Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (1): 53-61.DOI: 10.17521/cjpe.2016.0019
Special Issue: 中国灌丛生态系统碳储量的研究; 碳循环
• Research Articles • Previous Articles Next Articles
Guang-Shuai CUI1,2, Lin ZHANG1,*(), Wei SHEN1, Xin-Sheng LIU3, Yuan-Tao WANG1,2
Received:
2016-01-13
Accepted:
2016-05-09
Online:
2017-01-10
Published:
2017-01-23
Contact:
Lin ZHANG
About author:
KANG Jing-yao(1991-), E-mail: Guang-Shuai CUI, Lin ZHANG, Wei SHEN, Xin-Sheng LIU, Yuan-Tao WANG. Biomass allocation and carbon density of Sophora moorcroftiana shrublands in the middle reaches of Yarlung Zangbo River, Xizang, China[J]. Chin J Plant Ecol, 2017, 41(1): 53-61.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0019
模型 Model | 器官 Organ | 植株高度 Plant height (cm) | 树冠投影面积 Crown projection area (cm2) | 生物量体积 Biomass volume (cm3) | |||||
---|---|---|---|---|---|---|---|---|---|
回归方程 Regression equation | 决定系数 Coefficient of deter- mination (R2) | 回归方程 Regression equation | 决定系数 Coefficient of deter- mination (R2) | 回归方程 Regression equation | 决定系数 Coefficient of deter- mination (R2) | ||||
线性模型 Linear model | 枝 Branch | Wb = 19.21H - 317.6 | 0.56 | Wb = 0.022C - 40.86 | 0.89 | Wb = 0.0009V + 79.98 | 0.83 | ||
叶 Leaf | Wl = 5.41H - 91.10 | 0.50 | Wl = 0.006C - 5.95 | 0.69 | Wl = 0.0003V + 18.96 | 0.78 | |||
根 Root | Wr = 23.69H - 389.38 | 0.61 | Wr = 0.025C - 5.27 | 0.82 | Wr = 0.0011V + 125.47 | 0.80 | |||
地上部分 Aboveground | Wa = 24.63H - 408.70 | 0.58 | Wa = 0.028C - 46.81 | 0.90 | Wa = 0.0012V + 98.94 | 0.87 | |||
总生物量 Total biomass | Wt = 45.47H - 728.58 | 0.60 | Wt = 0.051C - 40.63 | 0.89 | Wt = 0.0022V + 224.32 | 0.86 | |||
对数模型 Logarithm model | 枝 Branch | Wb = 547.73lnH - 1519.40 | 0.44 | Wb = 250lnC - 1920.30 | 0.55 | Wb = 187.5lnV - 1775.10 | 0.56 | ||
叶 Leaf | Wl = 145.97lnH - 401.71 | 0.35 | Wl = 64.62lnC - 490.61 | 0.41 | Wl = 48.87lnV - 457.58 | 0.43 | |||
根 Root | Wr = 457.85lnH - 1817.50 | 0.47 | Wr = 289.76lnC - 2214.10 | 0.53 | Wr = 220.28lnV - 2076.30 | 0.56 | |||
地上部分 Aboveground | Wa = 693.69lnH - 1921.10 | 0.44 | Wa = 314.62lnC - 2410.9 | 0.55 | Wa = 236.37lnV - 2232.7 | 0.56 | |||
总生物量 Total biomass | Wt = 1298lnH - 3578.50 | 0.47 | Wt = 575.63lnC - 4378.2 | 0.56 | Wt = 435.1lnV - 4081.5 | 0.58 | |||
指数模型 Exponential model | 枝 Branch | Wb = 8.3174e0.075H | 0.56 | Wb = 32.188e7E-05C | 0.59 | Wb = 52.298e3E-06V | 0.40 | ||
叶 Leaf | Wl = 4.5053e0.061H | 0.50 | Wl = 13.075e6E-05C | 0.55 | Wl = 19.174e2E-06V | 0.41 | |||
根 Root | Wr = 17.132e0.068H | 0.65 | Wr = 64.966e6E-05C | 0.56 | Wr = 95.376e2E-06V | 0.41 | |||
地上部分 Aboveground | Wa = 13.073e0.071H | 0.56 | Wa = 46.723e7E-05C | 0.60 | Wa = 73.903e2E-06V | 0.42 | |||
总生物量 Total biomass | Wt = 29.69e0.070H | 0.60 | Wt = 109.07e6E-05C | 0.58 | Wt = 166.32e2E-06V | 0.41 | |||
幂函数模型 Power function model | 枝 Branch | Wb = 0.0183H2.565 | 0.63 | Wb = 0.0011C1.279 | 0.94 | Wb = 0.0028V0.938 | 0.92 | ||
叶 Leaf | Wl = 0.0408H1.999 | 0.53 | Wl = 0.003C1.039 | 0.86 | Wl = 0.0074V0.754 | 0.82 | |||
根 Root | Wr = 0.0694H2.313 | 0.75 | Wr = 0.0135C1.046 | 0.87 | Wr = 0.0237V0.789 | 0.91 | |||
地上部分 Aboveground | Wa = 0.0418H2.415 | 0.62 | Wa = 0.0027C1.211 | 0.94 | Wa = 0.007V0.886 | 0.92 | |||
总生物量 Total biomass | Wt = 0.0979H2.391 | 0.69 | Wt = 0.0112C1.138 | 0.93 | Wt = 0.0241V0.844 | 0.93 |
Table 1 Allometric functions for the biomass of different organs of Sophora moorcroftiana
模型 Model | 器官 Organ | 植株高度 Plant height (cm) | 树冠投影面积 Crown projection area (cm2) | 生物量体积 Biomass volume (cm3) | |||||
---|---|---|---|---|---|---|---|---|---|
回归方程 Regression equation | 决定系数 Coefficient of deter- mination (R2) | 回归方程 Regression equation | 决定系数 Coefficient of deter- mination (R2) | 回归方程 Regression equation | 决定系数 Coefficient of deter- mination (R2) | ||||
线性模型 Linear model | 枝 Branch | Wb = 19.21H - 317.6 | 0.56 | Wb = 0.022C - 40.86 | 0.89 | Wb = 0.0009V + 79.98 | 0.83 | ||
叶 Leaf | Wl = 5.41H - 91.10 | 0.50 | Wl = 0.006C - 5.95 | 0.69 | Wl = 0.0003V + 18.96 | 0.78 | |||
根 Root | Wr = 23.69H - 389.38 | 0.61 | Wr = 0.025C - 5.27 | 0.82 | Wr = 0.0011V + 125.47 | 0.80 | |||
地上部分 Aboveground | Wa = 24.63H - 408.70 | 0.58 | Wa = 0.028C - 46.81 | 0.90 | Wa = 0.0012V + 98.94 | 0.87 | |||
总生物量 Total biomass | Wt = 45.47H - 728.58 | 0.60 | Wt = 0.051C - 40.63 | 0.89 | Wt = 0.0022V + 224.32 | 0.86 | |||
对数模型 Logarithm model | 枝 Branch | Wb = 547.73lnH - 1519.40 | 0.44 | Wb = 250lnC - 1920.30 | 0.55 | Wb = 187.5lnV - 1775.10 | 0.56 | ||
叶 Leaf | Wl = 145.97lnH - 401.71 | 0.35 | Wl = 64.62lnC - 490.61 | 0.41 | Wl = 48.87lnV - 457.58 | 0.43 | |||
根 Root | Wr = 457.85lnH - 1817.50 | 0.47 | Wr = 289.76lnC - 2214.10 | 0.53 | Wr = 220.28lnV - 2076.30 | 0.56 | |||
地上部分 Aboveground | Wa = 693.69lnH - 1921.10 | 0.44 | Wa = 314.62lnC - 2410.9 | 0.55 | Wa = 236.37lnV - 2232.7 | 0.56 | |||
总生物量 Total biomass | Wt = 1298lnH - 3578.50 | 0.47 | Wt = 575.63lnC - 4378.2 | 0.56 | Wt = 435.1lnV - 4081.5 | 0.58 | |||
指数模型 Exponential model | 枝 Branch | Wb = 8.3174e0.075H | 0.56 | Wb = 32.188e7E-05C | 0.59 | Wb = 52.298e3E-06V | 0.40 | ||
叶 Leaf | Wl = 4.5053e0.061H | 0.50 | Wl = 13.075e6E-05C | 0.55 | Wl = 19.174e2E-06V | 0.41 | |||
根 Root | Wr = 17.132e0.068H | 0.65 | Wr = 64.966e6E-05C | 0.56 | Wr = 95.376e2E-06V | 0.41 | |||
地上部分 Aboveground | Wa = 13.073e0.071H | 0.56 | Wa = 46.723e7E-05C | 0.60 | Wa = 73.903e2E-06V | 0.42 | |||
总生物量 Total biomass | Wt = 29.69e0.070H | 0.60 | Wt = 109.07e6E-05C | 0.58 | Wt = 166.32e2E-06V | 0.41 | |||
幂函数模型 Power function model | 枝 Branch | Wb = 0.0183H2.565 | 0.63 | Wb = 0.0011C1.279 | 0.94 | Wb = 0.0028V0.938 | 0.92 | ||
叶 Leaf | Wl = 0.0408H1.999 | 0.53 | Wl = 0.003C1.039 | 0.86 | Wl = 0.0074V0.754 | 0.82 | |||
根 Root | Wr = 0.0694H2.313 | 0.75 | Wr = 0.0135C1.046 | 0.87 | Wr = 0.0237V0.789 | 0.91 | |||
地上部分 Aboveground | Wa = 0.0418H2.415 | 0.62 | Wa = 0.0027C1.211 | 0.94 | Wa = 0.007V0.886 | 0.92 | |||
总生物量 Total biomass | Wt = 0.0979H2.391 | 0.69 | Wt = 0.0112C1.138 | 0.93 | Wt = 0.0241V0.844 | 0.93 |
样点 Plot No. | 地上部分生物量 Aboveground biomass | 根生物量 Root biomass | 合计 Total | ||
---|---|---|---|---|---|
枝 Branch | 叶 Leaf | 小计 Total | |||
1 | 0.62 ± 0.17 | 0.17 ± 0.04 | 0.79 | 0.84 ± 0.16 | 1.63 |
2 | 1.07 ± 0.17 | 0.32 ± 0.04 | 1.39 | 1.28 ± 0.06 | 2.67 |
3 | 0.62 ± 0.17 | 0.22 ± 0.03 | 0.84 | 1.03 ± 0.07 | 1.87 |
4 | 1.46 ± 0.18 | 0.37 ± 0.04 | 1.84 | 1.66 ± 0.19 | 3.50 |
5 | 0.72 ± 0.09 | 0.19 ± 0.02 | 0.90 | 1.00 ± 0.06 | 1.90 |
6 | 1.07 ± 0.04 | 0.39 ± 0.02 | 1.46 | 2.14 ± 0.19 | 3.60 |
7 | 1.34 ± 0.21 | 0.33 ± 0.04 | 1.67 | 1.71 ± 0.30 | 3.38 |
8 | 1.58 ± 0.28 | 0.41 ± 0.08 | 2.00 | 1.75 ± 0.24 | 3.74 |
9 | 1.63 ± 0.32 | 0.41 ± 0.08 | 2.03 | 1.92 ± 0.52 | 3.95 |
10 | 1.59 ± 0.55 | 0.40 ± 0.10 | 1.99 | 2.17 ± 0.66 | 4.16 |
11 | 2.07 ± 0.25 | 0.76 ± 0.08 | 2.83 | 3.06 ± 0.47 | 5.89 |
12 | 1.74 ± 0.14 | 0.48 ± 0.04 | 2.22 | 2.32 ± 0.18 | 4.55 |
13 | 1.30 ± 0.32 | 0.35 ± 0.06 | 1.65 | 1.78 ± 0.33 | 3.43 |
14 | 2.17 ± 0.09 | 0.64 ± 0.02 | 2.81 | 3.21 ± 0.02 | 6.02 |
15 | 2.92 ± 0.55 | 0.67 ± 0.10 | 3.59 | 4.12 ± 0.90 | 7.71 |
16 | 3.16 ± 0.37 | 0.71 ± 0.05 | 3.87 | 3.35 ± 0.38 | 7.21 |
17 | 1.03 ± 0.13 | 0.31 ± 0.03 | 1.34 | 1.05 ± 0.15 | 2.39 |
18 | 2.20 ± 0.38 | 0.57 ± 0.10 | 2.77 | 2.98 ± 0.60 | 5.75 |
平均Mean | 1.57 ± 0.17 | 0.43 ± 0.04 | 2.00 | 2.08 ± 0.22 | 4.08 |
Table 2 Biomass (mean ± SE, Mg·hm-2) of the shrub layer of Sophora moorcroftiana communities
样点 Plot No. | 地上部分生物量 Aboveground biomass | 根生物量 Root biomass | 合计 Total | ||
---|---|---|---|---|---|
枝 Branch | 叶 Leaf | 小计 Total | |||
1 | 0.62 ± 0.17 | 0.17 ± 0.04 | 0.79 | 0.84 ± 0.16 | 1.63 |
2 | 1.07 ± 0.17 | 0.32 ± 0.04 | 1.39 | 1.28 ± 0.06 | 2.67 |
3 | 0.62 ± 0.17 | 0.22 ± 0.03 | 0.84 | 1.03 ± 0.07 | 1.87 |
4 | 1.46 ± 0.18 | 0.37 ± 0.04 | 1.84 | 1.66 ± 0.19 | 3.50 |
5 | 0.72 ± 0.09 | 0.19 ± 0.02 | 0.90 | 1.00 ± 0.06 | 1.90 |
6 | 1.07 ± 0.04 | 0.39 ± 0.02 | 1.46 | 2.14 ± 0.19 | 3.60 |
7 | 1.34 ± 0.21 | 0.33 ± 0.04 | 1.67 | 1.71 ± 0.30 | 3.38 |
8 | 1.58 ± 0.28 | 0.41 ± 0.08 | 2.00 | 1.75 ± 0.24 | 3.74 |
9 | 1.63 ± 0.32 | 0.41 ± 0.08 | 2.03 | 1.92 ± 0.52 | 3.95 |
10 | 1.59 ± 0.55 | 0.40 ± 0.10 | 1.99 | 2.17 ± 0.66 | 4.16 |
11 | 2.07 ± 0.25 | 0.76 ± 0.08 | 2.83 | 3.06 ± 0.47 | 5.89 |
12 | 1.74 ± 0.14 | 0.48 ± 0.04 | 2.22 | 2.32 ± 0.18 | 4.55 |
13 | 1.30 ± 0.32 | 0.35 ± 0.06 | 1.65 | 1.78 ± 0.33 | 3.43 |
14 | 2.17 ± 0.09 | 0.64 ± 0.02 | 2.81 | 3.21 ± 0.02 | 6.02 |
15 | 2.92 ± 0.55 | 0.67 ± 0.10 | 3.59 | 4.12 ± 0.90 | 7.71 |
16 | 3.16 ± 0.37 | 0.71 ± 0.05 | 3.87 | 3.35 ± 0.38 | 7.21 |
17 | 1.03 ± 0.13 | 0.31 ± 0.03 | 1.34 | 1.05 ± 0.15 | 2.39 |
18 | 2.20 ± 0.38 | 0.57 ± 0.10 | 2.77 | 2.98 ± 0.60 | 5.75 |
平均Mean | 1.57 ± 0.17 | 0.43 ± 0.04 | 2.00 | 2.08 ± 0.22 | 4.08 |
样点 Plot No. | 草本层 Herb layer | 凋落物 Litterfall | 合计 Total | ||
---|---|---|---|---|---|
地上 Aboveground | 地下 Underground | 小计 Total | |||
1 | 0.53 ± 0.36 | 0.08 ± 0.02 | 0.61 | 0.08 ± 0.07 | 0.69 |
2 | 2.93 ± 0.76 | 1.16 ± 0.43 | 4.09 | 0.03 ± 0.01 | 4.12 |
3 | 0.62 ± 0.17 | 0.50 ± 0.18 | 1.12 | 0.27 ± 0.12 | 1.39 |
4 | 0.25 ± 0.15 | 0.17 ± 0.12 | 0.42 | 0.11 ± 0.04 | 0.53 |
5 | 0.40 ± 0.05 | 0.53 ± 0.20 | 0.93 | 0.20 ± 0.08 | 1.13 |
6 | 1.02 ± 0.91 | 0.81 ± 0.54 | 1.83 | 0.18 ± 0.10 | 2.01 |
7 | 0.40 ± 0.05 | 0.53 ± 0.20 | 0.93 | 0.10 ± 0.05 | 1.03 |
8 | 0.76 ± 0.02 | 0.98 ± 0.37 | 1.74 | 0.05 ± 0.01 | 1.79 |
9 | 2.11 ± 0.41 | 2.81 ± 0.30 | 4.92 | 0.09 ± 0.02 | 5.01 |
10 | 0.27 ± 0.07 | 0.13 ± 0.05 | 0.40 | 0.05 ± 0.01 | 0.45 |
11 | 0.13 ± 0.06 | 0.35 ± 0.13 | 0.48 | 0.17 ± 0.07 | 0.65 |
12 | 0.81 ± 0.17 | 1.07 ± 0.18 | 1.88 | 0.02 ± 0.00 | 1.90 |
13 | 0.17 ± 0.02 | 0.27 ± 0.02 | 0.44 | 0.07 ± 0.02 | 0.51 |
14 | 0.33 ± 0.11 | 2.17 ± 0.96 | 2.50 | 0.15 ± 0.08 | 2.65 |
15 | 0.14 ± 0.07 | 0.63 ± 036 | 0.78 | 0.15 ± 0.03 | 0.92 |
16 | 0.26 ± 0.10 | 0.75 ± 0.14 | 1.01 | 0.02 ± 0.01 | 1.03 |
17 | 0.25 ± 0.05 | 0.44 ± 0.06 | 0.70 | 0.07 ± 0.02 | 0.76 |
18 | 0.70 ± 0.22 | 2.09 ± 0.47 | 2.79 | 0.04 ± 0.01 | 2.83 |
平均 Mean | 0.67 ± 0.17 | 0.86 ± 0.18 | 1.53 | 0.10 ± 0.02 | 1.63 |
Table 3 Biomass (mean ± SE, Mg·hm-2) of the herb layer and litterfall of Sophora moorcroftiana communities
样点 Plot No. | 草本层 Herb layer | 凋落物 Litterfall | 合计 Total | ||
---|---|---|---|---|---|
地上 Aboveground | 地下 Underground | 小计 Total | |||
1 | 0.53 ± 0.36 | 0.08 ± 0.02 | 0.61 | 0.08 ± 0.07 | 0.69 |
2 | 2.93 ± 0.76 | 1.16 ± 0.43 | 4.09 | 0.03 ± 0.01 | 4.12 |
3 | 0.62 ± 0.17 | 0.50 ± 0.18 | 1.12 | 0.27 ± 0.12 | 1.39 |
4 | 0.25 ± 0.15 | 0.17 ± 0.12 | 0.42 | 0.11 ± 0.04 | 0.53 |
5 | 0.40 ± 0.05 | 0.53 ± 0.20 | 0.93 | 0.20 ± 0.08 | 1.13 |
6 | 1.02 ± 0.91 | 0.81 ± 0.54 | 1.83 | 0.18 ± 0.10 | 2.01 |
7 | 0.40 ± 0.05 | 0.53 ± 0.20 | 0.93 | 0.10 ± 0.05 | 1.03 |
8 | 0.76 ± 0.02 | 0.98 ± 0.37 | 1.74 | 0.05 ± 0.01 | 1.79 |
9 | 2.11 ± 0.41 | 2.81 ± 0.30 | 4.92 | 0.09 ± 0.02 | 5.01 |
10 | 0.27 ± 0.07 | 0.13 ± 0.05 | 0.40 | 0.05 ± 0.01 | 0.45 |
11 | 0.13 ± 0.06 | 0.35 ± 0.13 | 0.48 | 0.17 ± 0.07 | 0.65 |
12 | 0.81 ± 0.17 | 1.07 ± 0.18 | 1.88 | 0.02 ± 0.00 | 1.90 |
13 | 0.17 ± 0.02 | 0.27 ± 0.02 | 0.44 | 0.07 ± 0.02 | 0.51 |
14 | 0.33 ± 0.11 | 2.17 ± 0.96 | 2.50 | 0.15 ± 0.08 | 2.65 |
15 | 0.14 ± 0.07 | 0.63 ± 036 | 0.78 | 0.15 ± 0.03 | 0.92 |
16 | 0.26 ± 0.10 | 0.75 ± 0.14 | 1.01 | 0.02 ± 0.01 | 1.03 |
17 | 0.25 ± 0.05 | 0.44 ± 0.06 | 0.70 | 0.07 ± 0.02 | 0.76 |
18 | 0.70 ± 0.22 | 2.09 ± 0.47 | 2.79 | 0.04 ± 0.01 | 2.83 |
平均 Mean | 0.67 ± 0.17 | 0.86 ± 0.18 | 1.53 | 0.10 ± 0.02 | 1.63 |
区域 Region | 平均海拔 Mean altitude (m) | 灌木层盖度 Coverage of shrub layer (%) | 灌木层 Shrub layer | 草本层 Herb layer | 凋落物 Litterfall | 合计 Total |
---|---|---|---|---|---|---|
东部 Eastern | 3 625 | 23.00a | 1.40a | 0.62a | 0.053a | 2.07a |
西部 Western | 3 900 | 39.88b | 2.49b | 0.46a | 0.039a | 2.98b |
Table 4 Difference of carbon density (Mg·hm-2) between east and west regions of Sophora moorcroftiana shrublands in the middle reaches of Yarlung Zangbo River
区域 Region | 平均海拔 Mean altitude (m) | 灌木层盖度 Coverage of shrub layer (%) | 灌木层 Shrub layer | 草本层 Herb layer | 凋落物 Litterfall | 合计 Total |
---|---|---|---|---|---|---|
东部 Eastern | 3 625 | 23.00a | 1.40a | 0.62a | 0.053a | 2.07a |
西部 Western | 3 900 | 39.88b | 2.49b | 0.46a | 0.039a | 2.98b |
方法 Method | 灌木层碳密度 Carbon density for shrub layer | 草本层碳密度 Carbon density for herb layer | 凋落物碳密度 Carbon density for litterfall | 合计 Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|
枝 Branch | 叶 Leaf | 根 Root | 小计 Total | 地上 Aboveground | 地下 Belowground | 小计 Total | ||||
实测法 Actual measurement | 0.74 | 0.19 | 0.95 | 1.88 | 0.25 | 0.30 | 0.54 | 0.047 | 2.48 | |
换算系数0.5 Conversion factor 0.5 | 0.79 | 0.21 | 1.04 | 2.04 | 0.34 | 0.43 | 0.77 | 0.051 | 2.85 | |
(误差 Error %) | (6.8) | (10.5) | (9.5) | (8.5) | (36.0) | (43.3) | (42.6) | (8.5) | (14.9) | |
换算系数0.45 Conversion factor 0.45 | 0.71 | 0.19 | 0.93 | 1.83 | 0.30 | 0.39 | 0.69 | 0.046 | 2.57 | |
(误差 Error %) | (4.1) | (0.0) | (2.1) | (2.7) | (20.0) | (30.0) | (27.8) | (2.1) | (3.6) |
Table 5 Comparisons of errors between different methods for the estimation of carbon density (Mg·hm-2)
方法 Method | 灌木层碳密度 Carbon density for shrub layer | 草本层碳密度 Carbon density for herb layer | 凋落物碳密度 Carbon density for litterfall | 合计 Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|
枝 Branch | 叶 Leaf | 根 Root | 小计 Total | 地上 Aboveground | 地下 Belowground | 小计 Total | ||||
实测法 Actual measurement | 0.74 | 0.19 | 0.95 | 1.88 | 0.25 | 0.30 | 0.54 | 0.047 | 2.48 | |
换算系数0.5 Conversion factor 0.5 | 0.79 | 0.21 | 1.04 | 2.04 | 0.34 | 0.43 | 0.77 | 0.051 | 2.85 | |
(误差 Error %) | (6.8) | (10.5) | (9.5) | (8.5) | (36.0) | (43.3) | (42.6) | (8.5) | (14.9) | |
换算系数0.45 Conversion factor 0.45 | 0.71 | 0.19 | 0.93 | 1.83 | 0.30 | 0.39 | 0.69 | 0.046 | 2.57 | |
(误差 Error %) | (4.1) | (0.0) | (2.1) | (2.7) | (20.0) | (30.0) | (27.8) | (2.1) | (3.6) |
[1] | Dai L, Jia J, Yu D, Lewis BJ, Zhou L, Zhou W, Zhao W, Jiang L (2013). Effects of climate change on biomass carbon sequestration in old-growth forest ecosystems on Changbai Mountain in Northeast China.Forest Ecology and Management, 300, 106-116. |
[2] | Fu DF (2014). Shrub wood carbon reserve estimation in Tibet Autonomous Region.Central South Forest Inventory and Planning, 33, 4-7. (in Chinese with English abstract)[付达夫 (2014). 西藏自治区灌木林碳储量估算. 中南林业调查规划, 33, 4-7.] |
[3] | Gao Q, Yang XC, Yin CY, Liu Q (2014). Estimation of biomass allocation and carbon density in alpine dwarf shrubs in Ganzi Zangzu Autonomous Prefecture of Sichuan Province, China.Journal of Plant Ecology, 38, 355-365. (in Chinese with English abstract)[高巧, 阳小成, 尹春英, 刘庆 (2014). 四川省甘孜藏族自治州高寒矮灌丛生物量分配及其碳密度的估算. 植物生态学报, 38, 355-365.] |
[4] | Guo QQ, Luo DQ, Fang JP, Ren DZ, Wang ZH, Fu JF (2009). Research status, utilization and protection measures of Sophora moorcroftiana in Tibet. Journal of Northwest Forestry University, 24, 98-101. (in Chinese with English abstract)[郭其强, 罗大庆, 方江平, 仁德智, 王贞红, 傅军锋 (2009). 西藏砂生槐的研究现状及其利用与保护对策. 西北林学院学报, 24, 98-101.] |
[5] | Hu HF, Wang ZH, Liu GH, Fu BJ (2006). Vegetation carbon storage of major shrublands in China.Journal of Plant Ecology (Chinese Version), 30, 539-544. (in Chinese with English abstract)[胡会峰, 王志恒, 刘国华, 傅伯杰 (2006). 中国主要灌丛植被碳储量. 植物生态学报, 30, 539-544.] |
[6] | Keeling HC, Phillips OL (2007). The global relationship between forest productivity and biomass.Global Ecology and Biogeography, 16, 618-631. |
[7] | Li HD, Shen WS, She GH, Sun M, Yuan L, Lin NF (2011). Population structure and point pattern of Sophora moor- croftiana in Tibet. Journal of Desert Research, 31, 1443-1448. (in Chinese with English abstract)[李海东, 沈渭寿, 佘光辉, 孙明, 袁磊, 林乃峰 (2011). 西藏砂生槐种群结构与点格局分析. 中国沙漠, 31, 1443-1448.] |
[8] | Li YN, Yu XF, Xu ZQ, Liu LL, Yao WX, Wang L (2014). Carbon density characteristics of two typical shrub communities in the northern mountain region of Hebei.Scientia Silvae Sinicae, 50(6), 28-33. (in Chinese with English abstract)[李亚男, 虞晓凡, 许中旗, 刘乐乐, 姚卫星, 王丽 (2014). 冀北山地2种典型灌丛的碳密度特征. 林业科学, 50(6), 28-33.] |
[9] | Li YN, Zhao L, Wang QX, Du MY, Gu S, Xu SX, Zang FW, Zhao XQ (2006). Estimation of biomass and annual turnover quantities of Potentilla froticosa shrub. Acta Agrestia Sinica, 14, 72-76. (in Chinese with English abstract)[李英年, 赵亮, 王勤学, 杜明远, 古松, 徐世晓, 张发伟, 赵新全 (2006). 高寒金露梅灌丛生物量及年周转量. 草地学报, 14, 72-76.] |
[10] | Liang B, Di L, Zhao CY, Peng SZ, Peng HH, Wang C (2013). Spatial distribution of aboveground biomass of shrubs in Tianlaochi catchment of the Qilian Mountains.Chinese. Journal of Applied Ecology, 25, 367-373. (in Chinese with English abstract)[梁倍, 邸利, 赵传燕, 彭守璋, 彭焕华, 王超 (2013). 祁连山天老池流域灌丛地上生物量空间分布. 应用生态学报, 25, 367-373.] |
[11] | Liu GH, Zhang JY, Zhang YX, Zhou JY, Guan WB, Ma KM, Fu BJ (2003). Distribution regulation of aboveground biomass of three main shrub types in the dry valley of Minjiang River.Journal of Mountain Science, 21, 24-32. (in Chinese with English abstract)[刘国华, 张洁瑜, 张育新, 周建云, 关文彬, 马克明, 傅伯杰 (2003). 岷江干旱河谷三种主要灌丛地上生物量的分布规律. 山地学报, 21, 24-32.] |
[12] | Lü CQ, Sun SC (2004). A review on the distribution patterns of carbon density in density in terrestrial ecosystems.Acta Phytoecologica Sinica, 28, 692-703. (in Chinese with English abstract)[吕超群, 孙书存 (2004). 陆地生态系统碳密度格局研究概述. 植物生态学报, 28, 692-703.] |
[13] | Montane F, Rovira P, Casals P (2007). Shrub encroachment into mesic mountain grasslands in the Iberian peninsula: Effects of plant quality and temperature on soil C and N stocks.Global Biogeochemical Cycles, 21, 1-10. |
[14] | Peng YM (1997). Study on sand fixation effect of Sophora moorcroftiana in Yaluzangbu river middle valley, Tibet. Forestry Science and Technology, 22, 6-8. (in Chinese with English abstract)[彭跃明 (1997). 西藏雅鲁藏布江中部流域砂生槐固沙作用研究. 林业科技, 22, 6-8.] |
[15] | Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The carbon balance of terrestrial ecosystems in China.Nature, 458, 1009-1014. |
[16] | Piao SL, Fang JY, Huang Y (2010). The carbon balance of terrestrial ecosystems in China.China Basic Science, 12, 20-22. (in Chinese with English abstract)[朴世龙, 方精云, 黄耀 (2010). 中国陆地生态系统碳收支. 中国基础科学, 12, 20-22.] |
[17] | Song YC (2001). Vegetation Ecology. East China Normal University Press, Shanghai. 353-422. (in Chinese)[宋永昌 (2001). 植被生态学. 华东师范大学出版社, 上海. 353-422.] |
[18] | Sturm M, Racine C, Tape K (2001). Increasing shrub abundance in the Arctic.Nature, 411, 546-547. |
[19] | Sun X (2010). Study on Community Structure and Biomass of Xizang Sophora moorcroftiana. Master degree disserta- tion, Agricultural and Animal Husbandry College of Tibet University, Linzhi, Xizang. (in Chinese with English abstract)[孙旭 (2010). 西藏砂生槐群落结构与生物量研究. 硕士学位论文, 西藏大学农牧学院, 西藏林芝.] |
[20] | The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences (2001). 1:1000000 Vegetation Atlas of China. Science Press, Beijing. (in Chinese)[中国科学院中国植被图编辑委员会 (2001). 1:1000000中国植被图集. 科学出版社, 北京.] |
[21] | Wang L (2009). Study of Biomass and Its Models of Main Shrub Community Type in Northwest Sichuan. Master degree dissertation, Sichuan Agricultural University, Ya’an, Sichuan. (in Chinese with English abstract)[王玲 (2009). 川西北地区主要灌丛类型生物量及其模型研究. 硕士学位论文, 四川农业大学, 四川雅安.] |
[22] | Wang QJ, Zhou XM, Zhang YQ, Zhao XQ (1991). Structure characteristics and biomass of Potentilla froticosa shrub in Qinghai Plateau. Acta Botanica Boreali-Occidentalia Sinica, 11, 333-340. (in Chinese with English abstract)[王启基, 周兴民, 张堰青, 赵新全 (1991). 青藏高原金露梅灌丛的结构特征及其生物量. 西北植物学报, 11, 333-340.] |
[23] | Wang WJ, He DH, Tang XQ, Gong WF (2011). Effects of different temperature and sand burial depths on seed germination seedling growth ofSophora moorcroftiana. Journal of Desert Research, 31, 1437-1442. (in Chinese with English abstract)[王文娟, 贺达汉, 唐小琴, 巩文峰 (2011). 不同温度和沙埋深度对砂生槐种子萌发及幼苗生长的影响. 中国沙漠, 31, 1437-1442.] |
[24] | Wang YJ, Huang CD, Zhang J, Yang WQ, Wang XS (2010). Species diversity, biomass and their relationship of shrubberies in an arid valley of the Minjiang River.Arid Zone Research, 27, 567-572. (in Chinese with English abstract)[王勇军, 黄从德, 张健, 杨万勤, 王宪帅 (2010). 岷江干旱河谷灌丛物种多样性、生物量及其关系. 干旱区研究, 27, 567-572.] |
[25] | Wu SH, Yin YH, Zheng D, Yang QY (2005). Climate changes in the Tibetan Plateau during the last three decades.Acta Geographica Sinica, 60, 3-11. (in Chinese with English abstract)[吴绍洪, 尹云鹤, 郑度, 杨勤业 (2005). 青藏高原近30年气候变化趋势, 地理学报, 60, 3-11.] |
[26] | Yang ZG, Tang XP, Lu HY, Ma PF, Hong JC (2013). The hanges of potential evapotranspiration over Yarlung Zangbo River Basin during 1961-2010.Acta Geographica Sinica, 68, 1263-1268. (in Chinese with English abstract)[杨志刚, 唐小萍, 路红亚, 马鹏飞, 洪建昌 (2013). 近50年雅鲁藏布江流域潜在蒸散量的变化特征. 地理学报, 68, 1263-1268.] |
[27] | Yang ZP, Shen WS, Sun M, Sun J, Li HD (2011). Structural characteristics ofSophora moorcroftiana community on wind-sandy land in middle reaches of Yaluzangbu River. Chinese Journal of Applied Ecology, 21, 1121-1126. (in Chinese with English abstract)[杨兆平, 沈渭寿, 孙明, 孙俊, 李海东 (2011). 雅鲁藏布江中游河谷风沙化土地砂生槐群落结构特征. 应用生态学报, 21, 1121-1126.] |
[28] | Yin YH, Wu SH, Zhao DS (2013). Past and future spatiotemporal changes in evapotranspiration and effective moisture on the Tibetan Plateau.Journal of Geophysical Research: Atmosphere, 118, 10850-10860. |
[29] | Zhao KT, Yang XL, Ma HP, Zhang XJ (2013). Analyses on community characteristics and soil microorganism dynamics during ecological restoration ofSophora moorcroftiana in the semi-arid valley of Lhasa. Scientia Silvae Sinicae, 49(2), 25-20. (in Chinese with English abstract)[赵垦田, 杨小林, 马和平, 张新军 (2013). 拉萨半干旱河谷砂生槐灌丛生态恢复过程的群落特征与土壤微生物动态分析. 林业科学, 49(2), 25-20.] |
[30] | Zhao WZ (1998). A preliminary study on the arenaceous adaptability ofSophora moorcroftiana. Acta Phytoecologica Sinica, 22, 379-384. (in Chinese with English abstract)[赵文智 (1998). 砂生槐沙生适应性初步研究. 植物生态学报, 22, 379-384.] |
[1] | CEN Yu, WANG Cheng-Dong, ZHANG Zhen, REN Xia, LIU Mei-Zhen, YANG Fan. Spatial distributions of biomass and carbon density in natural grasslands of Hebei, China [J]. Chin J Plant Ecol, 2018, 42(3): 265-276. |
[2] | YANG Hao-Tian, WANG Zeng-Ru, JIA Rong-Liang. Distribution and storage of soil organic carbon across the desert grasslands in the southeastern fringe of the Tengger Desert, China [J]. Chin J Plant Ecol, 2018, 42(3): 288-296. |
[3] | YAN Bao-Long, WANG Zhong-Wu, QU Zhi-Qiang, WANG Jing, HAN Guo-Dong. Effects of enclosure on carbon density of plant-soil system in typical steppe and desert steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2018, 42(3): 327-336. |
[4] | Xi LI, Fang WANG, Yang CAO, Shou-Zhang PENG, Yun-Ming CHEN. Soil carbon storage and its determinants in the forests of Shaanxi Province, China [J]. Chin J Plan Ecolo, 2017, 41(9): 953-963. |
[5] | Lu-Cun YANG, Chang-Bin LI, Yi NING, Xiu-Qing NIE, Wen-Hua XU, Guo-Ying ZHOU. Carbon density and its spatial distribution in the Potentilla fruticosa dominated alpine shrub in Qinghai, China [J]. Chin J Plant Ecol, 2017, 41(1): 62-70. |
[6] | Xiao-Qiong HUANG, Cun-Lin XIN, Zhong-Min HU, Gang-Tie LI, Tong-Hui ZHANG, Wei ZHAO, Hao YANG, Lei-Min ZHANG, Qun GUO, Yong-Jie YUE, Run-Hong Gao, Zhi-Yan WU, Zhi-Gang YAN, Xin-Ping LIU, Yu-Qiang LI, Sheng-Gong LI. Carbon storage of the forests and its spatial pattern in Nei Mongol, China [J]. Chin J Plant Ecol, 2016, 40(4): 327-340. |
[7] | Wen-Qiang XU, Liao YANG, Xi CHEN, Ya-Qi GAO, Lei WANG. Carbon storage, spatial distribution and the influence factors in Tianshan forests [J]. Chin J Plan Ecolo, 2016, 40(4): 364-373. |
[8] | Yin LI, Guo-Ke CHEN, Dun-Mei LIN, Bin CHEN, Lei-Ming GAO, Xing JIAN, Bo YANG, Wu-Bing XU, Hong-Xin SU, Jiang-Shan LAI, Xi-Hua WANG, Hai-Bo YANG, Ke-Ping MA. Carbon storage and its distribution of forest ecosystems in Zhejiang Province, China [J]. Chin J Plan Ecolo, 2016, 40(4): 354-363. |
[9] | Wei ZHAO, Zhong-Min HU, Hao YANG, Lei-Ming ZHANG, Qun GUO, Zhi-Yan WU, De-Yi LIU, Sheng-Gong LI. Carbon density characteristics of sparse Ulmus pumila forest and Populus simonii plantation in Onqin Daga Sandy Land and their relationships with stand age [J]. Chin J Plant Ecol, 2016, 40(4): 318-326. |
[10] | Yu-He JI, Ke GUO, Jian NI, Xiao-Niu XU, Zhi-Gao WANG, Shu-Dong WANG. Current forest carbon stocks and carbon sequestration potential in Anhui Province, China [J]. Chin J Plant Ecol, 2016, 40(4): 395-404. |
[11] | Huai YANG, Yi-De LI, Hai REN, Tu-Shou LUO, Ren-Li CHEN, Wen-Jie LIU, De-Xiang CHEN, Han XU, Zhang ZHOU, Ming-Xian LIN, Qiu YANG, Hai-Rong YAO, Guo-Yi ZHOU. Soil organic carbon density and influencing factors in tropical virgin forests of Hainan Island, China [J]. Chin J Plant Ecol, 2016, 40(4): 292-303. |
[12] | Jin-Hong GUAN, Sheng DU, Ji-Min CHENG, Chun-Rong WU, Guo-Qing LI, Lei DENG, Jian-Guo ZHANG, Qiu-Yue HE, Wei-Yu SHI. Current stocks and rate of sequestration of forest carbon in Gansu Province, China [J]. Chin J Plant Ecol, 2016, 40(4): 304-317. |
[13] | Chun-Nan FAN, Shi-Jie HAN, Zhong-Ling GUO, Jin-Ping ZHENG, Yan CHENG. Present status and rate of carbon sequestration of forest vegetation in Jilin Province, Northeast China [J]. Chin J Plan Ecolo, 2016, 40(4): 341-353. |
[14] | HUANG Zong-Sheng,YU Li-Fei,FU Yu-Hong,YANG Rui. Characteristics of carbon sequestration during natural restoration of Maolan karst forest ecosystems [J]. Chin J Plan Ecolo, 2015, 39(6): 554-564. |
[15] | HU Hai-Qing,LUO Bi-Zhen,WEI Shu-Jing,WEI Shu-Wei,SUN Long,LUO Si-Sheng,MA Hong-Bin. Biomass carbon density and carbon sequestration capacity in seven typical forest types of the Xiaoxing’an Mountains, China [J]. Chin J Plan Ecolo, 2015, 39(2): 140-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn