Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (11): 1350-1363.DOI: 10.17521/cjpe.2022.0069
Special Issue: 植被生态学
• Research Articles • Previous Articles Next Articles
HUANG Kuai-Kuai1,2, HU Gang1, PANG Qing-Ling1,2, ZHANG Bei1,2, HE Ye-Yong1,2, HU Cong1, XU Chao-Hao1, ZHANG Zhong-Hua1,*()
Received:
2022-02-21
Accepted:
2022-06-29
Online:
2022-11-20
Published:
2022-07-04
Contact:
*ZHANG Zhong-Hua(gxtczzh@126.com)
Supported by:
HUANG Kuai-Kuai, HU Gang, PANG Qing-Ling, ZHANG Bei, HE Ye-Yong, HU Cong, XU Chao-Hao, ZHANG Zhong-Hua. Effects of grazing on species composition and community structure of shrub tussock in subtropical karst mountains, southwest China[J]. Chin J Plant Ecol, 2022, 46(11): 1350-1363.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0069
Fig. 1 Total numbers of plant families, genera and species of shrub tussock under different grazing intensities in subtropical karst mountains in southwest China. A, Shrub layer. B, Herb layer. C, Total community. CK, none grazing; HG, heavy grazing; LG, light grazing; MG, moderate grazing.
Fig. 2 Non-metric multi-dimensional scaling (NMDS) ordination of shrub tussock plots and environmental factors in subtropical karst mountains of China. A, Shrub layer. B, Herb layer. C, Total community. CK, none grazing; HG, heavy grazing; LG, light grazing; MG, moderate grazing. AK, available potassium content; Alt, altitude; AN, alkali-hydrolyzable nitrogen content; AP, available phosphorus content; Asp, slope aspect; Bd, soil density; G, grazing intensity; RER, rock exposure rate; Slop, slope; SOM, soil organic matter content; SWC, soil water content; TCa, total calcium content; TK, total potassium content; TMg, total magnesium content; TN, total nitrogen content; TP, total phosphorus content; Tp, total soil porosity. The ellipse in the figure is the 60% confidence interval.
因子 Factor | 灌木层 Shrub layer | 草本层 Herb layer | 群落整体 Total community | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NMDS1 | NMDS2 | R2 | p | NMDS1 | NMDS2 | R2 | p | NMDS1 | NMDS2 | R2 | p | |
G | -0.387 | 0.922 | 0.330 | 0.001 | -0.692 | -0.722 | 0.151 | 0.001 | 0.764 | -0.646 | 0.156 | 0.001 |
RER | -0.587 | 0.810 | 0.146 | 0.001 | -0.111 | 0.994 | 0.021 | 0.303 | -0.059 | 0.998 | 0.013 | 0.492 |
Alt | 0.948 | 0.319 | 0.018 | 0.349 | 0.874 | 0.486 | 0.129 | 0.001 | -0.572 | 0.821 | 0.118 | 0.002 |
Slop | 0.797 | -0.604 | 0.032 | 0.177 | 0.310 | 0.951 | 0.059 | 0.049 | -0.713 | 0.701 | 0.061 | 0.037 |
Asp | -1.000 | -0.003 | 0.004 | 0.795 | -0.916 | 0.401 | 0.066 | 0.028 | -0.414 | -0.910 | 0.087 | 0.008 |
SOM | -0.521 | 0.853 | 0.006 | 0.695 | 0.868 | -0.496 | 0.220 | 0.001 | 0.481 | 0.877 | 0.295 | 0.001 |
TN | -0.329 | 0.944 | 0.015 | 0.409 | 0.816 | -0.578 | 0.163 | 0.001 | 0.590 | 0.808 | 0.309 | 0.001 |
TP | 0.386 | 0.923 | 0.038 | 0.104 | 0.976 | 0.218 | 0.005 | 0.732 | -0.681 | 0.732 | 0.008 | 0.670 |
TK | -0.939 | -0.345 | 0.001 | 0.974 | 0.774 | 0.634 | 0.091 | 0.006 | -0.824 | 0.566 | 0.056 | 0.042 |
AN | -0.384 | 0.923 | 0.018 | 0.367 | 0.804 | -0.594 | 0.160 | 0.001 | 0.601 | 0.799 | 0.315 | 0.001 |
AP | -0.794 | 0.608 | 0.019 | 0.340 | 0.995 | 0.101 | 0.068 | 0.023 | -0.308 | 0.951 | 0.060 | 0.029 |
AK | 0.574 | 0.819 | 0.049 | 0.055 | 0.834 | -0.551 | 0.017 | 0.377 | 0.615 | 0.789 | 0.077 | 0.010 |
pH | 0.924 | -0.383 | 0.045 | 0.073 | 0.581 | 0.814 | 0.156 | 0.001 | -0.371 | 0.929 | 0.170 | 0.001 |
TCa | 0.941 | 0.337 | 0.070 | 0.020 | 0.722 | 0.692 | 0.042 | 0.076 | -0.132 | 0.991 | 0.073 | 0.009 |
TMg | 0.978 | 0.208 | 0.016 | 0.352 | 0.996 | 0.094 | 0.010 | 0.583 | -0.125 | 0.992 | 0.007 | 0.681 |
Bd | -0.469 | -0.883 | 0.065 | 0.031 | -0.602 | 0.798 | 0.040 | 0.085 | -0.765 | -0.644 | 0.160 | 0.001 |
Tp | 0.471 | 0.882 | 0.065 | 0.025 | 0.606 | -0.795 | 0.040 | 0.090 | 0.766 | 0.643 | 0.159 | 0.001 |
SWC | 0.269 | 0.963 | 0.034 | 0.171 | 0.504 | -0.864 | 0.196 | 0.001 | 0.860 | 0.510 | 0.276 | 0.001 |
Table 1 Correlation coefficients of non-metric multi-dimensional scaling (NMDS) ordination axes and environmental factors of shrub tussock in subtropical karst mountains of China
因子 Factor | 灌木层 Shrub layer | 草本层 Herb layer | 群落整体 Total community | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NMDS1 | NMDS2 | R2 | p | NMDS1 | NMDS2 | R2 | p | NMDS1 | NMDS2 | R2 | p | |
G | -0.387 | 0.922 | 0.330 | 0.001 | -0.692 | -0.722 | 0.151 | 0.001 | 0.764 | -0.646 | 0.156 | 0.001 |
RER | -0.587 | 0.810 | 0.146 | 0.001 | -0.111 | 0.994 | 0.021 | 0.303 | -0.059 | 0.998 | 0.013 | 0.492 |
Alt | 0.948 | 0.319 | 0.018 | 0.349 | 0.874 | 0.486 | 0.129 | 0.001 | -0.572 | 0.821 | 0.118 | 0.002 |
Slop | 0.797 | -0.604 | 0.032 | 0.177 | 0.310 | 0.951 | 0.059 | 0.049 | -0.713 | 0.701 | 0.061 | 0.037 |
Asp | -1.000 | -0.003 | 0.004 | 0.795 | -0.916 | 0.401 | 0.066 | 0.028 | -0.414 | -0.910 | 0.087 | 0.008 |
SOM | -0.521 | 0.853 | 0.006 | 0.695 | 0.868 | -0.496 | 0.220 | 0.001 | 0.481 | 0.877 | 0.295 | 0.001 |
TN | -0.329 | 0.944 | 0.015 | 0.409 | 0.816 | -0.578 | 0.163 | 0.001 | 0.590 | 0.808 | 0.309 | 0.001 |
TP | 0.386 | 0.923 | 0.038 | 0.104 | 0.976 | 0.218 | 0.005 | 0.732 | -0.681 | 0.732 | 0.008 | 0.670 |
TK | -0.939 | -0.345 | 0.001 | 0.974 | 0.774 | 0.634 | 0.091 | 0.006 | -0.824 | 0.566 | 0.056 | 0.042 |
AN | -0.384 | 0.923 | 0.018 | 0.367 | 0.804 | -0.594 | 0.160 | 0.001 | 0.601 | 0.799 | 0.315 | 0.001 |
AP | -0.794 | 0.608 | 0.019 | 0.340 | 0.995 | 0.101 | 0.068 | 0.023 | -0.308 | 0.951 | 0.060 | 0.029 |
AK | 0.574 | 0.819 | 0.049 | 0.055 | 0.834 | -0.551 | 0.017 | 0.377 | 0.615 | 0.789 | 0.077 | 0.010 |
pH | 0.924 | -0.383 | 0.045 | 0.073 | 0.581 | 0.814 | 0.156 | 0.001 | -0.371 | 0.929 | 0.170 | 0.001 |
TCa | 0.941 | 0.337 | 0.070 | 0.020 | 0.722 | 0.692 | 0.042 | 0.076 | -0.132 | 0.991 | 0.073 | 0.009 |
TMg | 0.978 | 0.208 | 0.016 | 0.352 | 0.996 | 0.094 | 0.010 | 0.583 | -0.125 | 0.992 | 0.007 | 0.681 |
Bd | -0.469 | -0.883 | 0.065 | 0.031 | -0.602 | 0.798 | 0.040 | 0.085 | -0.765 | -0.644 | 0.160 | 0.001 |
Tp | 0.471 | 0.882 | 0.065 | 0.025 | 0.606 | -0.795 | 0.040 | 0.090 | 0.766 | 0.643 | 0.159 | 0.001 |
SWC | 0.269 | 0.963 | 0.034 | 0.171 | 0.504 | -0.864 | 0.196 | 0.001 | 0.860 | 0.510 | 0.276 | 0.001 |
Fig. 3 Changes of community height, coverage and aboveground biomass of shrub tussock under different grazing intensities in subtropical karst mountains of China (mean ± SE). CK, none grazing; HG, heavy grazing; LG, light grazing; MG, moderate grazing. Different lowercase letters show significant difference between different grazing intensities (p < 0.05).
[1] |
Abbas S, Nichol JE, Zhang JL, Fischer GA (2019). The accumulation of species and recovery of species composition along a 70 year succession in a tropical secondary forest. Ecological Indicators, 106, 105524. DOI: 10.1016/j.ecolind. 2019.105524.
DOI |
[2] |
Bakhshi J, Javadi SA, Tavili A, Arzani H (2020). Study on the effects of different levels of grazing and exclosure on vegetation and soil properties in semi-arid rangelands of Iran. Acta Ecologica Sinica, 40, 425-431.
DOI URL |
[3] |
Celaya R, Jáuregui BM, Rosa García R, Benavides R, García U, Osoro K (2010). Changes in heathland vegetation under goat grazing: effects of breed and stocking rate. Applied Vegetation Science, 13, 125-134.
DOI URL |
[4] | Cui HJ, Wang GX, Yang Y, Yang Y (2015). Variation in community characteristics and its influencing factors of alpine grasslands along an elevation gradient. Chinese Journal of Ecology, 34, 3016-3023. |
[ 崔海军, 王根绪, 杨燕, 杨阳 (2015). 高山草地植物群落数量特征沿海拔梯度变化及其影响因素. 生态学杂志, 34, 3016-3023.] | |
[5] | Deng BY, Ma YL, Xu SD, Mo JF (2012). Dynamic changes and cause analysis of rocky desertification in karst areas of Mashan County in Guangxi. Guangxi Forestry Science, 41, 365-369. |
[ 邓必玉, 马一琳, 许仕道, 莫剑锋 (2012). 广西马山县岩溶土地石漠化动态变化情况及变化原因分析. 广西林业科学, 41, 365-369.] | |
[6] | Deng JM, Tang XM, Shao KQ, Fei L, Qi ZF, Pan H, Wu CZ (2016). Application of NMDS to analysis of phytoplankton community: a case study of Qinshui River. Journal of Ecology and Rural Environment, 32(1), 150-156. |
[ 邓建明, 汤祥明, 邵克强, 费磊, 漆志飞, 潘辉, 吴承志 (2016). 非度量多维标度在亲水河浮游植物群落分析中的应用. 生态与农村环境学报, 32(1), 150-156.] | |
[7] |
Díaz S, Lavorel S, Mcintyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007). Plant trait responses to grazing—A global synthesis. Global Change Biology, 13, 313-341.
DOI URL |
[8] | Dong QM, Zhao XQ, Ma YS, Shi JJ, Wang YL, Li SX, Yang SH, Sheng L (2011). Effects of yak grazing intensity on quantitative characteristics of plant community in a two- seasonal rotation pasture in Kobresia parva meadow. Chinese Journal of Ecology, 30, 2233-2239. |
[ 董全民, 赵新全, 马玉寿, 施建军, 王彦龙, 李世雄, 杨时海, 盛丽 (2011). 牦牛放牧强度对小嵩草草甸两季轮牧草场植物群落数量特征的影响. 生态学杂志, 30, 2233-2239.] | |
[9] | Elton CS (1958). The reasons for conservation//Elton CS. The Ecology of Invasions by Animals and Plants. Springer, Boston. 143-153. |
[10] |
Fang JY, Wang XP, Tang ZY (2009). Local and regional processes control species richness of plant communities: the species pool hypothesis. Biodiversity Science, 17, 605-612.
DOI URL |
[ 方精云, 王襄平, 唐志尧 (2009). 局域和区域过程共同控制着群落的物种多样性: 种库假说. 生物多样性, 17, 605-612.]
DOI |
|
[11] |
Gao J, Carmel Y (2020). A global meta-analysis of grazing effects on plant richness. Agriculture, Ecosystems & Environment, 302, 107072. DOI: 10.1016/j.agee.2020.107072.
DOI |
[12] |
García RR, Celaya R, García U, Osoro K (2012). Goat grazing, its interactions with other herbivores and biodiversity conservation issues. Small Ruminant Research, 107, 49-64.
DOI URL |
[13] |
Geekiyanage N, Goodale UM, Cao KF, Kitajima K (2019). Plant ecology of tropical and subtropical karst ecosystems. Biotropica, 51, 626-640.
DOI |
[14] |
Guo K, Liu CC, Dong M (2011). Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China. Chinese Journal of Plant Ecology, 35, 991-999.
DOI |
[ 郭柯, 刘长成, 董鸣 (2011). 我国西南喀斯特植物生态适应性与石漠化治理. 植物生态学报, 35, 991-999.]
DOI |
|
[15] |
Herrero-Jáuregui C, Oesterheld M (2018). Effects of grazing intensity on plant richness and diversity, a meta-analysis. Oikos, 127, 757-766.
DOI URL |
[16] | Hou XY (2016). Advances and prospects of grassland plant basic biology research. China Basic Science, 18(2), 67-76. |
[ 侯向阳 (2016). 草原植物基础生物学研究进展与展望. 中国基础科学, 18(2), 67-76.] | |
[17] | Jiang JS, Zou ZM, Peng LJ (2008). Succession of shrubby grassland of rocky mountain and its improvement and utilization in karst areas. Pratacultural Science, 25(9), 109-114. |
[ 蒋建生, 邹知明, 彭丽娟 (2008). 岩溶地区石山灌草丛草地演替及其培育和利用. 草业科学, 25(9), 109-114.] | |
[18] | Jiang ZC, Li XK, Zeng FP, Qiu SJ, Deng Y, Luo WQ, Qin XQ, Xie YQ, Lan FN (2009). Study of fragile ecosystem reconstruction technology in the karst peak-cluster mountain. Acta Geoscientica Sinica, 30, 155-166. |
[ 蒋忠诚, 李先琨, 曾馥平, 邱泗杰, 邓艳, 罗为群, 覃小群, 谢运球, 蓝芙宁 (2009). 岩溶峰丛山地脆弱生态系统重建技术研究. 地球学报, 30, 155-166.] | |
[19] |
Kouba Y, Merdas S, Mostephaoui T, Saadali B, Chenchouni H (2021). Plant community composition and structure under short-term grazing exclusion in steppic arid rangelands. Ecological Indicators, 120, 106910. DOI: 10.1016/j.ecolind. 2020.106910.
DOI |
[20] |
Kruskal JB (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29, 115-129.
DOI URL |
[21] | Li HS, Pan H, Chen M (2002). Rational utilization of shrubby grassland in karst. Grassland of China, 24(2), 15-19. |
[ 李洪曙, 潘红, 陈莓 (2002). 喀斯特灌丛草场的合理放牧利用. 中国草地, 24(2), 15-19.] | |
[22] |
Li WH, Zheng SX, Bai YF (2014). Effects of grazing intensity and topography on species abundance distribution in a typical steppe of Inner Mongolia. Chinese Journal of Plant Ecology, 38, 178-187.
DOI URL |
[ 李文怀, 郑淑霞, 白永飞 (2014). 放牧强度和地形对内蒙古典型草原物种多度分布的影响. 植物生态学报, 38, 178-187.]
DOI |
|
[23] |
Li XL, Hou XY, Wu XH, Sa RL, Ji L, Chen HJ, Liu ZY, Ding Y (2014). Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe. Chinese Journal of Plant Ecology, 38, 440-451.
DOI URL |
[ 李西良, 侯向阳, 吴新宏, 萨茹拉, 纪磊, 陈海军, 刘志英, 丁勇 (2014). 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报, 38, 440-451.]
DOI |
|
[24] |
Li XL, Liu ZY, Hou XY, Wu XH, Wang Z, Hu J, Wu ZN (2015). Plant functional traits and their trade-offs in response to grazing: a review. Chinese Bulletin of Botany, 50, 159-170.
DOI URL |
[ 李西良, 刘志英, 侯向阳, 吴新宏, 王珍, 胡静, 武自念 (2015). 放牧对草原植物功能性状及其权衡关系的调控. 植物学报, 50, 159-170.]
DOI |
|
[25] | Lin J, Tao YR, Xu QH, Fang BL (1994). Study on daily food consumption of grazing goats in Zhejiang Province. Journal of Grass and Livestock, 47(1), 18-21. |
[ 林嘉, 陶岳荣, 徐庆和, 方百灵 (1994). 浙江山羊放牧日食量测定的研究. 草与畜杂志, 47(1), 18-21.] | |
[26] | Liu CC, Wei YF, Liu YG, Guo K (2009). Biomass of canopy and shrub layers of karst forests in Pudding, Guizhou, China. Chinese Journal of Plant Ecology, 33, 698-705. |
[ 刘长成, 魏雅芬, 刘玉国, 郭柯 (2009). 贵州普定喀斯特次生林乔灌层地上生物量. 植物生态学报, 33, 698-705.]
DOI |
|
[27] | Liu HL, Lu WH, Chen C (2011). Research progress of grassland degraded succession and diagnosis. Acta Agrestia Sinica, 19, 865-871. |
[ 刘洪来, 鲁为华, 陈超 (2011). 草地退化演替过程及诊断研究进展. 草地学报, 19, 865-871.]
DOI |
|
[28] | Liu JH, Huang BZ, Luo FC (2006). The damage and control measures of Eupatorium odoratum. Pratacultural Science, 23(10), 73-77. |
[ 刘金海, 黄必志, 罗富成 (2006). 飞机草的危害及防治措施简介. 草业科学, 23(10), 73-77.] | |
[29] | Liu YG, Liu CC, Wei YF, Liu YG, Guo K (2011). Species composition and community structure at different vegetation successional stages in Puding, Guizhou Province, China. Chinese Journal of Plant Ecology, 35, 1009-1018. |
[ 刘玉国, 刘长成, 魏雅芬, 刘永刚, 郭柯 (2011). 贵州省普定县不同植被演替阶段的物种组成与群落结构特征. 植物生态学报, 35, 1009-1018.]
DOI |
|
[30] | Mao ZH, Zhu JJ (2006). Effects of disturbances on species composition and diversity of plant communities. Acta Ecologica Sinica, 26, 2695-2701. |
[ 毛志宏, 朱教君 (2006). 干扰对植物群落物种组成及多样性的影响. 生态学报, 26, 2695-2701.] | |
[31] | Miao FH, Xue R, Guo ZG, Shen YY (2016). Influence of yak grazing on plant niche characteristics in alpine meadow communities at the northeastern edge of the Qinghai- Tibetan Plateau. Acta Prataculturae Sinica, 25(1), 88-97. |
[ 苗福泓, 薛冉, 郭正刚, 沈禹颖 (2016). 青藏高原东北边缘高寒草甸植物种群生态位特征对牦牛放牧的响应. 草业学报, 25(1), 88-97.] | |
[32] |
Michaels J, Batzer E, Harrison S, Eviner VT (2021). Grazing affects vegetation diversity and heterogeneity in California vernal pools. Ecology, 102, e03295. DOI: 10.1002/ecy.3295.
DOI |
[33] |
Milchunas DG, Lauenroth WK (1993). Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 63, 327-366.
DOI URL |
[34] |
Niu KC, He JS, Zhang ST, Lechowicz MJ (2016). Grazing increases functional richness but not functional divergence in Tibetan alpine meadow plant communities. Biodiversity and Conservation, 25, 2441-2452.
DOI URL |
[35] | Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, et al. (2022). Vegan: community ecology package. [2022-02-01]. https://CRAN.R-project.org/package=vegan. |
[36] |
Öllerer K, Varga A, Kirby K, Demeter L, Biró M, Bölöni J, Molnár Z (2019). Beyond the obvious impact of domestic livestock grazing on temperate forest vegetation—A global review. Biological Conservation, 237, 209-219.
DOI URL |
[37] |
Riesch F, Tonn B, Stroh HG, Meißner M, Balkenhol N, Isselstein J (2020). Grazing by wild red deer maintains characteristic vegetation of semi-natural open habitats: evidence from a three-year exclusion experiment. Applied Vegetation Science, 23, 522-538.
DOI URL |
[38] |
Salgado-Luarte C, Escobedo VM, Stotz GC, Rios RS, Arancio G, Gianoli E (2019). Goat grazing reduces diversity and leads to functional, taxonomic, and phylogenetic homogenization in an arid shrubland. Land Degradation & Development, 30, 178-189.
DOI URL |
[39] | Shan D, Zhu YJ, Liu YS, Shi ZJ, Yang XH (2019). Differentiation of vegetation types and biodiversity in the southern edge of Hulunbuir grassland. Chinese Journal of Ecology, 38, 619-626. |
[ 山丹, 朱媛君, 刘艳书, 时忠杰, 杨晓晖 (2019). 呼伦贝尔草原南缘植被类型分异及生物多样性特征. 生态学杂志, 38, 619-626.] | |
[40] |
Škornik S, Vidrih M, Kaligarič M (2010). The effect of grazing pressure on species richness, composition and productivity in North Adriatic karst pastures. Plant Biosystems, 144, 355-364.
DOI URL |
[41] | Song TQ, Peng WX, Du H, Wang KL, Zeng FP (2014). Occurrence, spatial-temporal dynamics and regulation strategies of karst rocky desertification in southwest China. Acta Ecologica Sinica, 34, 5328-5341. |
[ 宋同清, 彭晚霞, 杜虎, 王克林, 曾馥平 (2014). 中国西南喀斯特石漠化时空演变特征、发生机制与调控对策. 生态学报, 34, 5328-5341.] | |
[42] |
Song TQ, Peng WX, Zeng FP, Wang KL, Cao HL, Li XK, Qin WG, Tan WN, Liu L (2010). Community composition and biodiversity characteristics of forests in karst cluster-peak- depression region. Biodiversity Science, 18, 355-364.
DOI URL |
[ 宋同清, 彭晚霞, 曾馥平, 王克林, 曹洪麟, 李先琨, 覃文更, 谭卫宁, 刘璐 (2010). 喀斯特峰丛洼地不同类型森林群落的组成与生物多样性特征. 生物多样性, 18, 355-364.]
DOI |
|
[43] |
Souther S, Loeser M, Crews TE, Sisk T (2019). Complex response of vegetation to grazing suggests need for coordinated, landscape-level approaches to grazing management. Global Ecology and Conservation, 20, e00770. DOI: 10.1016/j.gecco.2019.e00770.
DOI |
[44] | Sun HQ, Zhou He, Wang P (1999). Progress on grassland degenerated succession. Grassland of China, (1), 51-56. |
[ 孙海群, 周禾, 王培 (1999). 草地退化演替研究进展. 中国草地, (1), 51-56.] | |
[45] |
Tong XW, Brandt M, Yue YM, Horion S, Wang KL, Keersmaecker WD, Tian F, Schurgers G, Xiao XM, Luo YQ, Chen C, Myneni R, Shi Z, Chen HS, Fensholt R (2018). Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, 1, 44-50.
DOI URL |
[46] |
Török P, Penksza K, Tóth E, Kelemen A, Sonkoly J, Tóthmérész B (2018). Vegetation type and grazing intensity jointly shape grazing effects on grassland biodiversity. Ecology and Evolution, 8, 10326-10335.
DOI PMID |
[47] | Wan LQ, Li XL, Chen WW, He F, Wan JC, Zhao Y, Wu WD (2012). Effects of different stocking rates on vegetation traits of cultivated pastures in southern China. Southwest China Journal of Agricultural Sciences, 25, 290-294. |
[ 万里强, 李向林, 陈玮玮, 何峰, 万江春, 赵云, 吴维达 (2012). 不同放牧强度对南方人工草地植被特征的影响. 西南农业学报, 25, 290-294.] | |
[48] | Wan LQ, Li XL, Su JK, Bai JR (2000). Study on dietary composition and preference of goats on a shrubland in the Three Gorges Region of Yangtz River. Acta Agrestia Sinica, 8, 186-192. |
[ 万里强, 李向林, 苏加楷, 白静仁 (2000). 三峡地区灌丛草地放牧山羊日粮组成及其喜食性. 草地学报, 8, 186-192.]
DOI |
|
[49] | Wan LQ, Li XL, Su JK, Bai JR (2003). Advance in studies on grazing and utilization of shrubby grasslands by goats. Grassland of China, 25(6), 45-50. |
[ 万里强, 李向林, 苏加楷, 白静仁 (2003). 灌丛草地山羊放牧利用研究进展. 中国草地, 25(6), 45-50.] | |
[50] | Wang B, Li J, Jiang WW, Zhao L, Gu S (2012). Impacts of the rangeland degradation on CO2 flux and the underlying mechanisms in the Three-River Source Region on the Qinghai-Tibetan Plateau. China Environmental Science, 32, 1764-1771. |
[ 王斌, 李洁, 姜微微, 赵亮, 古松 (2012). 草地退化对三江源区高寒草甸生态系统CO2通量的影响及其原因. 中国环境科学, 32, 1764-1771.] | |
[51] | Wang DL, Zhu QS, Huang BL (2003). Changes of vegetation features of rocky desertification process in karst area of Guizhou. Journal of Nanjing Forestry University (Natural Sciences Edition), 27(3), 26-30. |
[ 王德炉, 朱守谦, 黄宝龙 (2003). 贵州喀斯特区石漠化过程中植被特征的变化. 南京林业大学学报(自然科学版), 27(3), 26-30.] | |
[52] |
Wang KL, Zhang CH, Chen HS, Yue YM, Zhang W, Zhang MY, Qi XK, Fu ZY (2019). Karst landscapes of China: patterns, ecosystem processes and services. Landscape Ecology, 34, 2743-2763.
DOI |
[53] | Wang L (2010). Behavioral Adaptive Mechanisms of Large Herbivore Foraging in Response to Diversity and Spatial Pattern of Plants. PhD dissertation, Northeast Normal University, Changchun. 1-16. |
[ 王岭 (2010). 大型草食动物采食对植物多样性与空间格局的响应及行为适应机制. 博士学位论文, 东北师范大学, 长春. 1-16.] | |
[54] | Wang SJ, Li YB, Li RL (2003). Karst rocky desertification: formation background, evolution and comprehensive taming. Quaternary Sciences, 23, 657-666. |
[ 王世杰, 李阳兵, 李瑞玲 (2003). 喀斯特石漠化的形成背景、演化与治理. 第四纪研究, 23, 657-666.] | |
[55] | Wen L, Song TQ, Du H, Wang KL, Peng WX, Zeng FP, Zeng ZX, He TG (2015). The succession characteristics and its driving mechanism of plant community in karst region, Southwest China. Acta Ecologica Sinica, 35, 5822-5833. |
[ 文丽, 宋同清, 杜虎, 王克林, 彭晚霞, 曾馥平, 曾昭霞, 何铁光 (2015). 中国西南喀斯特植物群落演替特征及驱动机制. 生态学报, 35, 5822-5833.] | |
[56] |
Wu LH, Wang SJ, Bai XY, Tian YC, Luo GJ, Wang JF, Li Q, Chen F, Deng YH, Yang YJ, Hu ZY (2020). Climate change weakens the positive effect of human activities on karst vegetation productivity restoration in southern China. Ecological Indicators, 115, 106392. DOI: 10.1016/j.ecolind. 2020.106392.
DOI |
[57] |
Xu YJ, Lin DM, Shi M, Xie YJ, Wang YZ, Guan ZH, Xiang JY (2017). Spatial heterogeneity and its causes in evergreen broad-leaved forests in the Ailao Mountains, Yunnan Province. Biodiversity Science, 25, 23-33.
DOI |
[ 徐远杰, 林敦梅, 石明, 谢妍洁, 王逸之, 管振华, 向建英 (2017). 云南哀牢山常绿阔叶林的空间分异及其影响因素. 生物多样性, 25, 23-33.]
DOI |
|
[58] | Yang H, Bai YF, Li YH, Han XG (2009). Response of plant species composition and community structure to long-term grazing in typical steppe of Inner Mongolia. Chinese Journal of Plant Ecology, 33, 499-507. |
[ 杨浩, 白永飞, 李永宏, 韩兴国 (2009). 内蒙古典型草原物种组成和群落结构对长期放牧的响应. 植物生态学报, 33, 499-507.]
DOI |
|
[59] | Yang LM, Li JD, Yang YF (1999a). β-diversity of grassland communities along gradient of grazing disturbance. Chinese Journal of Applied Ecology, 10, 442-446. |
[ 杨利民, 李建东, 杨允菲 (1999a). 草地群落放牧干扰梯度β多样性研究. 应用生态学报, 10, 442-446.] | |
[60] | Yang LM, Wang RZ, Li JD (1999b). Effect of grazing disturbance gradient on plant diversity of main steppe grassland in the Songnen Plain. Acta Agrestla Sinica, 7, 8-16. |
[ 杨利民, 王仁忠, 李建东 (1999b). 松嫩平原主要草原群落放牧干扰梯度对植物多样性的影响. 草地学报, 7, 8-16.] | |
[61] |
Yu M, Zhou ZY, Kang FF, Ouyang S, Mi XC, Sun JX (2013). Gradient analysis and environmental interpretation of understory herb-layer communities in Xiaoshegou of Lingkong Mountain, Shanxi, China. Chinese Journal of Plant Ecology, 37, 373-383.
DOI |
[ 余敏, 周志勇, 康峰峰, 欧阳帅, 米湘成, 孙建新 (2013). 山西灵空山小蛇沟林下草本层植物群落梯度分析及环境解释. 植物生态学报, 37, 373-383.]
DOI |
|
[62] |
Yuan WP, Cai WW, Liu D, Dong WJ (2014). Satellite-based vegetation production models of terrestrial ecosystem: an overview. Advances in Earth Science, 29, 541-550.
DOI |
[ 袁文平, 蔡文文, 刘丹, 董文杰 (2014). 陆地生态系统植被生产力遥感模型研究进展. 地球科学进展, 29, 541-550.]
DOI |
|
[63] |
Zeng FP, Peng WX, Song TQ, Wang KL, Wu HY, Song XJ, Zeng ZX (2007). Changes in vegetation after 22 years’ natural restoration in the karst disturbed area in Northwest Guangxi. Acta Ecologica Sinica, 27, 5110-5119.
DOI URL |
[ 曾馥平, 彭晚霞, 宋同清, 王克林, 吴海勇, 宋希娟, 曾昭霞(2007). 桂西北喀斯特人为干扰区植被自然恢复22年后群落特征. 生态学报, 27, 5110-5119.] | |
[64] |
Zhang DY, Jiang XH (1997). A hypothesis for the origin and maintenance of within-community species diversity. Biodiversity Science, 5, 161-167.
DOI URL |
[ 张大勇, 姜新华 (1997). 群落内物种多样性发生与维持的一个假说. 生物多样性, 5, 161-167.] | |
[65] | Zhang F, Du H, Zeng FP, Peng WX, Song TQ (2020). Changes of woody community structure and diversity in karst peak- cluster depressions in southwest China. Acta Ecologica Sinica, 40, 4094-4104. |
[ 张芳, 杜虎, 曾馥平, 彭晚霞, 宋同清 (2020). 西南喀斯特峰丛洼地木本植物群落结构与多样性变化. 生态学报, 40, 4094-4104.] | |
[66] |
Zhang HY, Fan JW, Cao W, Zhong HP, Harris W, Gong GL, Zhang YX (2018). Changes in multiple ecosystem services between 2000 and 2013 and their driving factors in the Grazing Withdrawal Program, China. Ecological Engineering, 116, 67-79.
DOI URL |
[67] | Zhang JL (2018). Plantlist: looking up the status of plant scientific names based on the plant list database. [2022-02-01]. https://github.com/helixcn/plantlist/. |
[68] |
Zhang YJ, Zhu JT, Shen RN, Wang L (2020). Research progress on the effects of grazing on grassland ecosystem. Chinese Journal of Plant Ecology, 44, 553-564.
DOI URL |
[ 张扬建, 朱军涛, 沈若楠, 王荔 (2020). 放牧对草地生态系统影响的研究进展. 植物生态学报, 44, 553-564.]
DOI |
|
[69] | Zhang ZH, Hu G, Liu LB, Cheng AY, Hu C, Wu YY, Ni J (2022). Species composition and community structure of a north subtropical karst secondary forest in central Guizhou Province, China. Acta Ecologica Sinica, 42, 742-754. |
[ 张忠华, 胡刚, 刘立斌, 程安云, 胡聪, 吴洋洋, 倪健(2022). 黔中北亚热带喀斯特次生林动态监测样地: 物种组成与群落结构. 生态学报, 42, 742-754.] | |
[70] | Zhao BB, Niu KC, Du GZ (2009). The effect of grazing on above-ground biomass allocation of 27 plant species in an alpine meadow plant community in Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 29, 1596-1606. |
[ 赵彬彬, 牛克昌, 杜国祯 (2009). 放牧对青藏高原东缘高寒草甸群落27种植物地上生物量分配的影响. 生态学报, 29, 1596-1606.] | |
[71] | Zhao GD, Chen J, Xu GX, Ma FQ, Yang HG, Shi ZM, Liu S, Xiong K, Zhang Y, Xue Q, Liu QL (2021). Species composition and community structure of Miyaluo subalpine dark coniferous forest dynamic plot in western Sichuan, China. Chinese Journal of Ecology, 40, 3501-3511. |
[ 赵广东, 陈健, 许格希, 马凡强, 杨洪国, 史作民, 刘顺, 熊凯, 张运, 薛樵, 刘千里 (2021). 川西米亚罗亚高山暗针叶林动态样地物种组成与群落结构. 生态学杂志, 40, 3501-3511.] | |
[72] | Zhao SL, Zuo XA, Zhang TH, Lyu P, Yue P, Zhang J (2020). Response of relationship between community species diversity and aboveground biomass to grazing intensity in the Urat desert steppe in north China. Arid Zone Research, 37, 168-177. |
[ 赵生龙, 左小安, 张铜会, 吕朋, 岳平, 张晶 (2020). 乌拉特荒漠草原群落物种多样性和生物量关系对放牧强度的响应. 干旱区研究, 37, 168-177.] | |
[73] | Zhou HK, Zhao XQ, Tang YH, Zhou L, Liu W, Yu L (2004). Effect of long-term grazing on alpine shrub vegetation in Qinghai-Tibet Plateau. Grassland of China, 26(6), 1-11. |
[ 周华坤, 赵新全, 唐艳鸿, 周立, 刘伟, 于龙 (2004). 长期放牧对青藏高原高寒灌丛植被的影响. 中国草地, 26(6), 1-11.] | |
[74] | Zou ZM, Jiang JS, Song T (2012). Take full advantage of shrubby grassland resources in rocky mountain for the development of goats competitive industries in Mashan County of Guangxi. Animal Husbandry and Feed Science, 33(5-6), 66-69. |
[ 邹知明, 蒋建生, 宋涛 (2012). 充分利用石山灌草丛草地资源发展广西马山县山羊优势产业. 畜牧与饲料科学, 33(5-6), 66-69.] |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[3] | DONG Shao-Qiong, HOU Dong-Jie, QU Xiao-Yun, GUO Ke. A plot-based dataset of plant communities on the Qaidam Basin, China [J]. Chin J Plant Ecol, 2024, 48(4): 534-540. |
[4] | SACHURA , ZHANG Xia, ZHU Lin, KANG Saruul. Leaf anatomical changes of Cleistogenes songorica under long-term grazing with different intensities in a desert steppe [J]. Chin J Plant Ecol, 2024, 48(3): 331-340. |
[5] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[6] | XUE Zhi-Fang, LIU Tong, WANG Li-Sheng, SONG Ji-Hu, CHEN Hong-Yang, XU Ling, YUAN Ye. Community structure and characteristics of plain valley forests in main tributaries of Ertix River Basin, China [J]. Chin J Plant Ecol, 2024, 48(3): 390-402. |
[7] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[8] | XIAO Lan, DONG Biao, ZHANG Lin-Ting, DENG Chuan-Yuan, LI Xia, JIANG De-Gang, LIN Yong-Ming. Characteristics of main plant communities on uninhabited islands in Bohai Sea, China [J]. Chin J Plant Ecol, 2024, 48(1): 127-134. |
[9] | WANG Yu-Ting, LIU Xu-Jing, TANG Chi-Fei, CHEN Wei-Yu, WANG Mei-Juan, XIANG Song-Zhu, LIU Mei, YANG Lin-Sen, FU Qiang, YAN Zhao-Gui, MENG Hong-Jie. Community characteristics and population dynamics of Acer miaotaiense, an extremely small population species in Shennongjia, China [J]. Chin J Plant Ecol, 2024, 48(1): 80-91. |
[10] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[11] | REN Yue, GAO Guang-Lei, DING Guo-Dong, ZHANG Ying, ZHAO Pei-Shan, LIU Ye. Species composition and driving factors of the ectomycorrhizal fungal community associated with Pinus sylvestris var. mongolica at different growth periods [J]. Chin J Plant Ecol, 2023, 47(9): 1298-1309. |
[12] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[13] | FENG Ke, LIU Dong-Mei, ZHANG Qi, AN Jing, HE Shuang-Hui. Effect of tourism disturbance on soil microbial diversity and community structure in a Pinus tabuliformis forest [J]. Chin J Plant Ecol, 2023, 47(4): 584-596. |
[14] | XI Nian-Xun, ZHANG Yuan-Ye, ZHOU Shu-Rong. Plant-soil feedbacks in community ecology [J]. Chin J Plant Ecol, 2023, 47(2): 170-182. |
[15] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn