Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (11): 1523-1539.DOI: 10.17521/cjpe.2022.0390
• Research Articles • Previous Articles Next Articles
HE Lu-Lu1, ZHANG Xuan1, ZHANG Yu-Wen1, WANG Xiao-Xia1, LIU Ya-Dong1, LIU Yan1, FAN Zi-Ying1, HE Yuan-Yang2, XI Ben-Ye1, DUAN Jie1,**()
Received:
2022-10-07
Accepted:
2023-02-24
Online:
2023-11-20
Published:
2023-12-22
Contact:
DUAN Jie(About author:
First author contact:*Contributed equally to this work
Supported by:
HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China[J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0390
坡向 Slope aspect | 龄级 Age class | 样地数量 No. of plots | 林龄 Age (a) | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 林分密度 Tree density (tree·hm-2) |
---|---|---|---|---|---|---|
阴坡 Shady slope | 幼龄林 Young forests | 10 | 16 | 10.789 ± 0.228 | 12.602 ± 0.209 | 2 312.5 ± 173.375 |
中龄林 Middle-age forests | 10 | 25 | 14.834 ± 0.373 | 16.826 ± 0.338 | 1 020 ± 71.095 | |
成熟林 Mature forests | 10 | 52 | 25.605 ± 0.877 | 23.249 ± 0.340 | 482.5 ± 29.592 | |
阳坡 Sunny slope | 幼龄林 Young forests | 10 | 16 | 11.342 ± 0.133 | 12.296 ± 0.242 | 2 285 ± 116.142 |
中龄林 Middle-age forests | 10 | 25 | 15.369 ± 0.381 | 17.261 ± 0.369 | 1 252.5 ± 69.766 | |
成熟林 Mature forests | 10 | 52 | 25.981 ± 0.595 | 23.347 ± 0.364 | 387.5 ± 19.454 |
Table 1 Information on sampling plots for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area (mean ± SE)
坡向 Slope aspect | 龄级 Age class | 样地数量 No. of plots | 林龄 Age (a) | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 林分密度 Tree density (tree·hm-2) |
---|---|---|---|---|---|---|
阴坡 Shady slope | 幼龄林 Young forests | 10 | 16 | 10.789 ± 0.228 | 12.602 ± 0.209 | 2 312.5 ± 173.375 |
中龄林 Middle-age forests | 10 | 25 | 14.834 ± 0.373 | 16.826 ± 0.338 | 1 020 ± 71.095 | |
成熟林 Mature forests | 10 | 52 | 25.605 ± 0.877 | 23.249 ± 0.340 | 482.5 ± 29.592 | |
阳坡 Sunny slope | 幼龄林 Young forests | 10 | 16 | 11.342 ± 0.133 | 12.296 ± 0.242 | 2 285 ± 116.142 |
中龄林 Middle-age forests | 10 | 25 | 15.369 ± 0.381 | 17.261 ± 0.369 | 1 252.5 ± 69.766 | |
成熟林 Mature forests | 10 | 52 | 25.981 ± 0.595 | 23.347 ± 0.364 | 387.5 ± 19.454 |
树冠指标类型 Type of crown indicator | 指标名称 Indicator name | 定义, 测量或计算方法 Description and measuring method |
---|---|---|
客观指标 Objective indicator | 冠幅 Crown width (CW, m) | 树冠的垂直投影宽度, 一般分为东西、南北冠幅, 用皮尺测量, 取平均值作为被测木冠幅, 精确到0.1 m The vertical projection width of tree crown, the crown width in the east-west and north-south directions are measured with a tape measure, and their average value are taken as the crown width, accurate to 0.1 m |
树冠长度 Crown length (CL, m) | 树冠底部到顶部的垂直长度, 其值等于树高减去活枝下高, 用测高仪测量, 精确到0.1 m The vertical length from the base to the top of the crown, equal to the tree height minus the height of the lowest living branch, measured with an altimeter, accurate to 0.1 m | |
枝下高 Under branch height (HU, m) | 树冠底部到地面的垂直长度, 用激光测距仪测定, 精确到0.1 m The vertical distance from the ground to the crown base, measured with a laser range finder, accurate to 0.1 m | |
主观指标 Subjective indicator | 树冠位置 Crown position (CP) | 林木树冠在林内冠层的相对位置, 1-4级依次定义为活树冠顶部高出2倍林分冠层的高度、活树冠顶部高出林冠层高度的1/2、活树冠层低于林冠层高度的1/2、孤立木 The vertical position of a tree relative to the forest stand, grades 1 to 4 were defined as the live crown top must be at least twice the height of the top of the overstory canopy zone, the live crown top is above the middle of the overstory canopy zone, the live crown top is at or below the middle of the overstory canopy zone, and the individual trees, respectively |
树冠受光率 Crown light exposure (CLE) | 太阳照射树冠时, 树冠能接收到直射光照的数量, 将树冠垂直划分为4个侧面和1个顶部共5个受光面, 观察5个面的受光情况, 并将其由低到高划分为0-5共6级 Trees are rated based on the amount of light received with the sun directly overhead, the value is assigned by dividing the tree crown into five segments: four vertical sides and the top, the number of segments receiving light is then counted, resulting in a value that ranges from 0 to 5 | |
树冠顶梢枯死率 Crown dieback (CDBK, %) | 树冠顶梢枯死面积占活树冠面积的百分比, 按每5%为一个单位 The percentage ot the area of the treetop dieback to the whole living crown, and is recorded in five-percent classes | |
树冠叶透光度 Foliage transparency (FT, %) | 透过活冠部分可见的天空百分比, 仅通过活冠部分的树叶判断, 枯枝和死枝不包括在内, 按每5%作为一个单位划分 The amount of skylight on a percent basis that is visible through the live part of the crown, dead branches are excluded from the estimate, and is recorded in five-percent classes | |
树冠密度 Crown density (CD, %) | 树冠枝条、叶片和其他组织阻挡可见光穿过树冠的数量, 按每5%作为一个单位划分 The percentage of light blocked by branches, foliage, and other structures, and is recorded in five-percent classes | |
复合指标 Composite indicator | 冠径比 Ratio of CW to DBH (RCD, %) | 冠幅与胸径的比值 Ratio of crown width to diameter at breast height |
树冠率 Crown ratio (CR, %) | 树高和活枝下高的差值与树高的比值 Ratio of crown length to tree height | |
树冠圆满度 Crown fullness ratio (CFR) | 冠幅与树冠长度的比值 Ratio of crown width to crown length | |
树冠表面积 Composite crown surface area (CCSA, m2) | ||
树冠体积 Composite crown volume (CCV, m3) | ||
树冠生产率 Crown production efficiency (CEFF, m-1) | CEFF = CCSA/CCV |
Table 2 Information on crown indicators for Larix olgensis var. changbaiensis in eastern Liaoning mountainous area
树冠指标类型 Type of crown indicator | 指标名称 Indicator name | 定义, 测量或计算方法 Description and measuring method |
---|---|---|
客观指标 Objective indicator | 冠幅 Crown width (CW, m) | 树冠的垂直投影宽度, 一般分为东西、南北冠幅, 用皮尺测量, 取平均值作为被测木冠幅, 精确到0.1 m The vertical projection width of tree crown, the crown width in the east-west and north-south directions are measured with a tape measure, and their average value are taken as the crown width, accurate to 0.1 m |
树冠长度 Crown length (CL, m) | 树冠底部到顶部的垂直长度, 其值等于树高减去活枝下高, 用测高仪测量, 精确到0.1 m The vertical length from the base to the top of the crown, equal to the tree height minus the height of the lowest living branch, measured with an altimeter, accurate to 0.1 m | |
枝下高 Under branch height (HU, m) | 树冠底部到地面的垂直长度, 用激光测距仪测定, 精确到0.1 m The vertical distance from the ground to the crown base, measured with a laser range finder, accurate to 0.1 m | |
主观指标 Subjective indicator | 树冠位置 Crown position (CP) | 林木树冠在林内冠层的相对位置, 1-4级依次定义为活树冠顶部高出2倍林分冠层的高度、活树冠顶部高出林冠层高度的1/2、活树冠层低于林冠层高度的1/2、孤立木 The vertical position of a tree relative to the forest stand, grades 1 to 4 were defined as the live crown top must be at least twice the height of the top of the overstory canopy zone, the live crown top is above the middle of the overstory canopy zone, the live crown top is at or below the middle of the overstory canopy zone, and the individual trees, respectively |
树冠受光率 Crown light exposure (CLE) | 太阳照射树冠时, 树冠能接收到直射光照的数量, 将树冠垂直划分为4个侧面和1个顶部共5个受光面, 观察5个面的受光情况, 并将其由低到高划分为0-5共6级 Trees are rated based on the amount of light received with the sun directly overhead, the value is assigned by dividing the tree crown into five segments: four vertical sides and the top, the number of segments receiving light is then counted, resulting in a value that ranges from 0 to 5 | |
树冠顶梢枯死率 Crown dieback (CDBK, %) | 树冠顶梢枯死面积占活树冠面积的百分比, 按每5%为一个单位 The percentage ot the area of the treetop dieback to the whole living crown, and is recorded in five-percent classes | |
树冠叶透光度 Foliage transparency (FT, %) | 透过活冠部分可见的天空百分比, 仅通过活冠部分的树叶判断, 枯枝和死枝不包括在内, 按每5%作为一个单位划分 The amount of skylight on a percent basis that is visible through the live part of the crown, dead branches are excluded from the estimate, and is recorded in five-percent classes | |
树冠密度 Crown density (CD, %) | 树冠枝条、叶片和其他组织阻挡可见光穿过树冠的数量, 按每5%作为一个单位划分 The percentage of light blocked by branches, foliage, and other structures, and is recorded in five-percent classes | |
复合指标 Composite indicator | 冠径比 Ratio of CW to DBH (RCD, %) | 冠幅与胸径的比值 Ratio of crown width to diameter at breast height |
树冠率 Crown ratio (CR, %) | 树高和活枝下高的差值与树高的比值 Ratio of crown length to tree height | |
树冠圆满度 Crown fullness ratio (CFR) | 冠幅与树冠长度的比值 Ratio of crown width to crown length | |
树冠表面积 Composite crown surface area (CCSA, m2) | ||
树冠体积 Composite crown volume (CCV, m3) | ||
树冠生产率 Crown production efficiency (CEFF, m-1) | CEFF = CCSA/CCV |
变异来源Source of variation | 生长指标 Growth indicator | 树冠指标 Crown indicator | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
生长指标 Growth indicator | F | p | 客观指标 Objective indicator | F | p | 主观指标 Subjective indicator | F | p | 复合指标 Composite indicator | F | p | |
S | DBH | 1.515 | 0.250 | CW | 54.534 | <0.001 | CP | 0.113 | 0.745 | RCD | 44.198 | <0.001 |
A | 528.915 | <0.001 | 123.204 | <0.001 | 11.448 | <0.001 | 15.682 | <0.001 | ||||
S × A | 0.022 | 0.979 | 12.430 | <0.001 | 7.991 | 0.001 | 6.537 | 0.004 | ||||
S | H | 0.091 | 0.770 | CL | 0.942 | 0.357 | CLE | 0.314 | 0.589 | CR | 2.181 | 0.174 |
A | 605.145 | <0.001 | 58.595 | <0.001 | 37.298 | <0.001 | 8.692 | 0.001 | ||||
S × A | 0.703 | 0.502 | 0.534 | 0.591 | 6.045 | 0.005 | 2.697 | 0.081 | ||||
S | V | 0.142 | 0.711 | HU | 0.911 | 0.365 | CDBK | 0.264 | 0.620 | CFR | 10.701 | 0.011 |
A | 331.060 | <0.001 | 244.964 | <0.001 | 23.919 | <0.001 | 6.192 | 0.005 | ||||
S × A | 0.076 | 0.927 | 2.170 | 0.129 | 17.075 | <0.001 | 2.708 | 0.080 | ||||
S | RDH | 0.118 | 0.739 | FT | 2.751 | 0.132 | CCSA | 28.128 | <0.001 | |||
A | 67.870 | <0.001 | 1.809 | 0.178 | 206.807 | <0.001 | ||||||
S × A | 2.416 | 0.104 | 10.795 | <0.001 | 7.695 | 0.002 | ||||||
S | RDD | 7.667 | 0.022 | CD | 1.431 | 0.262 | CCV | 43.572 | <0.001 | |||
A | 45.213 | <0.001 | 1.763 | 0.186 | 83.273 | <0.001 | ||||||
S × A | 8.941 | 0.001 | 10.288 | <0.001 | 11.328 | <0.001 | ||||||
S | RHD | 8.551 | 0.017 | CEFF | 9.720 | 0.012 | ||||||
A | 69.617 | <0.001 | 49.883 | <0.001 | ||||||||
S × A | 1.461 | 0.245 | 6.643 | 0.004 |
Table 3 Variance analysis of growth and crown indictors for different stand ages and slope aspects of Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area
变异来源Source of variation | 生长指标 Growth indicator | 树冠指标 Crown indicator | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
生长指标 Growth indicator | F | p | 客观指标 Objective indicator | F | p | 主观指标 Subjective indicator | F | p | 复合指标 Composite indicator | F | p | |
S | DBH | 1.515 | 0.250 | CW | 54.534 | <0.001 | CP | 0.113 | 0.745 | RCD | 44.198 | <0.001 |
A | 528.915 | <0.001 | 123.204 | <0.001 | 11.448 | <0.001 | 15.682 | <0.001 | ||||
S × A | 0.022 | 0.979 | 12.430 | <0.001 | 7.991 | 0.001 | 6.537 | 0.004 | ||||
S | H | 0.091 | 0.770 | CL | 0.942 | 0.357 | CLE | 0.314 | 0.589 | CR | 2.181 | 0.174 |
A | 605.145 | <0.001 | 58.595 | <0.001 | 37.298 | <0.001 | 8.692 | 0.001 | ||||
S × A | 0.703 | 0.502 | 0.534 | 0.591 | 6.045 | 0.005 | 2.697 | 0.081 | ||||
S | V | 0.142 | 0.711 | HU | 0.911 | 0.365 | CDBK | 0.264 | 0.620 | CFR | 10.701 | 0.011 |
A | 331.060 | <0.001 | 244.964 | <0.001 | 23.919 | <0.001 | 6.192 | 0.005 | ||||
S × A | 0.076 | 0.927 | 2.170 | 0.129 | 17.075 | <0.001 | 2.708 | 0.080 | ||||
S | RDH | 0.118 | 0.739 | FT | 2.751 | 0.132 | CCSA | 28.128 | <0.001 | |||
A | 67.870 | <0.001 | 1.809 | 0.178 | 206.807 | <0.001 | ||||||
S × A | 2.416 | 0.104 | 10.795 | <0.001 | 7.695 | 0.002 | ||||||
S | RDD | 7.667 | 0.022 | CD | 1.431 | 0.262 | CCV | 43.572 | <0.001 | |||
A | 45.213 | <0.001 | 1.763 | 0.186 | 83.273 | <0.001 | ||||||
S × A | 8.941 | 0.001 | 10.288 | <0.001 | 11.328 | <0.001 | ||||||
S | RHD | 8.551 | 0.017 | CEFF | 9.720 | 0.012 | ||||||
A | 69.617 | <0.001 | 49.883 | <0.001 | ||||||||
S × A | 1.461 | 0.245 | 6.643 | 0.004 |
Fig. 1 Effects of stand ages and slope aspects on the stand growth indicators of Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area (mean ± SE). DBH, diameter at breast tree height; H, tree height; RDD, relative dominant tree diameter; RDH, relative dominant tree height; RHD, ratio of H to DBH; V, tree volume. Different lowercase letters indicate significant differences in growth indicators under different stand ages and slope aspects (p < 0.05).
Fig. 2 Effects of stand ages and slope aspects on the crown objective indicators of Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area (mean ± SE). CL, crown length; CW, crown width; HU, under branch height. Different lowercase letters indicate significant differences of objective indictors of tree crowns under different stand ages and slope aspects (p < 0.05).
Fig. 3 Effects of stand ages and slope aspects on the crown subjective indictors of Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area (mean ± SE). CD, crown density; CDBK, crown dieback; CLE, crown light exposure; CP, crown position; FT, foliage transparency. Different lowercase letters indicate significant differences of subjective indictors of tree crowns under different stand ages and slope aspects (p < 0.05).
Fig. 4 Effects of stand ages and slope aspects on the crown composite indictors of Larix olgensis var. ohangbaiensis plantation in eastern Liaoning mountainous area (mean ± SE). CCSA, composite crown surface area; CCV, composite crown volume; CEFF, crown production efficiency; CFR, crown fullness ratio; CR, crown ratio; RCD, ratio of crown width to diameter at breast height. Different lowercase letters indicate significant differences of composite indictors of tree crowns under different stand ages and slope aspects (p < 0.05).
Fig. 5 Correlation between crown and stand growth indictors in different slope aspects of Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area. CCSA, composite crown surface area; CCV, composite crown volume; CD, crown density; CDBK, crown dieback; CEFF, crown production efficiency; CFR, crown fullness ratio; CL, crown length; CLE, crown light exposure; CP, crown position; CR, crown ratio; CW, crown width; DBH, diameter at breast height; FT, foliage transparency; H, height; HU, under branch height; r, correlation coefficient; RCD, ratio of crown width to DBH; RDD, relative dominant tree diameter; RDH, relative dominant tree height; RHD, ratio of H to DBH; V, tree volume. *, p < 0.05; **, p < 0.01.
Fig. 6 Correlation between tree crown and biomass indictors in different slope aspects of Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area. CCSA, composite crown surface area; CCV, composite crown volume; CD, crown density; CDBK, crown dieback; CEFF, crown production efficiency; CFR, crown fullness ratio; CL, crown length; CLE, crown light exposure; CP, crown position; CR, crown ratio; CW, crown width; FT, foliage transparency; HU, under branch height; r, correlation coefficient; RCD, ratio of crown width to diameter at breast height; WB, branch biomass; WF, foliage biomass; WG, above-ground biomass; WR, root biomass; WS, trunk biomass; WT, total biomass. *, p < 0.05; **, p < 0.01.
Fig. 7 Coefficient of determination (R2) of crown indexes and biomass in stepwise regression models of Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area. CCSA, composite crown surface area; CCV, composite crown volume; CD, crown density; CDBK, crown dieback; CEFF, crown production efficiency; CFR, crown fullness ratio; CL, crown length; HU, under branch height; RCD, ratio of crown width to diameter at breast height; WB, branch biomass; WF, foliage biomass; WG, above-ground biomass; WR, root biomass; WS, trunk biomass; WT, total biomass.
[1] | Academy of Forest Inventory and Planning, National Forestry and Grassland Administration(2020). Technical Regulations for Continuous Forest Inventory. GB/T 38590-2020. |
[国家林业和草原局调查规划设计院 (2020). 森林资源连续清查技术规程. GB/T 38590-2020.] | |
[2] |
Ameztegui A, Coll L, Benavides R, Valladares F, Paquette A (2012). Understory light predictions in mixed conifer mountain forests: role of aspect-induced variation in crown geometry and openness. Forest Ecology and Management, 276, 52-61.
DOI URL |
[3] |
Anthelme F, Dangles O (2012). Plant-plant interactions in tropical alpine environments. Perspectives in Plant Ecology, Evolution and Systematics, 14, 363-372.
DOI URL |
[4] |
Babushkina EA, Belokopytova LV (2014). Climatic signal in radial increment of conifers in forest-steppe of southern Siberia and its dependence on local growing conditions. Russian Journal of Ecology, 45, 325-332.
DOI URL |
[5] | Bai DX, Liu Q, Dong LH, Li FR (2019). Determination and analysis of height to effective crown for planted Larix olgensis trees. Journal of Beijing Forestry University, 41(5), 76-87. |
[白东雪, 刘强, 董利虎, 李凤日 (2019). 长白落叶松人工林有效冠高的确定及其影响因子. 北京林业大学学报, 41(5), 76-87.] | |
[6] |
Barber VA, Juday GP, Finney BP (2000). Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature, 405, 668-673.
DOI |
[7] |
Brown PL, Doley D, Keenan RJ (2004). Stem and crown dimensions as predictors of thinning responses in a crowded tropical rainforest plantation of Flindersia brayleyana F. Muell. Forest Ecology and Management, 196, 379-392.
DOI URL |
[8] |
Burner DM, Pote DH, Ares A (2005). Management effects on biomass and foliar nutritive value of Robinia pseudoacacia and Gleditsia triacanthos f. inermis in Arkansas, USA. Agroforest Systems, 65, 207-214.
DOI URL |
[9] |
Cantón Y, Del Barrio G, Solé-Benet A, Lázaro R (2004). Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain. Catena, 55, 341-365.
DOI URL |
[10] | Chen DS, Sun XM, Li FR, Jia WW (2015). Changes of the internal characteristics of knots in larch plantation. Journal of Beijing Forestry University, 37(2), 16-23. |
[陈东升, 孙晓梅, 李凤日, 贾炜玮 (2015). 落叶松人工林节子内部特征变化规律研究. 北京林业大学学报, 37(2), 16-23.] | |
[11] | Chen J, Zhang XJ, Li QY, Tao JP (2022). Relationships between competition intensity and leaf phenotypic plasticity of woody plants in subalpine forests on different slope directions. Acta Ecologica Sinica, 42, 1788-1797. |
[陈娟, 张小晶, 李巧玉, 陶建平 (2022). 不同坡向川西亚高山林木竞争与叶片表型可塑性的关系研究. 生态学报, 42, 1788-1797.] | |
[12] | Chen Z (2020). Community Structure and Leaf Function Characters of Quercus liaotungensis on Different Slopes in Lingkongshan, Shanxi. Master degree dissertation, Beijing Forestry University, Beijing. |
[陈喆 (2020). 山西灵空山不同坡向辽东栎群落结构及叶功能性状特征. 硕士学位论文, 北京林业大学, 北京.] | |
[13] |
Dănescu A, Albrecht AT, Bauhus J (2016). Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia, 182, 319-333.
DOI PMID |
[14] |
Deng SF, Yang TB, Zeng B, Zhu XF, Xu HJ (2013). Vegetation cover variation in the Qilian Mountains and its response to climate change in 2000-2011. Journal of Mountain Science, 10, 1050-1062.
DOI URL |
[15] |
Dong LH, Li FR, Jia WW (2013). Linear mixed modeling of branch biomass for Korean pine plantation. Chinese Journal of Applied Ecology, 24, 3391-3398.
PMID |
[董利虎, 李凤日, 贾炜玮 (2013). 基于线性混合效应的红松人工林枝条生物量模型. 应用生态学报, 24, 3391-3398.]
PMID |
|
[16] | Duan J, Ma LY, Jia LM, Jia ZK, Wei HX (2012). Analysis and calculation of crown competition factor in Pinus tabulaefomis plantations in Beijing. Journal of Northeast Forestry University, 40(3), 14-18. |
[段劼, 马履一, 贾黎明, 贾忠奎, 魏红旭 (2012). 北京地区油松人工林树冠竞争因子的测算与分析. 东北林业大学学报, 40(3), 14-18.] | |
[17] | Duan J, Ma LY, Xue K, Wang JZ, Ding XY, Zhang B (2010). Individual-tree diameter growth model for Platycladus orientalis plantation in Beijing area. Forest Resources Management, (2), 62-68. |
[段劼, 马履一, 薛康, 王金增, 丁向阳, 张博 (2010). 北京地区侧柏人工林单木胸径生长模型的研究. 林业资源管理, (2), 62-68.] | |
[18] |
Duursma RA, Mäkelä A, Reid DEB, Jokela EJ, Porté AJ, Roberts SD (2010). Self-shading affects allometric scaling in trees. Functional Ecology, 24, 723-730.
DOI URL |
[19] |
Fahlvik N, Ekö PM, Pettersson N (2005). Influence of precommercial thinning grade on branch diameter and crown ratio in Pinus sylvestris in southern Sweden. Scandinavian Journal of Forest Research, 20, 243-251.
DOI URL |
[20] |
Falster DS, Westoby M (2003). Leaf size and angle vary widely across species: What consequences for light interception. New phytologist, 158, 509-525.
DOI PMID |
[21] |
Fekedulegn D, Hicks RR, Colbert JJ (2003). Influence of topographic aspect, precipitation and drought on radial growth of four major tree species in an Appalachian watershed. Forest Ecology and Management, 177, 409-425.
DOI URL |
[22] |
Fleck S, Mölder I, Jacob M, Gebauer T, Jungkunst HF, Leuschner C (2011). Comparison of conventional eight-point crown projections with LIDAR-based virtual crown projections in a temperate old-growth forest. Annals of Forest Science, 68, 1173-1185.
DOI URL |
[23] | Forestry Survey, Planning and Monitoring Institute of Liaoning Province (2017). Table of Larch in Eastern Liaoning Standing Timber Volume. DB21/T 2780.4-2017. |
[辽宁省林业调查规划院 (2017). 辽东落叶松二元立木材积表. DB21/T 2780.4-2017.] | |
[24] |
Gargaglione V, Peri PL, Rubio G (2010). Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient. Forest Ecology and Management, 259, 1118-1126.
DOI URL |
[25] | Gong NN, Ma LY, Jia LM, Duan J (2010). Effects of different stand densities and site conditions on crown of Pinus tabulaeformis plantations in Beijing mountain area. Journal of Northeast Forestry University, 38(5), 9-12. |
[公宁宁, 马履一, 贾黎明, 段劼 (2010). 不同密度和立地条件对北京山区油松人工林树冠的影响. 东北林业大学学报, 38(5), 9-12.] | |
[26] | Grulke N, Bienz C, Hrinkevich K, Maxfield J, Uyeda K (2020). Quantitative and qualitative approaches to assess tree vigor and stand health in dry pine forests. Forest Ecology and Management, 465, 118085. DOI: 10.1016/j.foreco.2020.118085. |
[27] | Guo MH, Zhao XP, Chen GS, Ding SY, Tong DH (2002). Influence of slope direction on the anatomical characteristics and paper-making properties of Larix olgensis plantation. Journal of Northeast Forestry University, 30(3), 21-23. |
[郭明辉, 赵西平, 陈广胜, 丁淑英, 佟得海 (2002). 坡向对人工林落叶松纤维形态及造纸性能的影响. 东北林业大学学报, 30(3), 21-23.] | |
[28] | Guo YR, Wu BG, Zheng XX, Zheng DX, Liu Y, Dong C, Zhang MB (2015). Simulation model of crown profile for Chinese fir (Cunninghamia lanceolata) in different age groups. Journal of Beijing Forestry University, 37(2), 40-47. |
[郭艳荣, 吴保国, 郑小贤, 郑德祥, 刘洋, 董晨, 张慕博 (2015). 杉木不同龄组树冠形态模拟模型研究. 北京林业大学学报, 37(2), 40-47.] | |
[29] |
Hamilton GJ (1969). The dependence of volume increment of individual trees on dominance, crown dimensions, and competition. Forestry, 42, 133-144.
DOI URL |
[30] |
Hoffmann CW, Usoltsev VA (2002). Tree-crown biomass estimation in forest species of the Ural and of Kazakhstan. Forest Ecology and Management, 158, 59-69.
DOI URL |
[31] | Hu M, Lehtonen A, Minunno F, Mäkelä A (2020). Age effect on tree structure and biomass allocation in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.). Annals of Forest Science, 77, 90. DOI: 10.1007/s13595-020-00988-4. |
[32] | Huang XN (2020). The Response and Simulation of the Biomass of Larix Principis-rupprechtii Plantation in Liupan Mountains to Site Condition and Stand Structure. Master degree dissertation, Beijing Forestry University, Beijing. |
[黄小男 (2020). 六盘山华北落叶松人工林生物量对立地条件和林分结构的响应与模拟. 硕士学位论文, 北京林业大学, 北京.] | |
[33] |
Innes JL, Neumann H (1991). Past growth variations in Picea sitchensis with differing crown densities. Scandinavian Journal of Forest Research, 6, 395-405.
DOI URL |
[34] |
Kang JT, Ko C, Lee SJ, Yim JS, Moon GH, Lee SH (2021). Relationship of H/D and crown ratio and tree growth for Chamaecyparis obtusa and Cryptomeria japonica in Korea. Forest Science and Technology, 17, 101-109.
DOI URL |
[35] |
Larocque GR, Marshall PL (1993). Evaluating the impact of competition using relative growth rate in red pine (Pinus resinosa Ait.) stands. Forest Ecology and Management, 58, 65-83.
DOI URL |
[36] |
Latreille A, Davi H, Huard F, Pichot C (2017). Variability of the climate-radial growth relationship among Abies alba trees and populations along altitudinal gradients. Forest Ecology and Management, 396, 150-159.
DOI URL |
[37] |
Letts MG, Nakonechny KN, van Gaalen KE, Smith CM (2009). Physiological acclimation of Pinus flexilis to drought stress on contrasting slope aspects in Waterton Lakes National Park, Alberta, Canada. Canadian Journal of Forest Research, 39, 629-641.
DOI URL |
[38] | Li FR (2004). Modeling Crown Profile of Larix olgensis Trees. Scientia Silvae Sinicae, 40(5), 16-24. |
[39] | Li YF, Niu QH, Jia SZ, Xuan LH, Peng B, Gu JC (2018). Effects of different slope directions on the growth of Larix principis-rupprechii. Journal of Anhui Agricultural Sciences, 46(2), 75-77. |
[李艳丰, 牛庆花, 贾双竹, 宣立辉, 彭博, 谷建才 (2018). 不同坡向对华北落叶松林木生长的影响. 安徽农业科学, 46(2), 75-77.] | |
[40] | Liao GL, Duan J, Jia ZK, Ma LY, Su XJ, He YY (2020). Distribution characteristics of carbon storage in Larix olgensis plantation ecosystem of different ages in eastern Liaoning Province. Journal of Northeast Forestry University, 48(11), 8-13. |
[廖国莉, 段劼, 贾忠奎, 马履一, 苏小珺, 何远洋 (2020). 辽东地区不同林龄长白落叶松人工林生态系统碳储量分配特征. 东北林业大学学报, 48(11), 8-13.] | |
[41] |
Lin B, Xu QQ, Liu WH, Zhang GC, Xu QY, Liu QJ (2013). Dendrochronology-based stand growth estimation of Larix olgensis forest in relation with climate on the eastern slope of Changbai Mountain, NE China. Frontiers of Earth Science, 7, 429-438.
DOI URL |
[42] | Lü Q, Yin HF, He PJ, Li XW, Fan C, Feng MS, Liu JJ, Wang YF (2018). Effects of early management of Pinus massoniana plantation target trees on soil physicochemical properties and plant diversity. Chinese Journal of Applied and Environmental Biology, 24, 500-507. |
[吕倩, 尹海锋, 何朋俊, 李贤伟, 范川, 冯茂松, 刘俊杰, 王艺峰 (2018). 马尾松人工林目标树经营初期对土壤理化性质与植物多样性的影响. 应用与环境生物学报, 24, 500-507.] | |
[43] |
McCutchan MH (1983). Comparing temperature and humidity on a mountain slope and in the free air nearby. Monthly Weather Review, 111, 836-845.
DOI URL |
[44] |
Oak SW, Tainter FH (1988). Risk prediction of loblolly pine decline on littleleaf disease sites in South Carolina. Plant Disease, 72, 289-293.
DOI URL |
[45] |
Omary AI (2011). Effects of aspect and slope position on growth and nutritional status of planted Aleppo pine (Pinus halepensis Mill.) in a degraded land semi-arid areas of Jordan. New Forests, 42, 285-300.
DOI URL |
[46] | Ou JD, Ou JL, Kang YW (2022). Single tree biomass simulation of Taxus yunnanensis plantation based on crown morphological index. Journal of Southwest Forestry University (Natural Sciences), 42(4), 117-124. |
[欧建德, 欧家琳, 康永武 (2022). 基于树冠形态特征因子的云南红豆杉单木生物量模型拟合. 西南林业大学学报(自然科学), 42(4), 117-124.] | |
[47] |
Piotr S (2016). Differences in early dynamics and effects of slope aspect between naturally regenerated and planted Pinus sylvestris woodland on inland dunes in Poland. iForest, 9, 875-882.
DOI URL |
[48] |
Poorter H, Jagodzinski AM, Ruiz Peinado R, Kuyah S, Luo YJ, Oleksyn J, Usoltsev VA, Buckley TN, Reich PB, Sack L (2015). How does biomass distribution change with size and differ among species? An analysis for 1 200 plant species from five continents. New Phytologist, 208, 736-749.
DOI URL |
[49] |
Pretzsch H (2014). Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. Forest Ecology and Management, 327, 251-264.
DOI URL |
[50] | Pan L, Wang YF, Sun Z, Qiao JJ, Qiu SY, Sun YJ (2022). The distribution characteristics of crown radius and its response to competition of Larix olgensis. Forest Research, 35(3), 27-37. |
[潘磊, 王轶夫, 孙钊, 乔晶晶, 邱思玉, 孙玉军 (2022). 长白落叶松树冠半径分布特征及其对竞争的响应. 林业科学研究, 35(3), 27-37.] | |
[51] | Qiao JJ, Sun YJ (2022). Effects of altitude and slope on the climate-radial growth relationships of Larix olgensis A. Henry in the southern Lesser Khingan Mountains, Northeast China. Ecological Processes, 11, 46. DOI: 10.1186/s13717-022-00388-8. |
[52] | Qiao JJ, Wang T, Pan L, Sun YJ (2019). Responses of radial growth to climate change in Pinus massoniana at different altitudes and slopes. Chinese Journal of Applied Ecology, 30, 2231-2240. |
[乔晶晶, 王童, 潘磊, 孙玉军 (2019). 不同海拔和坡向马尾松树轮宽度对气候变化的响应. 应用生态学报, 30, 2231-2240.]
DOI |
|
[53] | Qiu SY, Sun YJ (2021). Individual tree crown width prediction models for Larix olgensis plantation. Journal of Northeast Forestry University, 49(2), 49-53. |
[邱思玉, 孙玉军 (2021). 长白落叶松人工林单木冠幅模型. 东北林业大学学报, 49(2), 49-53.] | |
[54] |
Scholten T, Goebes P, Kühn P, Seitz S, Assmann T, Bauhus J, Bruelheide H, Buscot F, Erfmeier A, Fischer M, Härdtle W, He JS, Ma KP, Niklaus PA, Scherer-Lorenzen M (2017). On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems—A study from SE China. Journal of Plant Ecology, 10, 111-127.
DOI URL |
[55] | Schomaker M, Zarnoch SJ, Bechtold WA, Latelle DJ, Burkman WG (2007). Crown-condition Classification: a Guide to Data Collection and Analysis. Southern Research Station, Asheville, USA. |
[56] |
Seibert J, Stendahl J, Sørensen R (2007). Topographical influences on soil properties in boreal forests. Geoderma, 141, 139-148.
DOI URL |
[57] | Shen GF (2001). Silviculture. China Forestry Publishing House, Beijing. |
[沈国舫 (2001). 森林培育学. 中国林业出版社, 北京.] | |
[58] | Shen GF (2020). Afforestation Technology of Main Tree Species in China. 2nd ed. China Forestry Publishing House, Beijing. 220. |
[沈国舫 (2020). 中国主要树种造林技术. 2版. 中国林业出版社, 北京. 220.] | |
[59] | Shi YC, Song L, Liang J, Li WW (2011). Effects of slope position and slope aspect on wood properties of Larix olgensis. Journal of Northeast Forestry University, 39(7), 30-31. |
[史永纯, 宋林, 梁晶, 李巍巍 (2011). 坡位和坡向对长白落叶松纸浆材材性的影响. 东北林业大学学报, 39(7), 30-31.] | |
[60] | Shi YC, Zhao CZ, Song QH, Du J, Wang JW (2015). Allometric relationship between height and crown width or diameter of Platycladus orientalis on different slope aspects of Lanzhou northern mountains. Chinese Journal of Ecology, 34, 1879-1885. |
[史元春, 赵成章, 宋清华, 杜晶, 王继伟 (2015). 兰州北山侧柏株高与冠幅、胸径异速生长关系的坡向差异性. 生态学杂志, 34, 1879-1885.] | |
[61] |
Socha J (2008). Effect of topography and geology on the site index of Picea abies in the West Carpathian, Poland. Scandinavian Journal of Forest Research, 23, 203-213.
DOI URL |
[62] |
Tasiken H, Cai HY, Jin GZ (2021). Effects of canopy structure on productivity in a typical mixed broadleaved-Korean pine forest. Chinese Journal of Plant Ecology, 45, 38-50.
DOI URL |
[哈努拉·塔斯肯, 蔡慧颖, 金光泽 (2021). 树冠结构对典型阔叶红松林生产力的影响. 植物生态学报, 45, 38-50.] | |
[63] |
Thorpe HC, Astrup R, Trowbridge A, Coates KD (2010). Competition and tree crowns: a neighborhood analysis of three boreal tree species. Forest Ecology and Management, 259, 1586-1596.
DOI URL |
[64] | Tian A, Wang YH, Webb AA, Liu ZB, Ma J, Yu PT, Wang X (2021). Water yield variation with elevation, tree age and density of larch plantation in the Liupan Mountains of the Loess Plateau and its forest management implications. Science of the Total Environment, 752, 141752. DOI: 10.1016/j.scitotenv.2020.141752. |
[65] |
Trouvé R, Bontemps JD, Seynave I, Collet C, Lebourgeois F (2015). Stand density, tree social status and water stress influence allocation in height and diameter growth of Quercus petraea (Liebl.). Tree Physiology, 35, 1035-1046.
DOI URL |
[66] |
Vovides AG, Vogt J, Kollert A, Berger U, Grueters U, Peters R, Lara-Domínguez AL, López-Portillo J (2014). Morphological plasticity in mangrove trees: salinity-related changes in the allometry of Avicennia germinans . Trees, 28, 1413-1425.
DOI URL |
[67] | Wang MW, Ji L, Shen FY, Meng J, Wang JL, Shan CF, Yang LX (2022a). Differential responses of soil extracellular enzyme activity and stoichiometric ratios under different slope aspects and slope positions in Larix olgensis plantations. Forests, 13, 845. DOI: 10.3390/f13060845. |
[68] | Wang X, Huang XN, Wang YH, Yu PT, Guo JB (2022b). Impacts of site conditions and stand structure on the biomass allocation of single trees in larch plantations of Liupan Mountains of northwest China. Forests, 13, 177. DOI: 10.3390/f13020177. |
[69] | Wang Y, Liu XE, Peng ZH, Jiang ZH (2008). Correlations between crown characteristics and biomass of popular I-72. Journal of Anhui Agricultural University, 35, 164-168. |
[王妍, 刘杏娥, 彭镇华, 江泽慧 (2008). I-72杨树冠特性与生物量相关性研究. 安徽农业大学学报, 35, 164-168.] | |
[70] | Wen ZC (2022). Effects of slope and aspect on growth characteristics of Fokienia hodginsii in artificial mixed forest. Forestry Science & Technology, 47(3), 15-17. |
[温志成 (2022). 坡度和坡向对人工混交林中福建柏生长特性的影响. 林业科技, 47(3), 15-17.] | |
[71] |
Wypych A, Ustrnul Z, Schmatz DR (2018). Long-term variability of air temperature and precipitation conditions in the Polish Carpathians. Journal of Mountain Science, 15, 237-253.
DOI |
[72] | Xiao WW, Li HY, Yang ZJ, Wang K, Yin YZ, Wang SL (2022). Relationship of canopy morphological characteristics and growth characters of Fraxinus mandshurica and their response to pruning. Journal of Central South University of Forestry & Technology, 42(9), 47-54. |
[肖伟伟, 李海瑜, 杨振景, 王珂, 尹昀洲, 王树力 (2022). 水曲柳人工林树冠形态与林木生长形质的关系及其对修枝的响应. 中南林业科技大学学报, 42(9), 47-54.] | |
[73] | Yu B, Wu J, Wang BT, Wang LM (2010). Analysis of crown growth characteristics in natural Larix gmelinii forests. Scientia Silvae Sinicae, 46(5), 41-48. |
[玉宝, 乌吉斯古楞, 王百田, 王立明 (2010). 兴安落叶松天然林树冠生长特性分析. 林业科学, 46(5), 41-48.] | |
[74] | Yu BY, Zhang WH (2016). Effect of thinning intensity on growth and stem-form of Quercus variabilis in shady and sunny slopes. Journal of Northwest A&F University (Natural Science Edition), 44(1), 73-80. |
[余碧云, 张文辉 (2016). 间伐强度对阴、阳坡栓皮栎林木生长及干形的影响. 西北农林科技大学学报(自然科学版), 44(1), 73-80.] | |
[75] |
Zarnoch SJ, Bechtold WA, Stolte KW (2004). Using crown condition variables as indicators of forest health. Canadian Journal of Forest Research, 34, 1057-1070.
DOI URL |
[76] | Zeng HQ, Liu QJ, Ma ZQ, Zeng ZY (2006). The regression model of Loropetalum chinense biomass based on canopy diameter and plant height. Journal of Nanjing Forestry University (Natural Sciences Edition), 30(4), 101-104. |
[曾慧卿, 刘琪璟, 马泽清, 曾珍英 (2006). 基于冠幅及植株高度的檵木生物量回归模型. 南京林业大学学报(自然科学版), 30(4), 101-104.] | |
[77] | Zhang L, Khamphilavong K, Zhu H, Li H, He X, Shen X, Wang L, Kang Y (2021). Allometric scaling relationships of Larix potaninii subsp. chinensis traits across topographical gradients. Ecological Indicators, 125, 107492. DOI: 10.1016/j.ecolind.2021.107492. |
[78] | Zheng Y, Zhao Z, Zhou H, Zhou JJ (2010). Spatial heterogeneity of canopy photosynthesis in black locust plantations. Acta Ecologica Sinica, 30, 6399-6408. |
[郑元, 赵忠, 周慧, 周靖靖 (2010). 刺槐树冠光合作用的空间异质性. 生态学报, 30, 6399-6408.] | |
[79] |
Zhirnova DF, Belokopytova LV, Barabantsova AE, Babushkina EA, Vaganov EA (2020). What prevails in climatic response of Pinus sylvestris in-between its range limits in mountains: slope aspect or elevation. International Journal of Biometeorology, 64, 333-344.
DOI PMID |
[80] | Zhou L (2014). Impacts of different terrain factors on the crown structure and volume for China fir. Anhui Agricultural Science Bulletin, 20(16), 83-84. |
[周玲 (2014). 不同地形因子对杉木树冠结构与材积的影响研究. 安徽农学通报, 20(16), 83-84.] | |
[81] |
Zou WT, Zeng WS, Zhang LJ, Zeng M (2015). Modeling crown biomass for four pine species in China. Forests, 6, 433-449.
DOI URL |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[3] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[4] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[5] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[6] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[7] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[8] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[9] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[10] | LI Guan-Jun, CHEN Long, YU Wen-Jing, SU Qin-Gui, WU Cheng-Zhen, SU Jun, LI Jian. Effects of solid culture endophytic fungi on osmotic adjustment and antioxidant system of Casuarina equisetifolia seedlings under soil salt stress [J]. Chin J Plant Ecol, 2023, 47(6): 804-821. |
[11] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[12] | DU Ying-Dong, YUAN Xiang-Yang, FENG Zhao-Zhong. Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar [J]. Chin J Plant Ecol, 2023, 47(3): 348-360. |
[13] | LI Yao-Qi, WANG Zhi-Heng. Functional biogeography of plants: research progresses and challenges [J]. Chin J Plant Ecol, 2023, 47(2): 145-169. |
[14] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[15] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn