Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (1): 43-52.DOI: 10.17521/cjpe.2016.0174
Special Issue: 中国灌丛生态系统碳储量的研究; 碳循环
• Research Articles • Previous Articles Next Articles
Qiang ZHANG1,2, Jia-Xiang LI3, Wen-Ting XU1, Gao-Ming XIONG1, Zong-Qiang XIE1,*()
Received:
2016-05-17
Accepted:
2016-09-21
Online:
2017-01-10
Published:
2017-01-23
Contact:
Zong-Qiang XIE
About author:
KANG Jing-yao(1991-), E-mail: Qiang ZHANG, Jia-Xiang LI, Wen-Ting XU, Gao-Ming XIONG, Zong-Qiang XIE. Estimation of biomass allocation and carbon density of Rhododendron simsii shrubland in the subtropical mountainous areas of China[J]. Chin J Plant Ecol, 2017, 41(1): 43-52.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0174
物种 Species | 器官 Organ | 自变量 Variable | 方程 Equation | 样本数 Number of samples | a | b | R2 | 标准误差 Standard error | F值 F value |
---|---|---|---|---|---|---|---|---|---|
杜鹃 | 根 Root | x = D | y = axb | 40 | 0.010 2 | 2.428 5 | 0.714 | 0.347 9 | 94.85*** |
Rhododendron | 茎 Stem | x = D | y = axb | 45 | 0.035 7 | 2.332 0 | 0.928 | 0.189 6 | 550.97*** |
simsii | 叶 Leaf | x = D | y = axb | 43 | 0.003 7 | 2.122 5 | 0.714 | 0.393 2 | 102.48*** |
当年枝 Annual branch | x = D | y = axb | 45 | 0.000 4 | 2.975 0 | 0.608 | 0.695 6 | 66.57*** | |
地上 Aboveground | x = D | y = axb | 45 | 0.040 2 | 2.310 8 | 0.926 | 0.190 3 | 537.30*** | |
总 Total | x = D | y = axb | 43 | 0.054 6 | 2.227 2 | 0.895 | 0.221 5 | 348.07*** | |
白檀 | 根 Root | x = D | y = axb | 30 | 0.019 5 | 2.461 8 | 0.912 | 0.267 2 | 290.07*** |
Symplocos | 茎 Stem | x = D2H | y = axb | 30 | 0.023 0 | 0.981 0 | 0.949 | 0.213 1 | 518.53*** |
paniculata | 叶 Leaf | x = D | y = axb | 29 | 0.004 5 | 2.406 1 | 0.880 | 0.316 2 | 197.48*** |
当年枝 Annual branch | x = D2H | y = a + bx | 27 | 0.000 6 | 0.004 1 | 0.799 | 0.008 0 | 99.38*** | |
地上 Aboveground | x = D2H | y = axb | 30 | 0.029 4 | 0.962 6 | 0.948 | 0.210 0 | 514.51*** | |
总 Total | x = D2H | y = axb | 30 | 0.049 1 | 0.941 3 | 0.943 | 0.215 5 | 466.99*** | |
落叶混合种 | 根 Root | x = D2H | y = axb | 32 | 0.016 2 | 0.842 4 | 0.776 | 0.663 9 | 103.73*** |
Mixed deciduous | 茎 Stem | x = D2H | y = a + bx | 32 | 0.024 4 | 0.027 4 | 0.945 | 0.116 0 | 495.86*** |
species | 叶 Leaf | x = D2H | y = axb | 29 | 0.005 4 | 0.815 5 | 0.866 | 0.497 2 | 174.31*** |
当年枝 Annual branch | x = D2H | y = axb | 13 | 0.004 9 | 0.681 2 | 0.801 | 0.645 8 | 44.38*** | |
地上 Aboveground | x = D2H | y = a + bx | 31 | 0.011 2 | 0.032 0 | 0.981 | 0.077 4 | 1530.32*** | |
总 Total | x = D2H | y = axb | 30 | 0.057 3 | 0.885 9 | 0.947 | 0.303 7 | 502.33*** | |
常绿混合种 | 根 Root | x = D2H | y = axb | 159 | 0.055 7 | 0.644 6 | 0.684 | 0.673 6 | 339.36*** |
Mixed evergreen | 茎 Stem | x = D2H | y = axb | 158 | 0.040 2 | 0.941 7 | 0.902 | 0.433 9 | 1432.91*** |
species | 叶 Leaf | x = D2H | y = axb | 165 | 0.019 0 | 0.611 3 | 0.695 | 0.618 0 | 370.74*** |
当年枝 Annual branch | x = D2H | y = a + bx | 155 | 0.000 6 | 0.016 0 | 0.751 | 0.012 7 | 460.53*** | |
地上 Aboveground | x = D2H | y = axb | 158 | 0.068 1 | 0.854 8 | 0.908 | 0.381 0 | 1531.39*** | |
总 Total | x = D2H | y = axb | 160 | 0.117 1 | 0.810 5 | 0.893 | 0.391 2 | 1312.23*** |
Table 1 Regression models for biomass of shrub species in Rhododendron shrubland
物种 Species | 器官 Organ | 自变量 Variable | 方程 Equation | 样本数 Number of samples | a | b | R2 | 标准误差 Standard error | F值 F value |
---|---|---|---|---|---|---|---|---|---|
杜鹃 | 根 Root | x = D | y = axb | 40 | 0.010 2 | 2.428 5 | 0.714 | 0.347 9 | 94.85*** |
Rhododendron | 茎 Stem | x = D | y = axb | 45 | 0.035 7 | 2.332 0 | 0.928 | 0.189 6 | 550.97*** |
simsii | 叶 Leaf | x = D | y = axb | 43 | 0.003 7 | 2.122 5 | 0.714 | 0.393 2 | 102.48*** |
当年枝 Annual branch | x = D | y = axb | 45 | 0.000 4 | 2.975 0 | 0.608 | 0.695 6 | 66.57*** | |
地上 Aboveground | x = D | y = axb | 45 | 0.040 2 | 2.310 8 | 0.926 | 0.190 3 | 537.30*** | |
总 Total | x = D | y = axb | 43 | 0.054 6 | 2.227 2 | 0.895 | 0.221 5 | 348.07*** | |
白檀 | 根 Root | x = D | y = axb | 30 | 0.019 5 | 2.461 8 | 0.912 | 0.267 2 | 290.07*** |
Symplocos | 茎 Stem | x = D2H | y = axb | 30 | 0.023 0 | 0.981 0 | 0.949 | 0.213 1 | 518.53*** |
paniculata | 叶 Leaf | x = D | y = axb | 29 | 0.004 5 | 2.406 1 | 0.880 | 0.316 2 | 197.48*** |
当年枝 Annual branch | x = D2H | y = a + bx | 27 | 0.000 6 | 0.004 1 | 0.799 | 0.008 0 | 99.38*** | |
地上 Aboveground | x = D2H | y = axb | 30 | 0.029 4 | 0.962 6 | 0.948 | 0.210 0 | 514.51*** | |
总 Total | x = D2H | y = axb | 30 | 0.049 1 | 0.941 3 | 0.943 | 0.215 5 | 466.99*** | |
落叶混合种 | 根 Root | x = D2H | y = axb | 32 | 0.016 2 | 0.842 4 | 0.776 | 0.663 9 | 103.73*** |
Mixed deciduous | 茎 Stem | x = D2H | y = a + bx | 32 | 0.024 4 | 0.027 4 | 0.945 | 0.116 0 | 495.86*** |
species | 叶 Leaf | x = D2H | y = axb | 29 | 0.005 4 | 0.815 5 | 0.866 | 0.497 2 | 174.31*** |
当年枝 Annual branch | x = D2H | y = axb | 13 | 0.004 9 | 0.681 2 | 0.801 | 0.645 8 | 44.38*** | |
地上 Aboveground | x = D2H | y = a + bx | 31 | 0.011 2 | 0.032 0 | 0.981 | 0.077 4 | 1530.32*** | |
总 Total | x = D2H | y = axb | 30 | 0.057 3 | 0.885 9 | 0.947 | 0.303 7 | 502.33*** | |
常绿混合种 | 根 Root | x = D2H | y = axb | 159 | 0.055 7 | 0.644 6 | 0.684 | 0.673 6 | 339.36*** |
Mixed evergreen | 茎 Stem | x = D2H | y = axb | 158 | 0.040 2 | 0.941 7 | 0.902 | 0.433 9 | 1432.91*** |
species | 叶 Leaf | x = D2H | y = axb | 165 | 0.019 0 | 0.611 3 | 0.695 | 0.618 0 | 370.74*** |
当年枝 Annual branch | x = D2H | y = a + bx | 155 | 0.000 6 | 0.016 0 | 0.751 | 0.012 7 | 460.53*** | |
地上 Aboveground | x = D2H | y = axb | 158 | 0.068 1 | 0.854 8 | 0.908 | 0.381 0 | 1531.39*** | |
总 Total | x = D2H | y = axb | 160 | 0.117 1 | 0.810 5 | 0.893 | 0.391 2 | 1312.23*** |
物种 Species | 植株个体 Individuals | 生物量 Biomass | |||
---|---|---|---|---|---|
密度 Density (No.·hm-2) | 占灌木层比例 Ratio of the shrub layer (%) | 生物量 Biomass (kg·hm-2) | 占灌木层比例 Ratio of the shrub layer (%) | ||
杜鹃 Rhododendron simsii | 84 074 | 87.54 | 15 988.05 | 79.61 | |
白檀 Symplocos paniculata | 6 711 | 6.99 | 2 816.53 | 14.02 | |
尖叶日本绣线菊 Spiraea japonica var. acuminata | 1 556 | 1.62 | 101.83 | 0.51 | |
四川冬青 Ilex szechwanensis | 1 452 | 1.51 | 210.97 | 1.05 | |
直角荚蒾 Viburnum foetidum var. rectangulatum | 548 | 0.57 | 37.04 | 0.18 | |
格药柃 Eurya muricata | 430 | 0.45 | 83.18 | 0.41 | |
圆锥绣球 Hydrangea paniculata | 370 | 0.39 | 315.98 | 1.57 | |
波叶红果树 Stranvaesia davidiana var. undulata | 237 | 0.25 | 41.76 | 0.21 | |
水马桑 Weigela japonica var. sinica | 207 | 0.22 | 46.94 | 0.23 | |
鹿角杜鹃 Rhododendron latoucheae | 148 | 0.15 | 239.75 | 1.19 | |
尾叶樱桃 Cerasus dielsiana | 104 | 0.11 | 124.24 | 0.62 | |
中国绣球 Hydrangea chinensis | 44 | 0.05 | 19.27 | 0.10 | |
四照花 Dendrobenthamia japonica var. chinensis | 44 | 0.05 | 8.90 | 0.04 | |
石灰花楸 Sorbus folgneri | 30 | 0.03 | 11.34 | 0.06 | |
紫珠 Callicarpa bodinieri var. bodinieri | 30 | 0.03 | 6.79 | 0.03 | |
胡颓子 Elaeagnus pungens | 15 | 0.02 | 18.66 | 0.09 | |
三桠乌药 Lindera obtusiloba | 15 | 0.02 | 7.69 | 0.04 | |
小叶栎 Quercus chenii | 15 | 0.02 | 2.90 | 0.01 | |
长叶冻绿 Rhamnus crenata | 15 | 0.02 | 1.13 | 0.01 |
Table 2 Individual density and biomass allocation of shrub layer in different species
物种 Species | 植株个体 Individuals | 生物量 Biomass | |||
---|---|---|---|---|---|
密度 Density (No.·hm-2) | 占灌木层比例 Ratio of the shrub layer (%) | 生物量 Biomass (kg·hm-2) | 占灌木层比例 Ratio of the shrub layer (%) | ||
杜鹃 Rhododendron simsii | 84 074 | 87.54 | 15 988.05 | 79.61 | |
白檀 Symplocos paniculata | 6 711 | 6.99 | 2 816.53 | 14.02 | |
尖叶日本绣线菊 Spiraea japonica var. acuminata | 1 556 | 1.62 | 101.83 | 0.51 | |
四川冬青 Ilex szechwanensis | 1 452 | 1.51 | 210.97 | 1.05 | |
直角荚蒾 Viburnum foetidum var. rectangulatum | 548 | 0.57 | 37.04 | 0.18 | |
格药柃 Eurya muricata | 430 | 0.45 | 83.18 | 0.41 | |
圆锥绣球 Hydrangea paniculata | 370 | 0.39 | 315.98 | 1.57 | |
波叶红果树 Stranvaesia davidiana var. undulata | 237 | 0.25 | 41.76 | 0.21 | |
水马桑 Weigela japonica var. sinica | 207 | 0.22 | 46.94 | 0.23 | |
鹿角杜鹃 Rhododendron latoucheae | 148 | 0.15 | 239.75 | 1.19 | |
尾叶樱桃 Cerasus dielsiana | 104 | 0.11 | 124.24 | 0.62 | |
中国绣球 Hydrangea chinensis | 44 | 0.05 | 19.27 | 0.10 | |
四照花 Dendrobenthamia japonica var. chinensis | 44 | 0.05 | 8.90 | 0.04 | |
石灰花楸 Sorbus folgneri | 30 | 0.03 | 11.34 | 0.06 | |
紫珠 Callicarpa bodinieri var. bodinieri | 30 | 0.03 | 6.79 | 0.03 | |
胡颓子 Elaeagnus pungens | 15 | 0.02 | 18.66 | 0.09 | |
三桠乌药 Lindera obtusiloba | 15 | 0.02 | 7.69 | 0.04 | |
小叶栎 Quercus chenii | 15 | 0.02 | 2.90 | 0.01 | |
长叶冻绿 Rhamnus crenata | 15 | 0.02 | 1.13 | 0.01 |
灌木层碳密度 Shrub layer carbon density | 草本层碳密度 Herb layer carbon density | 凋落物层碳密度 Litter layer carbon density | 总碳密度 Total carbon density | ||||
---|---|---|---|---|---|---|---|
根碳密度 Root carbon density | 茎碳密度 Stem carbon density | 叶碳密度 Leaf carbon density | 当年枝碳密度 Annual branch carbon density | ||||
地上部分碳密度 Aboveground carbon density | 6.38 (0.50) | 0.62 (0.05) | 0.30 (0.05) | 0.35 (0.03) | 7.65 (0.57) | ||
地下部分碳密度 Belowground carbon density | 2.18 (0.19) | 0.31 (0.03) | 2.48 (0.18) | ||||
总碳密度 Total carbon density | 9.48 (0.77) | 0.66 (0.06) | 1.56 (0.11) | 11.70 (0.74) |
Table 3 Estimation of biomass carbon density of Rhododendron shrubland (Mg·hm-2)
灌木层碳密度 Shrub layer carbon density | 草本层碳密度 Herb layer carbon density | 凋落物层碳密度 Litter layer carbon density | 总碳密度 Total carbon density | ||||
---|---|---|---|---|---|---|---|
根碳密度 Root carbon density | 茎碳密度 Stem carbon density | 叶碳密度 Leaf carbon density | 当年枝碳密度 Annual branch carbon density | ||||
地上部分碳密度 Aboveground carbon density | 6.38 (0.50) | 0.62 (0.05) | 0.30 (0.05) | 0.35 (0.03) | 7.65 (0.57) | ||
地下部分碳密度 Belowground carbon density | 2.18 (0.19) | 0.31 (0.03) | 2.48 (0.18) | ||||
总碳密度 Total carbon density | 9.48 (0.77) | 0.66 (0.06) | 1.56 (0.11) | 11.70 (0.74) |
[1] | Araújo TM, Higuchi N, de Carvalho Júnior JADC (1999). Comparison of formulae for biomass content determina- tion in a tropical rain forest site in the state of Pará, Brazil.Forest Ecology and Management, 117, 43-52. |
[2] | Basuki T, van Laake P, Skidmore A, Hussin Y (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests.Forest Ecology and Management, 257, 1684-1694. |
[3] | Bloom AJ, Chapin FS, Mooney HA (1985). Resource limitation in plants—An economic analogy.Annual Review of Ecology and Systematics, 16, 363-392. |
[4] | Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997). Root biomass allocation in the world’s upland forests.Oecologia, 111, 1-11. |
[5] | Chun ML, Xie ZQ, Zhao CM, Fan DY, Xu XW, Ping L (2009). Litter production and nutrient characteristic of Abies far-gesii natural forest in Shennongjia Nature Reserve, Hubei, China. Chinese Journal of Plant Ecology, 33, 492-498. (in Chinese with English abstract)[春敏莉, 谢宗强, 赵常明, 樊大勇, 徐新武, 平亮 (2009). 神农架巴山冷杉天然林凋落量及养分特征. 植物生态学报, 33, 492-498.] |
[6] | Fang JY, Chen AP (2001). Dynamic forest biomass carbon pools in China and their significance.Acta Botanica Sinica, 43, 967-973. (in Chinese with English abstract)[方精云, 陈安平 (2001). 中国森林植被碳库的动态变化及其意义. 植物学报, 43, 967-973.] |
[7] | Fang JY, Guo ZD, Piao SL, Chen AP (2007). Estimation of carbon sink of terrestrial vegetation in 1981-2000.Science in China: Series D, 37, 804-812. (in Chinese)[方精云, 郭兆迪, 朴世龙, 陈安平 (2007). 1981-2000年中国陆地植被碳汇的估算. 中国科学D辑, 37, 804-812.] |
[8] | Gao Q, Yang XC, Yin CY, Liu Q (2014). Estimation of biomass allocation and carbon density in alpine dwarf shrubs in Garzê Zangzu Autonomous Prefecture of Sichuan Province.Chinese Journal of Plant Ecology, 38, 355-365. (in Chinese with English abstract)[高巧, 阳小成, 尹春英, 刘庆 (2014). 四川省甘孜藏族自治州高寒矮灌丛生物量分配及其碳密度的估算. 植物生态学报, 38, 355-365.] |
[9] | Goodale CL, Davidson EA (2002). Carbon cycle: Uncertain sinks in the shrubs.Nature, 418, 593-594. |
[10] | He JS, Wang QB, Hu D (1997). Studies on the biomass of topical shrubland and their regeneration capacity after cutting.Acta Phytoecologica Sinica, 21, 512-520. (in Chinese with English abstract)[贺金生, 王其兵, 胡东 (1997). 长江三峡地区典型灌丛的生物量及其再生能力. 植物生态学报, 21, 512-520.] |
[11] | Hou L (2009). Carbon Balance in Natural Secondary Pinus tabulaeformis Forest at Huoditang Forest Zone in the Qinling Mountains. PhD dissertation, Northwest A & F University, Yangling, Shaanxi. 30-32. (in Chinese with English abstract)[侯琳 (2009). 秦岭火地塘林区天然次生油松林碳平衡研究. 博士学位论文, 西北农林科技大学, 陕西杨凌. 30-32.] |
[12] | Hu HF, Wang ZH, Liu GH, Fu BJ (2006). Vegetation carbon storage of major shrublands in China.Journal of Plant Ecology (Chinese Version), 30, 539-544. (in Chinese with English abstract)[胡会峰, 王志恒, 刘国华, 傅伯杰 (2006). 中国主要灌丛植被碳储量. 植物生态学报, 30, 539-544.] |
[13] | Ketterings QM, Coe R, van Noordwijk M, Palm CA (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests.Forest Ecology and Management, 146, 199-209. |
[14] | Li JX (2015). Biodiversity Pattern and Ecosystem Productivity in Shrubland Across the Subtropical Region in China. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. 76-84. (in Chinese with English abstract).[李家湘 (2015). 亚热带灌丛生物多样性及其与生产力的关系. 博士学位论文, 中国科学院植物研究所, 北京. 76-84.] |
[15] | Li JX, Zhang X, Xie ZQ, Lu CF, Tu XY, Xun Y (2015). Community composition and structure of Rhododendron simsii shrubland in the Dawei Mountain, Hunan Province. Biodiversity Science, 23, 815-823. (in Chinese with English abstract)[李家湘, 张旭, 谢宗强, 卢从发, 涂向阳, 寻院 (2015). 湖南大围山杜鹃灌丛的群落组成及结构特征. 生物多样性, 23, 815-823.] |
[16] | Li XR, Liu JQ, Chen YR, Hu LL, Yang FT (2006). Aboveground biomass of three conifers in Qianyanzhou plantation.Chinese Journal of Applied Ecology, 17, 1382-1388. (in Chinese with English abstract)[李轩然, 刘琪璟, 陈永瑞, 胡理乐, 杨风亭 (2006). 千烟洲人工林主要树种地上生物量的估算. 应用生态学报, 17, 1382-1388.] |
[17] | Li Y, Zhang JG, Duan AG, Xiang CW (2010). Selection of biomass estimation models for Chinese fir plantation.Chinese Journal of Applied Ecology, 21, 3036-3046. (in Chinese with English abstract)[李燕, 张建国, 段爱国, 相聪伟 (2010). 杉木人工林生物量估算模型的选择. 应用生态学报, 21, 3036-3046.] |
[18] | Li YL, Gong HD (2015). Characteristics of community structure and biomass distribution of Rhododendron adenogynum shrub in Laojunshan Mountain. Journal of West China Forestry Science, 44, 121-124. (in Chinese with English abstract)[李云龙, 巩合德 (2015). 云南老君山腺房杜鹃灌丛群落特征及生物量分配特征研究. 西部林业科学, 44, 121-124.] |
[19] | Lü XT, Tang JW, He YC, Duan WG, Song JP, Xu HL, Zhu SZ (2007). Biomass and its allocation in tropical seasonal rain forest in Xishuangbanna, southwest China.Journal of Plant Ecology (Chinese Version), 31, 11-22. (in Chinese with English abstract)[吕晓涛, 唐建维, 何有才, 段文贵, 宋军平, 许海龙, 朱胜忠 (2007). 西双版纳热带季节雨林的生物量及其分配特征. 植物生态学报, 31, 11-22.] |
[20] | Mariessii A, Betule E, Toshihicoko H (1991). Growth patterns of tree height and stem diameter in populations ofAbies veitchi. Journal of Ecology, 79, 1085-1095. |
[21] | McCarthy MC, Enquist BJ (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation.Functional Ecology, 21, 713-720. |
[22] | McConnaughay K, Coleman J (1999). Biomass allocation in plants: Ontogeny or optimality? A test along three resource gradients.Ecology, 80, 2581-2593. |
[23] | [中华人民共和国环境保护部, 中国科学院 (. Cited: 2016-05-17. |
[24] | Mokany K, Raison RJ, Prokushkin AS (2006). Critical analysis of root:shoot ratios in terrestrial biomes.Global Change Biology, 12, 84-96. |
[25] | Montes N, Gauquelin T, Badri W, Bertaudiere V, Zaoui EH (2000). A non-destructive method for estimating above- ground forest biomass in threatened woodlands.Forest Ecology and Management, 130, 37-46. |
[26] | Návar J (2009). Allometric equations for tree species and carbon stocks for forests of northwestern Mexico.Forest Ecology and Management, 257, 427-434. |
[27] | Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control.New Phytologist, 193, 30-50. |
[28] | Spain AV (1984). Litterfall and the standing crop of litter in three topical Australian rain forests.Journal of Ecology, 72, 947-961. |
[29] | Sturm M, Racine C, Tape K (2001). Climate change: Increasing shrub abundance in the Arctic.Nature, 411, 546-547. |
[30] | Vourlitis GL, Zorba G, Pasquini SC, Mustard R (2007). Carbon and nitrogen storage in soil and litter of southern Californian semi-arid shrublands.Journal of arid Environments, 70, 164-173. |
[31] | Wang JS, Zhang CY, Fan XH, Zhao YZ (2011). Biomass allo- cation patterns and allometric models of Abies nephrolepis Maxim. Acta Ecologica Sinica, 31, 3918-3927. (in Chinese with English abstract)[汪金松, 张春雨, 范秀华, 赵亚洲 (2011). 臭冷杉生物量分配格局及异速生长模型. 生态学报, 31, 3918-3927.] |
[32] | Wang L (2009). Study of Biomass and Its Models of Main Shrub Community Type in Northwest Sichuan. Master de- gree dissertation, Sichuan Agricultural University, Ya’an, Sichuan. (in Chinese with English abstract)[王玲 (2009). 川西北地区主要灌丛类型生物量及其模型的研究. 硕士学位论文, 四川农业大学, 四川雅安.] |
[33] | Weiner J (2004). Allocation, plasticity and allometry in plants.Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215. |
[34] | Wei XP, Zhao CM, Wang GX, Chen BM, Cheng DL (2005). Estimation of above- and below-ground biomass of dominant desert plant species in an oasis-desert ecotone of Minqin, China.Acta Phytoecologica Sinica, 29, 878-883. (in Chinese with English abstract)[魏小平, 赵长明, 王根轩, 陈宝明, 程栋梁 (2005). 民勤荒漠绿洲过渡带优势植物地上和地下生物量的估测模型. 植物生态学报, 29, 878-883.] |
[35] | Woodwell GM, Whitaker RH, Reiners WA, Likens GE, Delwich CC, Botkin DB (1978). Biota and the world carbon budget.Science, 199, 141-146. |
[36] | Wu ZY (1980). Vegetation of China. Science Press, Beijing. (in Chinese).[吴征镒 (1980). 中国植被. 科学出版社, 北京.] |
[37] | Zhang GF, Song YC (2001). Studies on the biomass of Castanopsis sclerophylla + Quercus fabri shrubland in Tiantong Region, Zhejiang Province. Journal of Wuhan Botanical Research, 19, 101-106. (in Chinese with English abstract)[张光富, 宋永昌 (2001). 浙江天童苦槠+白栎灌丛群落的生物量研究. 武汉植物学研究, 19, 101-106.] |
[38] | Zhang Q, Li JX, Xie ZQ (2017). Effects of nitrogen addition on soil respiration of Rhododendron simsii shrubland in the subtropical mountainous areas of China. Chinese Journal of Plant Ecology, 41, 95-104. (in Chinese with English abstract)[张蔷, 李家湘, 谢宗强 (2017). 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响. 植物生态学报, 41, 95-104.] |
[39] | Zhang YR, Ouyang X, Li YL, Liu SZ, Zhang DQ, Zhou GY (2013). Shrub community characteristics and quantitative calculation of theirs biomass in southern China.Journal of Central South University of Forestry & Technology, 33(9), 71-79. (in Chinese with English abstract)[张亚茹, 欧阳旭, 李跃林, 刘世忠, 张德强, 周国逸 (2013). 我国南亚热带灌丛群落特征及生物量的定量计算. 中南林业科技大学学报, 33(9), 71-79.] |
[40] | Zheng SW, Tang M, Zou JH, Mu CL (2007). Summary of research on shrub biomass in China.Journal of Chengdu University (Natural Science Edition), 26, 189-192. (in Chinese with English abstract)[郑绍伟, 唐敏, 邹俊辉, 慕长龙 (2007). 灌木群落及生物量研究综述. 成都大学学报(自然科学版), 26, 189-192.] |
[41] | Zianis D, Mencuccini M (2004). On simplifying allometric analyses of forest biomass.Forest Ecology and Management, 187, 311-332. |
[1] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[2] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[3] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
[4] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[5] | HUANG Kuai-Kuai, HU Gang, PANG Qing-Ling, ZHANG Bei, HE Ye-Yong, HU Cong, XU Chao-Hao, ZHANG Zhong-Hua. Effects of grazing on species composition and community structure of shrub tussock in subtropical karst mountains, southwest China [J]. Chin J Plant Ecol, 2022, 46(11): 1350-1363. |
[6] | LIU Chao, LI Ping, WU Yun-Tao, PAN Sheng-Nan, JIA Zhou, LIU Ling-Li. Estimation of grassland aboveground biomass using digital photograph and canopy structure measurements [J]. Chin J Plant Ecol, 2022, 46(10): 1280-1288. |
[7] | CHEN Zhe, WANG Hao, WANG Jin-Zhou, SHI Hui-Jin, LIU Hui-Ying, HE Jin-Sheng. Estimation on seasonal dynamics of alpine grassland aboveground biomass using phenology camera-derived NDVI [J]. Chin J Plant Ecol, 2021, 45(5): 487-495. |
[8] | YUAN Feng, WANG Yan-Yan, LI Mao-Jin, JIANG Chuan-Yang, LIU He-Na, LI Kun-Ling, HONG Tao, WU Cheng-Zhen, CHEN Can. Dynamic characteristics of metal element content and return of Casuarina equisetifolia litter at different distances to the coastline [J]. Chin J Plant Ecol, 2020, 44(8): 819-827. |
[9] | MIAO Bai-Ling, LIANG Cun-Zhu, SHI Ya-Bo, LIANG Mao-Wei, LIU Zhong-Ling. Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(7): 557-565. |
[10] | ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis [J]. Chin J Plant Ecol, 2019, 43(6): 501-511. |
[11] | Qian YANG, Wei WANG, Hui ZENG. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2018, 42(4): 430-441. |
[12] | ZHANG Lu, HAO Bi-Tai, QI Li-Xue, LI Yan-Long, XU Hui-Min, YANG Li-Na, BAOYIN Taogetao. Dynamic responses of aboveground biomass and soil organic matter content to grassland restoration [J]. Chin J Plant Ecol, 2018, 42(3): 317-326. |
[13] | CEN Yu, WANG Cheng-Dong, ZHANG Zhen, REN Xia, LIU Mei-Zhen, YANG Fan. Spatial distributions of biomass and carbon density in natural grasslands of Hebei, China [J]. Chin J Plant Ecol, 2018, 42(3): 265-276. |
[14] | Yue YAN, Jian-Jun ZHU, Bin ZHANG, Yan-Jie ZHANG, Shun-Bao LU, Qing-Min PAN. A review of belowground biomass allocation and its response to global climatic change in grassland ecosystems [J]. Chin J Plan Ecolo, 2017, 41(5): 585-596. |
[15] | Xian YANG, Yan-Pei GUO, Anwar MOHHAMOT, Hong-Yan LIU, Wen-Hong MA, Shun-Li YU, Zhi-Yao TANG. Distribution of biomass in relation to environments in shrublands of temperate China [J]. Chin J Plant Ecol, 2017, 41(1): 22-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn