe RK, Iyer M, Walters MB (2010). Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology, 91, 166-179.
PMID |
[24] | Lei XQ, Shen CW, Mei XL, Jiang HB, Xu YC, Dong CX (2015). Effects of different nitrogen forms combined with amino acids on growth and quality of Cuiguan pears (Pyrus pyrifolia Nakai). Soils, 47, 530-536. |
[雷锡琼, 申长卫, 梅新兰, 姜海波, 徐阳春, 董彩霞 (2015). 不同氮素形态配施氨基酸对翠冠梨生长及品质的影响研究. 土壤, 47, 530-536.] | |
[25] | Li HX, Xing YJ, Li ZH, Bai H (2021). Effects of different nitrate form on the growth and physiological characteristics for Quercus mongolica seedlings. Forest Engineering, 37(2), 35-40. |
[李海霞, 邢亚娟, 李正华, 白卉 (2021). 不同氮素形态对蒙古栎幼苗生长及生理特性的影响. 森林工程, 37(2), 35-40.] | |
[26] | Li J, Zhao BQ, Li XY, So HB (2008). Effects of long-term combined application of organic and mineral fertilizers on soil microbiological properties and soil fertility. Scientia Agricultura Sinica, 41, 144-152. |
[李娟, 赵秉强, 李秀英, So HB (2008). 长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响. 中国农业科学, 41, 144-152.] | |
[27] |
Li JY, Dong TF, Guo QX, Zhao HX (2015). Populus deltoides females are more selective in nitrogen assimilation than males under different nitrogen forms supply. Trees, 29, 143-159.
DOI URL |
[28] | Li MC (2012). N Utilization and Wood Structure Changes in Fast- and Slow-growing Populus Species Under Nitrogen Fertilization. Master degree dissertation, Northwest A&F University, Yangling, Shaanxi. |
[李孟春 (2012). 氮素对两种杨树生理生化特性及木材品质的影响. 硕士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[29] |
Li P, Zhou HM, Feng ZZ (2021). Ozone pollution, nitrogen addition, and drought stress interact to affect non-structural carbohydrates in the leaves and fine roots of poplar. Environmental Science, 42, 1004-1012.
DOI URL |
[李品, 周慧敏, 冯兆忠 (2021). 臭氧污染、氮沉降和干旱胁迫交互作用对杨树叶和细根非结构性碳水化合物的影响. 环境科学, 42, 1004-1012.] | |
[30] |
Li W, Zhang H, Huang G, Liu R, Wu H, Zhao C, McDowell NG (2020). Effects of nitrogen enrichment on tree carbon allocation: a global synthesis. Global Ecology and Biogeography, 29, 573-589.
DOI URL |
[31] | Li X, Feng W, Zeng XC (2006). Advances in chlorophyll fluorescence analysis and its uses. Acta Botanica Boreali- Occidentalia Sinica, 26, 2186-2196. |
[李晓, 冯伟, 曾晓春 (2006). 叶绿素荧光分析技术及应用进展. 西北植物学报, 26, 2186-2196.] | |
[32] | Li Y, Lin L, Zhu WY, Zhang ZH, He JS (2017). Responses of leaf traits to nitrogen and phosphorus additions across common species in an alpine grassland on the Qinghai- Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 53, 535-544. |
[李颖, 林笠, 朱文琰, 张振华, 贺金生 (2017). 青藏高原高寒草地常见植物叶属性对氮、磷添加的响应. 北京大学学报(自然科学版), 53, 535-544.] | |
[33] | Liu J, Jiang W, Jia WJ, Ou Z, Qu Y (2021). Effects of different nitrogen forms on phenotype and photofluorescence of Meconopsis rudis seedlings. Southwest China Journal of Agricultural Sciences, 34, 1608-1615. |
[刘建, 蒋伟, 贾维嘉, 区智, 屈燕 (2021). 不同氮素形态对宽叶绿绒蒿幼苗表型及光合荧光的影响. 西南农业学报, 34, 1608-1615.] | |
[34] | Liu T, Shang ZL (2016). Research progress on molecular regulation of ammonium uptake and transport in plant. Plant Physiology Journal, 52, 799-809. |
[刘婷, 尚忠林 (2016). 植物对铵态氮的吸收转运调控机制研究进展. 植物生理学报, 52, 799-809.] | |
[35] | Liu YR, Liu FJ, Wang S, Wang SJ (1983). Studies on seedling growth and photosynthetic characteristics of four poplar hybrids. Scientia Silvae Sinicae, 19, 269-276. |
[刘雅荣, 刘奉觉, 王爽, 王世绩 (1983). 四种杨树苗木的生长与光合作用特性的研究. 林业科学, 19, 269-276.] | |
[36] | Ma XF, Sun ZH, Liu T (2017). Effect of different nitrogen form proportion on the growth of Betula platyphylla seedling. Forest Engineering, 33(2), 1-4. |
[马学发, 孙志虎, 刘彤 (2017). 不同形态氮素比例对白桦幼苗生长影响的研究. 森林工程, 33(2), 1-4.] | |
[37] |
Maeda SI, Konishi M, Yanagisawa S, Omata T (2014). Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant and Cell Physiology, 55, 1311-1324.
DOI URL |
[38] | Marschner H (1995). Marschner’s Mineral Nutrition of Higher Plants. 2nd ed. Academic Press, Canberra, Australia. |
[39] | Martins-Loução MA, Lips SH (2000). Nitrogen from the cell to the plant: recent progress and perspectives//Martins-Loução MA, Lips SH. Nitrogen in a Sustainable Ecosystem: from the Cell to the Plant. Backhuys Publishers, Leiden, the Netherlands. 3-6. |
[40] |
Novoa R, Loomis RS (1981). Nitrogen and plant production. Plant and soil, 58, 177-204.
DOI URL |
[41] | Ren HZ, Zhang FM, Liu BZ (1992). Effect of different nitrogen forms on growth, development and yield in media-cultural sweet pepper. Journal of China Agricultural University, 3(3), 275-279. |
[任华中, 张福墁, 刘步洲 (1992). 不同形态氮素对基质栽培甜椒生长发育的影响. 北京农业大学学报, 3(3), 275-279.] | |
[42] |
Rennenberg H, Wildhagen H, Ehlting B (2010). Nitrogen nutrition of poplar trees. Plant Biology, 12, 275-291.
DOI PMID |
[43] |
Schippers P, Snoeijing I, Kropff MJ (1999). Competition under high and low nutrient levels among three grassland species occupying different positions in a successional sequence. New Phytologist, 143, 547-559.
DOI PMID |
[44] | Tan JR, Zha TG, Zhang ZQ, Sun G, Dai W, Fang XR, Xu F (2009). Effects of soil temperature and moisture on soil respiration in a poplar plantation in Daxing District, Beijing. Ecology and Environmental Sciences, 18, 2308-2315. |
[谭炯锐, 查同刚, 张志强, 孙阁, 戴伟, 方显瑞, 徐枫 (2009). 土壤温湿度对北京大兴杨树人工林土壤呼吸的影响. 生态环境学报, 18, 2308-2315.]
DOI |
|
[45] | Wan Q, Xu RK, Li XH (2013). Effect of forms of nitrogen on proton release from tea plant roots under hydroponic condition. Acta Pedologica Sinica, 50, 720-725. |
[万青, 徐仁扣, 黎星辉 (2013). 氮素形态对茶树根系释放质子的影响. 土壤学报, 50, 720-725.] | |
[46] | Wang K, Lei H, Xia Y, Yu GQ (2017). Responses of non- structural carbohydrates of poplar seedlings to increased precipitation and nitrogen addition. Chinese Journal of Applied Ecology, 28, 399-407. |
[王凯, 雷虹, 夏扬, 于国庆 (2017). 杨树幼苗非结构性碳水化合物对增加降水和氮添加的响应. 应用生态学报, 28, 399-407.]
DOI |
|
[47] |
Wang Z, Ma L, Jia ZK, Wei HX, Duan J (2016). Interactive effects of irrigation and exponential fertilization on nutritional characteristics in Populus × euramericana cv. ‘74/76’ cuttings in an open-air nursery in Beijing, China. Journal of Forestry Research, 27, 569-582.
DOI URL |
[48] | Xiao YH, Zhao XL, Wang KC, Shi XM, Tang XQ (2013). Effect of different nitrogen forms and concentrations on biomass and alkaloids of Isatidis folium. China Journal of Chinese Materia Medica, 38, 2755-2760. |
[肖云华, 赵雪玲, 王康才, 石馨玫, 唐晓清 (2013). 不同氮素形态和浓度对大青叶生物量与生物碱类成分的影响. 中国中药杂志, 38, 2755-2760.] | |
[49] | Xing Y (2016). Effect of Nitrogen Form on Growth, Physiological and Biochemical Characteristics of Tobacco Seedlings. Master degree dissertation, Chinese Academy of Agricultural Sciences, Beijing. |
[邢瑶 (2016). 氮素形态对烟苗生长及其生理生化特性的影响. 硕士学位论文, 中国农业科学院, 北京.] | |
[50] |
Xing Y, Ma XH (2015). Research progress on effect of nitrogen form on plant growth. Journal of Agricultural Science and Technology, 17(2), 109-117.
DOI |
[邢瑶, 马兴华 (2015). 氮素形态对植物生长影响的研究进展. 中国农业科技导报, 17(2), 109-117.] | |
[51] | Xu DD, Wang HB, Pu YH (2022). Review on the lag effects of nitrogen deposition on plantations. Ecological Science, 41(2), 259-264. |
[徐丹丹, 王浩斌, 濮毅涵 (2022). 氮沉降对人工林生长的滞后性影响的研究进展. 生态科学, 41(2), 259-264.] | |
[52] | Xu WB (2020). Photosynthetic Carbon Allocation and Their Responses to Coupling Factors of Soil Nutrient and Water in Typical Plantation Saplings in Sub-tropical Region. Master degree dissertation, Fujian Agriculture and Forestry University, Fuzhou. |
[许文斌 (2020). 亚热带典型人工林幼树光合碳分配及其对土壤养分和水分耦合因子的响应. 硕士学位论文, 福建农林大学, 福州.] | |
[53] | Xu Y, Xu K, Yu SQ, Ruan HH, Fan H, Yang Y, Xu CB, Cao GH (2014). Allocation of fine root biomass and its response to nitrogen deposition in poplar plantations with different stand ages. Chinese Journal of Ecology, 33, 583-591. |
[徐钰, 许凯, 于水强, 阮宏华, 范换, 杨悦, 徐长柏, 曹国华 (2014). 不同林龄杨树细根生物量分配及其对氮沉降的响应. 生态学杂志, 33, 583-591.] | |
[54] | Xue YF, Zhang H, Xia HY, Wang QC, Wen LY, Xue YH, Yu ZG, Li ZX (2016). Effect of different N forms on the dry weight and N accumulation of maize seedlings. Journal of Maize Sciences, 24(6), 126-130. |
[薛艳芳, 张慧, 夏海勇, 王庆成, 温立玉, 薛燕慧, 于正贵, 李宗新 (2016). 不同氮素形态供应对玉米幼苗生物量和氮素累积的影响. 玉米科学, 24(6), 126-130.] | |
[55] | Xue ZZ, Wang SW, Ding JJ, Li CP, Ma B, Yasen R (2020). Effects of different nitrogen ratio on growth indexes of walnut seedlings. Northern Horticulture, (19), 40-45. |
[薛泽政, 王世伟, 丁俊杰, 李春萍, 马彬, 热比古丽·亚森 (2020). 不同形态氮素配比对核桃幼苗生长指标的影响. 北方园艺, (19), 40-45.] | |
[56] |
Yan LM, Xu XN, Xia JY (2019). Different impacts of external ammonium and nitrate addition on plant growth in terrestrial ecosystems: a meta-analysis. Science of the Total Environment, 686, 1010-1018.
DOI URL |
[57] | Yan XL, Hu WJ, Ma YF, Huo YF, Wang T, Ma XQ (2020). Nitrogen uptake preference of Cunninghamia lanceolata, Pinus massoniana, and Schima superba under heterogeneous nitrogen supply environment and their root foraging strategies. Scientia Silvae Sinicae, 56(2), 1-11. |
[闫小莉, 胡文佳, 马远帆, 霍昱帆, 王拓, 马祥庆 (2020). 异质性供氮环境下杉木、马尾松、木荷氮素吸收偏好及其根系觅氮策略. 林业科学, 56(2), 1-11.] | |
[58] | Ye YQ, Luo HY, Li M, Liu XX, Cao GQ, Xu SS (2018). Effects of nitrogen forms on lateral roots development and photosynthetic characteristics in leaves of Cunninghamia lanceolata seedlings. Acta Botanica Boreali-Occidentalia Sinica, 38, 2036-2044. |
[叶义全, 罗红艳, 李茂, 刘晓霞, 曹光球, 许珊珊 (2018). 氮素形态对杉木幼苗侧根生长和叶片光合特性的影响. 西北植物学报, 38, 2036-2044.] | |
[59] |
Yin ZY, Yu XF, Zou YC, Ding SS, Zhang JY (2022). Nitrogen addition effects on wetland soils depend on environmental factors and nitrogen addition methods: a meta-analysis. Water, 14, 1748. DOI: 10.3390/w14111748.
DOI |
[60] | You X, Gong JR (2012). Significance and application of chlorophyll fluorescence dynamics process parameters. Journal of West China Forestry Science, 41(5), 90-94. |
[尤鑫, 龚吉蕊 (2012). 叶绿素荧光动力学参数的意义及实例辨析. 西部林业科学, 41(5), 90-94.] | |
[61] | Yuan XY, Shang B, Xu YS, Xin Y, Tian Y, Feng ZZ, Paoletti E (2017). No significant interactions between nitrogen stimulation and ozone inhibition of isoprene emission in Cathay poplar. Science of the Total Environment, 601- 602, 222-229. |
[62] | Zhang JJ, Xu SS, Cao GQ, Lin SZ, Pan YM, Ye YQ (2020). Effects of nitrogen forms on the chlorophyll fluorescence parameters and chloroplast ultra-structure of Cunninghamia lanceolata. Journal of Northwest Forestry University, 35(2), 24-31. |
[张家君, 许珊珊, 曹光球, 林思祖, 潘彦名, 叶义全 (2020). 不同氮形态对杉木叶绿素荧光参数和叶绿体超微结构的影响. 西北林学院学报, 35(2), 24-31.] | |
[63] | Zhang SQ, Wei XP (2002). A comparative study of vegetables’ absorption of NO3-N and NH4+-N. Journal of Lanzhou University (Natural Science), 38(4), 77-84. |
[张树清, 魏小平 (2002). 蔬菜作物对硝铵态氮吸收能力比较研究. 兰州大学学报(自然科学版), 38(4), 77-84.] | |
[64] | Zhang YC, Chen ZF, Long HY, Luo CY (2005). Effect of different nitrogen forms and their ratio on agronomical character, economic and quality of flue-cured tobacco. Plant Nutrition and Fertilizing Science, 11, 787-792. |
[张延春, 陈治锋, 龙怀玉, 罗春燕 (2005). 不同氮素形态及比例对烤烟长势、产量及部分品质因素的影响. 植物营养与肥料学报, 11, 787-792.] | |
[65] |
Zhang YD, Fan ZQ, Wang QC, Wang ZQ (2000). Effect of different nitrogen forms on growth of Fraxinus mandshurica seedlings. Chinese Journal of Applied Ecology, 11, 665-667.
PMID |
[张彦东, 范志强, 王庆成, 王政权 (2000). 不同形态N素对水曲柳幼苗生长的影响. 应用生态学报, 11, 665-667.]
PMID |
|
[66] | Zhao P, Sun GC, Peng SL (1998). Ecophysiological research on nitrogen nutrition of plant. Ecologic Science, 17(2), 37-42. |
[赵平, 孙谷畴, 彭少麟 (1998). 植物氮素营养的生理生态学研究. 生态科学, 17(2), 37-42.] | |
[67] | Zhu ZJ, Yu JQ, Gerendas J, Sattelmacher B (1998). Effect of light intensity and nitrogen form on growth and activities of H2O2-scavenging enzymes in tobacco. Plant Nutrition and Fertilizer Science, 4, 379-385. |
[朱祝军, 喻景权, Gerendas J, Sattelmacher B (1998). 氮素形态和光照强度对烟草生长和H2O2清除酶活性的影响. 植物营养与肥料学报, 4, 379-385.] |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[3] | YANG Shang-Jin, FAN Yun-Xiang, ZHANG Yu-Wen, HAN Qiao-Ling, ZHAO Yue, DUAN Jie, DI Nan, XI Ben-Ye. Comparison of methods for dividing nighttime sap flow components in Populus tomentosa trees [J]. Chin J Plant Ecol, 2024, 48(4): 496-507. |
[4] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[5] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[6] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[7] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[8] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[9] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[10] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
[11] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[12] | LIU Jian-Xin, LIU Rui-Rui, LIU Xiu-Li, JIA Hai-Yan, BU Ting, LI Na. Regulation of exogenous hydrogen sulfide on photosynthetic carbon metabolism in Avena nude under saline-alkaline stress [J]. Chin J Plant Ecol, 2023, 47(3): 374-388. |
[13] | ZHAO Xiao-Ning, TIAN Xiao-Nan, LI Xin, LI Guang-De, GUO You-Zheng, JIA Li-Ming, DUAN Jie, XI Ben-Ye. Analysis of applicability of Granier’s original equation for calculating the stem sap flux density—Take Populus tomentosa as an example [J]. Chin J Plant Ecol, 2023, 47(3): 404-417. |
[14] | FAN Yun-Xiang, DI Nan, LIU Yang, ZHANG Yu-Wen, DUAN Jie, LI Xin, WANG Hai-Hong, XI Ben-Ye. Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors [J]. Chin J Plant Ecol, 2023, 47(2): 262-274. |
[15] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn