Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (11): 1540-1550.DOI: 10.17521/cjpe.2022.0460
• Research Articles • Previous Articles Next Articles
LIU Yan-Jie1, LIU Yu-Long2, WANG Chuan-Kuan1, WANG Xing-Chang1,*()
Received:
2022-11-14
Accepted:
2023-05-10
Online:
2023-11-20
Published:
2023-06-25
Contact:
WANG Xing-Chang(Supported by:
LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China[J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0460
变量 Variable (y-x) | 树种 Species | 决定系数 Determination coefficient (R2) | 斜率 Slope [95% CI] | 截距 Intercept [95% CI] |
---|---|---|---|---|
叶片面积-叶轴质量 Lamina area-rachis mass | FM | 0.923 | 0.832a [0.767, 0.901] | 2.888a [2.844, 2.932] |
JM | 0.938 | 0.841a [0.783, 0.904] | 2.899a [2.868, 2.930] | |
PA | 0.801 | 0.693b [0.609, 0.789] | 2.814a [2.746, 2.882] | |
MA | 0.686 | 0.833ab [0.708, 0.979] | 2.788a [2.684, 2.893] | |
AE | 0.946 | 0.712b [0.666, 0.762] | 2.947a [2.913, 2.980] | |
叶片质量-叶轴质量 Lamina mass-rachis mass | FM | 0.952 | 0.994b [0.933, 1.059] | 0.766a [0.724, 0.808] |
JM | 0.967 | 1.048a [0.994, 1.104] | 0.671a [0.643, 0.699] | |
PA | 0.822 | 0.842b [0.745, 0.952] | 0.655a [0.577, 0.733] | |
MA | 0.848 | 1.044ab [0.933, 1.169] | 0.698a [0.607, 0.789] | |
AE | 0.970 | 0.952b [0.906, 1.001] | 0.209a [0.176, 0.242] | |
叶片面积-叶轴长度 Lamina area-rachis length | FM | 0.844 | 1.950a [1.739, 2.186] | -0.092b [-0.388, 0.204] |
JM | 0.920 | 1.790a [1.649, 1.943] | 0.027a [-0.196, 0.251] | |
PA | 0.703 | 1.555a [1.328, 1.820] | 0.308a [-0.012, 0.629] | |
MA | 0.700 | 2.004a [1.710, 2.349] | -0.317c [-0.715, 0.083] | |
AE | 0.912 | 1.919a [1.761, 2.091] | -0.342c [-0.656, -0.028] | |
叶片质量-叶轴长度 Lamina mass-rachis length | FM | 0.840 | 2.320a [2.067, 2.605] | -2.786b [-3.139, -2.426] |
JM | 0.853 | 2.232a [1.999, 2.491] | -2.909c [-3.286, -2.532] | |
PA | 0.572 | 1.887a [1.563, 2.279] | -2.378a [-2.853, -1.919] | |
MA | 0.449 | 2.509a [2.026, 3.106] | -3.205ac [-3.864, -2.515] | |
AE | 0.837 | 2.572a [2.288, 2.890] | -4.206d [-4.772, -3.626] |
Table 1 Standard major axis regression analysis of leaf size versus rachis length for the five species in a temperate forest of northeast China
变量 Variable (y-x) | 树种 Species | 决定系数 Determination coefficient (R2) | 斜率 Slope [95% CI] | 截距 Intercept [95% CI] |
---|---|---|---|---|
叶片面积-叶轴质量 Lamina area-rachis mass | FM | 0.923 | 0.832a [0.767, 0.901] | 2.888a [2.844, 2.932] |
JM | 0.938 | 0.841a [0.783, 0.904] | 2.899a [2.868, 2.930] | |
PA | 0.801 | 0.693b [0.609, 0.789] | 2.814a [2.746, 2.882] | |
MA | 0.686 | 0.833ab [0.708, 0.979] | 2.788a [2.684, 2.893] | |
AE | 0.946 | 0.712b [0.666, 0.762] | 2.947a [2.913, 2.980] | |
叶片质量-叶轴质量 Lamina mass-rachis mass | FM | 0.952 | 0.994b [0.933, 1.059] | 0.766a [0.724, 0.808] |
JM | 0.967 | 1.048a [0.994, 1.104] | 0.671a [0.643, 0.699] | |
PA | 0.822 | 0.842b [0.745, 0.952] | 0.655a [0.577, 0.733] | |
MA | 0.848 | 1.044ab [0.933, 1.169] | 0.698a [0.607, 0.789] | |
AE | 0.970 | 0.952b [0.906, 1.001] | 0.209a [0.176, 0.242] | |
叶片面积-叶轴长度 Lamina area-rachis length | FM | 0.844 | 1.950a [1.739, 2.186] | -0.092b [-0.388, 0.204] |
JM | 0.920 | 1.790a [1.649, 1.943] | 0.027a [-0.196, 0.251] | |
PA | 0.703 | 1.555a [1.328, 1.820] | 0.308a [-0.012, 0.629] | |
MA | 0.700 | 2.004a [1.710, 2.349] | -0.317c [-0.715, 0.083] | |
AE | 0.912 | 1.919a [1.761, 2.091] | -0.342c [-0.656, -0.028] | |
叶片质量-叶轴长度 Lamina mass-rachis length | FM | 0.840 | 2.320a [2.067, 2.605] | -2.786b [-3.139, -2.426] |
JM | 0.853 | 2.232a [1.999, 2.491] | -2.909c [-3.286, -2.532] | |
PA | 0.572 | 1.887a [1.563, 2.279] | -2.378a [-2.853, -1.919] | |
MA | 0.449 | 2.509a [2.026, 3.106] | -3.205ac [-3.864, -2.515] | |
AE | 0.837 | 2.572a [2.288, 2.890] | -4.206d [-4.772, -3.626] |
Fig. 1 Relationships between leaf size and rachis length for the five species in a temperate forest of northeast China. AE, Aralia elata; FM, Fraxinus mandschurica; JM, Juglans mandshurica; MA, Maackia amurensis; PA, Phellodendron amurense.
Fig. 2 Comparisons of the biomass allocation of rachis biomass to the total compound-leaf for the five species in a temperate forest of northeast China. AE, Aralia elata; FM, Fraxinus mandschurica; JM, Juglans mandshurica; MA, Maackia amurensis; PA, Phellodendron amurense. The error bars represent the 10% and 90% percentiles, respectively, and the ends of the box represent the quartiles with the horizontal line being the median. Different lowercase letters indicate significant difference between species (p < 0.05).
变量 Variable (y-x) | 树种 Species | 决定系数 Determination coefficient (R2) | 斜率 Slope [95% CI] | 截距 Intercept [95% CI] |
---|---|---|---|---|
叶轴质量-叶轴长度 Rachis mass-rachis length | FM | 0.912 | 2.337ab [2.144, 2.547] | -3.573 [-3.841, -3.305] |
JM | 0.910 | 2.126b [1.946, 2.324] | -3.413 [-3.701, -3.125] | |
PA | 0.752 | 2.243ab [1.942, 2.590] | -3.614 [-4.036, -3.191] | |
MA | 0.618 | 2.401ab [2.009, 2.870] | -3.721 [-4.256, -3.183] | |
AE | 0.907 | 2.696a [2.468, 2.946] | -4.620 [-5.074, -4.165] |
Table 2 Standard major axis regression analysis of rachis mass versus rachis length for the five typical species in a temperate forest of northeast China
变量 Variable (y-x) | 树种 Species | 决定系数 Determination coefficient (R2) | 斜率 Slope [95% CI] | 截距 Intercept [95% CI] |
---|---|---|---|---|
叶轴质量-叶轴长度 Rachis mass-rachis length | FM | 0.912 | 2.337ab [2.144, 2.547] | -3.573 [-3.841, -3.305] |
JM | 0.910 | 2.126b [1.946, 2.324] | -3.413 [-3.701, -3.125] | |
PA | 0.752 | 2.243ab [1.942, 2.590] | -3.614 [-4.036, -3.191] | |
MA | 0.618 | 2.401ab [2.009, 2.870] | -3.721 [-4.256, -3.183] | |
AE | 0.907 | 2.696a [2.468, 2.946] | -4.620 [-5.074, -4.165] |
Fig. 3 Relationships between lamina area and lamina mass for the five species in a temperate forest of northeast China. AE, Aralia elata; FM, Fraxinus mandschurica; JM, Juglans mandshurica; MA, Maackia amurensis; PA, Phellodendron amurense.
Fig. 4 Comparisons of lamina mass per area (LMA) (A) and compound-leaf LMA (B) among the five species in a temperate forest of northeast China. AE, Aralia elata; FM, Fraxinus mandschurica; JM, Juglans mandshurica; MA, Maackia amurensis; PA, Phellodendron amurense. The error bars represent the 10% and 90% percentiles, respectively, and the ends of the box represent the quartiles with the horizontal line being the median. Different lowercase letters represent significant difference among species (p < 0.05, n = 50).
变量 Variable (y-x) | 物种 Species | 相关系数Correlation coefficient (r) | p |
---|---|---|---|
比叶质量-复叶质量 Lamina mass per area-compound-leaf mass | FM | 0.548** | <0.001 |
JM | 0.665** | <0.001 | |
PA | 0.483** | <0.001 | |
MA | 0.436** | 0.002 | |
AE | 0.955** | <0.001 | |
比叶质量-叶片面积 Lamina mass per area-lamina area | FM | 0.249 | 0.081 |
JM | 0.555** | <0.001 | |
PA | 0.099 | 0.494 | |
MA | -0.135 | 0.349 | |
AE | 0.814** | <0.001 | |
比叶质量-叶轴质量 Lamina mass per area-rachis mass | FM | 0.437** | 0.002 |
JM | 0.574** | <0.001 | |
PA | 0.322* | 0.023 | |
MA | 0.234 | 0.102 | |
AE | 0.916** | <0.001 | |
复叶比叶质量-复叶质量 Compound-leaf mass per area-compound-leaf mass | FM | 0.546** | <0.001 |
JM | 0.666** | <0.001 | |
PA | 0.519** | <0.001 | |
MA | 0.419** | 0.002 | |
AE | 0.949** | <0.001 | |
复叶比叶质量-叶片面积 Compound-leaf mass per area-lamina area | FM | 0.267 | 0.061 |
JM | 0.559** | <0.001 | |
PA | 0.136 | 0.345 | |
MA | -0.155 | 0.282 | |
AE | 0.842** | <0.001 | |
复叶比叶质量-叶轴质量 Compound-leaf mass per area-rachis mass | FM | 0.470** | 0.001 |
JM | 0.599** | <0.001 | |
PA | 0.416** | 0.003 | |
MA | 0.256 | 0.063 | |
AE | 0.949** | <0.001 |
Table 3 Correlation analysis of lamina mass per area (LMA), compound-leaf LMA, and compound-leaf size (compound-leaf mass, lamina area and rachis mass) for the five species in a temperate forest of northeast China
变量 Variable (y-x) | 物种 Species | 相关系数Correlation coefficient (r) | p |
---|---|---|---|
比叶质量-复叶质量 Lamina mass per area-compound-leaf mass | FM | 0.548** | <0.001 |
JM | 0.665** | <0.001 | |
PA | 0.483** | <0.001 | |
MA | 0.436** | 0.002 | |
AE | 0.955** | <0.001 | |
比叶质量-叶片面积 Lamina mass per area-lamina area | FM | 0.249 | 0.081 |
JM | 0.555** | <0.001 | |
PA | 0.099 | 0.494 | |
MA | -0.135 | 0.349 | |
AE | 0.814** | <0.001 | |
比叶质量-叶轴质量 Lamina mass per area-rachis mass | FM | 0.437** | 0.002 |
JM | 0.574** | <0.001 | |
PA | 0.322* | 0.023 | |
MA | 0.234 | 0.102 | |
AE | 0.916** | <0.001 | |
复叶比叶质量-复叶质量 Compound-leaf mass per area-compound-leaf mass | FM | 0.546** | <0.001 |
JM | 0.666** | <0.001 | |
PA | 0.519** | <0.001 | |
MA | 0.419** | 0.002 | |
AE | 0.949** | <0.001 | |
复叶比叶质量-叶片面积 Compound-leaf mass per area-lamina area | FM | 0.267 | 0.061 |
JM | 0.559** | <0.001 | |
PA | 0.136 | 0.345 | |
MA | -0.155 | 0.282 | |
AE | 0.842** | <0.001 | |
复叶比叶质量-叶轴质量 Compound-leaf mass per area-rachis mass | FM | 0.470** | 0.001 |
JM | 0.599** | <0.001 | |
PA | 0.416** | 0.003 | |
MA | 0.256 | 0.063 | |
AE | 0.949** | <0.001 |
[1] |
Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14, 91-100.
DOI PMID |
[2] |
Castorena M, Olson ME, Enquist BJ, Fajardo A (2022). Toward a general theory of plant carbon economics. Trends in Ecology & Evolution, 37, 829-837.
DOI URL |
[3] |
Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153.
DOI URL |
[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
DOI |
|
[4] |
Dong HJ, Wang XC, Yuan DY, Liu D, Liu YL, Sang Y, Wang XC (2022). Radial distribution differences of non-structural carbohydrates in stems of tree species of different wood in a temperate forest. Chinese Journal of Plant Ecology, 46, 722-734.
DOI URL |
[董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春 (2022). 温带不同材性树种树干非结构性碳水化合物的径向分配差异. 植物生态学报, 46, 722-734.]
DOI |
|
[5] |
Duan CY, Li MY, Fang LD, Cao Y, Wu DD, Liu H, Ye Q, Hao GY (2022). Greater hydraulic safety contributes to higher growth resilience to drought across seven pine species in a semi-arid environment. Tree Physiology, 42, 727-739.
DOI URL |
[6] |
Efroni I, Eshed Y, Lifschitz E (2010). Morphogenesis of simple and compound leaves: a critical review. The Plant Cell, 22, 1019-1032.
DOI PMID |
[7] |
Enquist BJ (2002). Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiology, 22, 1045-1064.
PMID |
[8] |
Enquist BJ, Niklas KJ (2001). Invariant scaling relations across tree-dominated communities. Nature, 410, 655-660.
DOI URL |
[9] |
Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517-1520.
PMID |
[10] | Enquist BJ, West GB, Charnov EL, Brown JH (1999). Allometric scaling of production and life-history variation in vascular plants. Nature, 401, 907-911. |
[11] |
Fajardo A, Mora JP, Robert E (2020). Corner’s rules pass the test of time: little effect of phenology on leaf-shoot and other scaling relationships. Annals of Botany, 126, 1129-1139.
DOI URL |
[12] | Feng YL, Cao KF, Feng ZL, Ma L (2002). Acclimation of lamina mass per unit area, photosynthetic characteristics and dark respiration to growth light regimes in four tropical rainforest species. Acta Ecologica Sinica, 22, 901-910. |
[冯玉龙, 曹坤芳, 冯志立, 马玲 (2002). 四种热带雨林树种幼苗比叶重, 光合特性和暗呼吸对生长光环境的适应. 生态学报, 22, 901-910.] | |
[13] | Givnish TJ (1984). Leaf and canopy adaptations in tropical forests//Medina E, Mooney HA, Vázquez-Yánes C. Physiological Ecology Plants of the Wet Tropics. Springer, Dordrecht, the Netherlands. 51-84. |
[14] | Guo X, Niklas KJ, Li Y, Shi P, Schrader J (2022). Diminishing returns: a comparison between fresh mass vs. area and dry mass vs. area in deciduous species. Frontiers in Plant Science, 13, 832300. DOI: 10.3389/fpls.2022.832300. |
[15] | Han WX, Fang JY (2008). Review on the mechanism models of allometric scaling laws: 3/4 vs. 2/3 power. Journal of Plant Ecology (Chinese Version), 32, 951-960. |
[韩文轩, 方精云 (2008). 幂指数异速生长机制模型综述. 植物生态学报, 32, 951-960.]
DOI |
|
[16] |
Hao GY, Sack L, Wang AY, Cao KF, Goldstein G (2010). Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. Functional Ecology, 24, 731-740.
DOI URL |
[17] |
He JZ, Cao P, Zheng YM (2013). Metabolic scaling theory and its application in microbial ecology. Acta Ecologica Sinica, 33, 2645-2655.
DOI URL |
[贺纪正, 曹鹏, 郑袁明 (2013). 代谢异速生长理论及其在微生物生态学领域的应用. 生态学报, 33, 2645-2655.] | |
[18] |
Huang YX, Lechowicz MJ, Zhou DW, Price CA (2016). Evaluating general allometric models: interspecific and intraspecific data tell different stories due to interspecific variation in stem tissue density and leaf size. Oecologia, 180, 671-684.
DOI PMID |
[19] |
Li GY, Yang DM, Sun SC (2008). Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude. Functional Ecology, 22, 557-564.
DOI URL |
[20] | Li JM, Ye YY, Liu JC (2021). Analysis of leaf biomass allocation and allometric growth of several common single-leaf and compound-leaf tree species in the Chongqing area. Plant Science Journal, 39, 76-84. |
[李金明, 叶玉媛, 刘锦春 (2021). 重庆地区几种常见单叶与复叶树种叶内生物量分配及异速生长分析. 植物科学学报, 39, 76-84.] | |
[21] |
Li L, Jin GZ, Liu ZL (2022). Variations and correlations of lamina and petiole traits of three broadleaved species in a broadleaved Korean pine forest. Chinese Journal of Plant Ecology, 46, 687-699.
DOI |
[李露, 金光泽, 刘志理 (2022). 阔叶红松林3种阔叶树种柄叶性状变异与相关性. 植物生态学报, 46, 687-699.]
DOI |
|
[22] | Li Y, Li HT, Jin DM, Sun SC (2007). Application of WBE model to ecology: a review. Acta Ecologica Sinica, 27, 3018-3031. |
[李妍, 李海涛, 金冬梅, 孙书存 (2007). WBE模型及其在生态学中的应用: 研究概述. 生态学报, 27, 3018-3031.] | |
[23] |
Li YQ, Wang ZH (2021). Leaf morphological traits: ecological function, geographic distribution and drivers. Chinese Journal of Plant Ecology, 45, 1154-1172.
DOI URL |
[李耀琪, 王志恒 (2021). 植物叶片形态的生态功能、地理分布与成因. 植物生态学报, 45, 1154-1172.]
DOI |
|
[24] |
Liu MX, Liang GL (2016). Research progress on leaf mass per area. Chinese Journal of Plant Ecology, 40, 847-860.
DOI URL |
[刘明秀, 梁国鲁 (2016). 植物比叶质量研究进展. 植物生态学报, 40, 847-860.]
DOI |
|
[25] |
Liu ZG, Zhao M, Zhang HX, Ren TT, Liu CC, He NP (2023). Divergent response and adaptation of specific leaf area to environmental change at different spatio-temporal scales jointly improve plant survival. Global Chang Biology, 29, 1144-1159.
DOI URL |
[26] |
Maenpuen P, Katabuchi M, Onoda Y, Zhou C, Zhang JL, Chen YJ (2022). Sources and consequences of mismatch between leaf disc and whole-leaf leaf mass per area (LMA). American Journal of Botany, 109, 1242-1250.
DOI PMID |
[27] |
Malhado ACM, Whittaker RJ, Malhi Y, Ladle RJ ter Steege H, Phillips O, Aragão LEOC, Baker TR, Arroyo L, Almeida S, Higuchi N, Killeen TJ, Monteagudo A, Pitman NCA, Prieto A, et al.(2010). Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Global Ecology and Biogeography, 19, 852-862.
DOI URL |
[28] | Milla R, Reich PB (2007). The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proceedings of the Royal Society B: Biological Sciences, 274, 2109-2115. |
[29] |
Niinemets Ü, Kull O (1999). Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size in temperate deciduous trees. Tree Physiology, 19, 349-358.
PMID |
[30] |
Niinemets Ü, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F (2007). Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Annals of Botany, 100, 283-303.
PMID |
[31] |
Niinemets Ü, Portsmuth A, Tobias M (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171, 91-104.
PMID |
[32] |
Niklas KJ (1992). Petiole mechanics, light interception by Lamina, and “economy in design”. Oecologia, 90, 518-526.
DOI PMID |
[33] | Niklas KJ (1994). Plant Allometry: the Scaling of Form and Process. University of Chicago Press, Chicago. |
[34] |
Niklas KJ (1999). A mechanical perspective on foliage leaf form and function. New Phytologist, 143, 19-31.
DOI URL |
[35] |
Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007). “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 104, 8891-8896.
PMID |
[36] |
Pan SA, Peng GQ, Yang DM (2015). Biomass allocation strategies within a leaf: implication for leaf size optimization. Chinese Journal of Plant Ecology, 39, 971-979.
DOI URL |
[潘少安, 彭国全, 杨冬梅 (2015). 从叶内生物量分配策略的角度理解叶大小的优化. 植物生态学报, 39, 971-979.]
DOI |
|
[37] |
Pickup M, Westoby M, Basden A (2005). Dry mass costs of deploying leaf area in relation to leaf size. Functional Ecology, 19, 88-97.
DOI URL |
[38] |
Price CA, Gilooly JF, Allen AP, Weitz JS, Niklas KJ (2010). The metabolic theory of ecology: prospects and challenges for plant biology. New Phytologist, 188, 696-710.
DOI PMID |
[39] |
Song J, Trueba S, Yin XH, Cao KF, Brodribb TJ, Hao GY (2022). Hydraulic vulnerability segmentation in compound- leaved trees: evidence from an embolism visualization technique. Plant Physiology, 189, 204-214.
DOI PMID |
[40] |
Song J, Yang D, Niu CY, Zhang WW, Wang M, Hao GY (2018). Correlation between leaf size and hydraulic architecture in five compound-leaved tree species of a temperate forest in NE China. Forest Ecology and Management, 418, 63-72.
DOI URL |
[41] | Sun H (2018). Effects of Biophysical Constraints, Biotic Factors, Climate and Phylogeny on Forest Plant Allometries Across Northeast China. PhD dissertation, Beijing Forestry University, Beijing. |
[孙晗 (2018). 生物物理限制、生物因子、气候及谱系关系对中国东北地区森林植物相关关系的影响. 博士学位论文, 北京林业大学, 北京.] | |
[42] |
Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97, 97-107.
PMID |
[43] |
Takenaka A (1994). Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecological Research, 9, 109-114.
DOI URL |
[44] |
Wang BY, Ma HJ, Su TW, Liu T, Wang Q (2012). Physiological response and acclimation to changes in light regimes in two tropical rainforest species. Plant Physiology Journal, 48, 232-240.
DOI URL |
[王博轶, 马洪军, 苏腾伟, 刘涛, 王齐 (2012). 两种热带雨林树苗对环境光强变化的生理响应和适应机制. 植物生理学报, 48, 232-240.] | |
[45] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
DOI PMID |
[46] |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinements Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14, 411-421.
DOI URL |
[47] | Xu SS, Li Y, Wang GX (2014). Scaling relationships between leaf mass and total plant mass across Chinese forests. PLoS ONE, 9, e95938. DOI: 10.1371/journal.pone.0095938. |
[48] |
Xun YH, Di XY, Jin GZ (2020). Vertical variation and economic strategy of leaf trait of major tree species in a typical mixed broadleaved-Korean pine forest. Chinese Journal of Plant Ecology, 44, 730-741.
DOI URL |
[荀彦涵, 邸雪颖, 金光泽 (2020). 典型阔叶红松林主要树种叶性状的垂直变异及经济策略. 植物生态学报, 44, 730-741.] | |
[49] |
Yang D, Zhang YJ, Song J, Niu CY, Hao GY (2019). Compound leaves are associated with high hydraulic conductance and photosynthetic capacity: evidence from trees in Northeast China. Tree Physiology, 39, 729-739.
DOI PMID |
[50] |
Yang DM, Li GY, Sun SC (2009). The effects of leaf size, leaf habit, and leaf form on leaf/stem relationships in plant twigs of temperate woody species. Journal of Vegetation Science, 20, 359-366.
DOI URL |
[51] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change: a review. Chinese Journal of Ecology, 31, 702-713. |
[杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] | |
[52] |
Yao J, Li Y, Wei LP, Jiang SS, Yang S, Hou JH (2013). Changes of allometric relationships among leaf traits in different ontogenetic stages of Acer mono from different types of forests in Donglingshan of Beijing. Acta Ecologica Sinica, 33, 3907-3915.
DOI URL |
[姚婧, 李颖, 魏丽萍, 蒋思思, 杨松, 侯继华 (2013). 东灵山不同林型五角枫叶性状异速生长关系随发育阶段的变化. 生态学报, 33, 3907-3915.] | |
[53] | Yang L, Wang MT, Chen XP, Sun J, Zhong QL, Cheng DL (2020). Relationship between leaf area and leaf biomass of different canopies in subtropical evergreen forest. Acta Ecologica Sinica, 40, 7745-7754. |
[杨力, 王满堂, 陈晓萍, 孙俊, 钟全林, 程栋梁 (2020). 亚热带常绿林不同冠层小枝叶面积-叶生物量关系研究. 生态学报, 40, 7745-7754.] | |
[54] |
Ye YH, Kitayama K, Onoda Y (2022). A cost-benefit analysis of leaf carbon economy with consideration of seasonal changes in leaf traits for sympatric deciduous and evergreen congeners: implications for their coexistence. New Phytologist, 234, 1047-1058.
DOI PMID |
[55] | Zhang HY, Chen LM (2016). Comparison of biomass allocation between lamina and rachis in the “three hardwood species” of northeast China. Journal of Northeast Forestry University, 44(6), 33-35. |
[张海燕, 陈立明 (2016). 东北“三大硬阔”叶片和叶轴质量分配比较. 东北林业大学学报, 44(6), 33-35.] | |
[56] |
Zhu JD, Meng TT, Ni J, Su HX, Xie ZQ, Zhang SR, Zheng YR, Xiao CW (2011). Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types. Chinese Journal of Plant Ecology, 35, 687-698.
DOI |
[祝介东, 孟婷婷, 倪健, 苏宏新, 谢宗强, 张守仁, 郑元润, 肖春旺 (2011). 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异. 植物生态学报, 35, 687-698.] |
[1] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[2] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[3] | MA Chang-Qin, HUANG Hai-Long, PENG Zheng-Lin, WU Chun-Ze, WEI Qing-Yu, JIA Hong-Tao, WEI Xing. Response of compound leaf types and photosynthetic function of male and female Fraxinus mandschurica to different habitats [J]. Chin J Plant Ecol, 2023, 47(9): 1287-1297. |
[4] | WANG Guang-Ya, CHEN Bing-Hua, HUANG Yu-Chen, JIN Guang-Ze, LIU Zhi-Li. Effects of growing position on leaflet trait variations and its correlations in Fraxinus mandshurica [J]. Chin J Plant Ecol, 2022, 46(6): 712-721. |
[5] | XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China [J]. Chin J Plant Ecol, 2022, 46(2): 136-147. |
[6] | YANG Ke-Tong, CHANG Hai-Long, CHEN Guo-Peng, YU Xiao-Ya, XIAN Jun-Ren. Stomatal traits of main greening plant species in Lanzhou [J]. Chin J Plant Ecol, 2021, 45(2): 187-196. |
[7] | WANG Jiao, GUAN Xin, ZHANG Wei-Dong, HUANG Ke, ZHU Mu-Nan, YANG Qing-Peng. Responses of biomass allocation patterns to nitrogen addition of Cunninghamia lanceolata seedlings [J]. Chin J Plant Ecol, 2021, 45(11): 1231-1240. |
[8] | LI Yao-Qi, WANG Zhi-Heng. Leaf morphological traits: ecological function, geographic distribution and drivers [J]. Chin J Plant Ecol, 2021, 45(10): 1154-1172. |
[9] | XING Lei, DUAN Na, LI Qing-He, LIU Cheng-Gong, LI Hui-Qing, SUN Gao-Jie. Variation in biomass allocation of Nitraria tangutorum during different phenological phases [J]. Chin J Plant Ecol, 2020, 44(7): 763-771. |
[10] | XIONG Xing-Shuo, CAI Hong-Yu, LI Yao-Qi, MA Wen-Hong, NIU Ke-Chang, CHEN Di-Ma, LIU Na-Na, SU Xiang-Yan, JING He-Ying, FENG Xiao-Juan, ZENG Hui, WANG Zhi-Heng. Seasonal dynamics of leaf C, N and P stoichiometry in plants of typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2020, 44(11): 1138-1153. |
[11] | MO Dan, WANG Zhen-Meng, ZUO You-Lu, XIANG Shuang. Trade-off between shooting and leaf developing of woody species saplings in subtropical evergreen broad-leaved forests [J]. Chin J Plant Ecol, 2020, 44(10): 995-1006. |
[12] | ZHANG Na, ZHU Yang-Chun, LI Zhi-Qiang, LU Xin, FAN Ru-Qin, LIU Li-ZhuTONG , Fei, CHEN Jing, MU Chun-Sheng, ZHANG Zhen-Hua. Effect of Pb pollution on the growth, biomass allocation and photosynthesis of Phragmites australis in flood and drought environment [J]. Chin J Plant Ecol, 2018, 42(2): 229-239. |
[13] | Ling HAN, Cheng-Zhang ZHAO, Ting XU, Wei FENG, Bei-Bei DUAN. Relationships between leaf thickness and vein traits of Achnatherum splendens under different soil moisture conditions in a flood plain wetland, Heihe River, China [J]. Chin J Plan Ecolo, 2017, 41(5): 529-538. |
[14] | Guang-Shuai CUI, Lin ZHANG, Wei SHEN, Xin-Sheng LIU, Yuan-Tao WANG. Biomass allocation and carbon density of Sophora moorcroftiana shrublands in the middle reaches of Yarlung Zangbo River, Xizang, China [J]. Chin J Plant Ecol, 2017, 41(1): 53-61. |
[15] | Yang WANG, Wen-Ting XU, Gao-Ming XIONG, Jia-Xiang LI, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Biomass allocation patterns of Loropetalum chinense [J]. Chin J Plant Ecol, 2017, 41(1): 105-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn