Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (4): 584-596.DOI: 10.17521/cjpe.2022.0072
• Research Articles • Previous Articles
FENG Ke1, LIU Dong-Mei2, ZHANG Qi1, AN Jing3, HE Shuang-Hui1,*()
Received:
2022-02-22
Accepted:
2022-07-27
Online:
2023-04-20
Published:
2022-09-16
Contact:
*(heshuanghui@bjfu.edu.cn )
Supported by:
FENG Ke, LIU Dong-Mei, ZHANG Qi, AN Jing, HE Shuang-Hui. Effect of tourism disturbance on soil microbial diversity and community structure in a Pinus tabuliformis forest[J]. Chin J Plant Ecol, 2023, 47(4): 584-596.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0072
Fig. 1 Schematic diagram of plots with different tourism disturbance intensity. A, Plot with high tourism disturbance intensity. B, Plot with low tourism disturbance intensity. C, Plot with no tourism disturbance intensity. △ represents infrastructure for tourist use, leisure and entertainment, etc.
类型 Type | 海拔 Altitude (m) | 坡度 Slope (o) | 树种组成 Tree composition |
---|---|---|---|
无干扰 No disturbance | 1 099 ± 126 | 31.25 ± 6.40 | 油松、北京丁香 Pinus tabuliformis, Syringa reticulata subsp. pekinensis |
低干扰区 Low disturbance | 1 008 ± 100 | 27.25 ± 3.27 | 油松、漆树 Pinus tabuliformis, Toxicodendron verniciflum |
高干扰区 High disturbance | 985 ± 88 | 25.25 ± 10.96 | 油松、山杨、北京丁香、核桃楸 Pinus tabuliformis, Populus davidiana, Syringa reticulata subsp. pekinensis, Juglans mandshurica |
Table 1 Information for sampling plots in Songshan National Nature Reserve, Beijing (mean ± SD)
类型 Type | 海拔 Altitude (m) | 坡度 Slope (o) | 树种组成 Tree composition |
---|---|---|---|
无干扰 No disturbance | 1 099 ± 126 | 31.25 ± 6.40 | 油松、北京丁香 Pinus tabuliformis, Syringa reticulata subsp. pekinensis |
低干扰区 Low disturbance | 1 008 ± 100 | 27.25 ± 3.27 | 油松、漆树 Pinus tabuliformis, Toxicodendron verniciflum |
高干扰区 High disturbance | 985 ± 88 | 25.25 ± 10.96 | 油松、山杨、北京丁香、核桃楸 Pinus tabuliformis, Populus davidiana, Syringa reticulata subsp. pekinensis, Juglans mandshurica |
变量 Variable | 描述 Description |
---|---|
郁闭度 Canopy | 20 m × 20 m样地中植被总盖度, 目测精度5% Total vegetation coverage in 20 m × 20 m plot, visually measured accuracy 5% |
乔木密度 Tree density | 20 m × 20 m样地中乔木总数 Total number of arbors in 20 m × 20 m plot |
灌木密度 Shrub density | 20 m × 20 m样地中灌木总数 Total number of shrubs in 20 m × 20 m plot |
乔木盖度 Tree cover | 20 m × 20 m样地中乔木覆盖程度, 目测精度5% Coverage of arbors in 20 m × 20 m plot, visually measured accuracy 5% |
草本盖度 Herb cover | 20 m × 20 m样地中草本覆盖程度, 目测精度5% Coverage of herbs in 20 m × 20 m plot, visually measured accuracy 5% |
灌木盖度 Shrub cover | 20 m × 20 m样地中灌木覆盖程度, 目测精度5% Coverage of shrubs in 20 m × 20 m plot, visually measured accuracy 5% |
凋落物盖度 Litter cover | 20 m × 20 m样地中各取样点凋落物覆盖程度, 目测精度5% Coverage of litters at each sampling site in 20 m × 20 m plot, visually measured accuracy 5% |
乔木胸径 Tree diameter at breast height (DBH) | 距20 m × 20 m样地中心点最近的8株乔木平均胸径 Average DBH of eight trees closest to the centre point of 20 m × 20 m plot |
灌木胸径 Shrub DBH | 距20 m × 20 m样地中心点最近的8株灌木平均胸径 Average DBH of eight shrubs closest to the centre point of 20 m × 20 m plot |
Table 2 Description of microhabitat variables in sampling plots of Beijing Songshan Nature Reserve
变量 Variable | 描述 Description |
---|---|
郁闭度 Canopy | 20 m × 20 m样地中植被总盖度, 目测精度5% Total vegetation coverage in 20 m × 20 m plot, visually measured accuracy 5% |
乔木密度 Tree density | 20 m × 20 m样地中乔木总数 Total number of arbors in 20 m × 20 m plot |
灌木密度 Shrub density | 20 m × 20 m样地中灌木总数 Total number of shrubs in 20 m × 20 m plot |
乔木盖度 Tree cover | 20 m × 20 m样地中乔木覆盖程度, 目测精度5% Coverage of arbors in 20 m × 20 m plot, visually measured accuracy 5% |
草本盖度 Herb cover | 20 m × 20 m样地中草本覆盖程度, 目测精度5% Coverage of herbs in 20 m × 20 m plot, visually measured accuracy 5% |
灌木盖度 Shrub cover | 20 m × 20 m样地中灌木覆盖程度, 目测精度5% Coverage of shrubs in 20 m × 20 m plot, visually measured accuracy 5% |
凋落物盖度 Litter cover | 20 m × 20 m样地中各取样点凋落物覆盖程度, 目测精度5% Coverage of litters at each sampling site in 20 m × 20 m plot, visually measured accuracy 5% |
乔木胸径 Tree diameter at breast height (DBH) | 距20 m × 20 m样地中心点最近的8株乔木平均胸径 Average DBH of eight trees closest to the centre point of 20 m × 20 m plot |
灌木胸径 Shrub DBH | 距20 m × 20 m样地中心点最近的8株灌木平均胸径 Average DBH of eight shrubs closest to the centre point of 20 m × 20 m plot |
类别 Category | 组 Group | 门 Phylum | 纲 Class | 目 Order | 科 Family | 属 Genus | 种 Species |
---|---|---|---|---|---|---|---|
真菌 Fungi | 高干扰区 HD | 11 | 57 | 135 | 336 | 626 | 963 |
低干扰区 LD | 12 | 60 | 153 | 384 | 586 | 873 | |
无干扰区 ND | 14 | 54 | 136 | 343 | 683 | 1 053 | |
细菌 Bacteria | 高干扰区 HD | 45 | 131 | 183 | 222 | 347 | 418 |
低干扰区 LD | 44 | 135 | 177 | 207 | 318 | 386 | |
无干扰区 ND | 46 | 129 | 171 | 206 | 312 | 374 |
Table 3 Soil bacterial and fungal species compositions in Songshan Pinus tabuliformis forest under different disturbance intensity groups
类别 Category | 组 Group | 门 Phylum | 纲 Class | 目 Order | 科 Family | 属 Genus | 种 Species |
---|---|---|---|---|---|---|---|
真菌 Fungi | 高干扰区 HD | 11 | 57 | 135 | 336 | 626 | 963 |
低干扰区 LD | 12 | 60 | 153 | 384 | 586 | 873 | |
无干扰区 ND | 14 | 54 | 136 | 343 | 683 | 1 053 | |
细菌 Bacteria | 高干扰区 HD | 45 | 131 | 183 | 222 | 347 | 418 |
低干扰区 LD | 44 | 135 | 177 | 207 | 318 | 386 | |
无干扰区 ND | 46 | 129 | 171 | 206 | 312 | 374 |
类别 Category | 指数 Index | 无干扰-高干扰 ND-HD | 低干扰-无干扰 LD-ND | 低干扰-高干扰 LD-HD |
---|---|---|---|---|
真菌 Fungi | Faith系统发育多样性指数 Faith phylogenetic diversity index | 39.06 (0.00*) | -29.73 (0.00*) | 9.33 (0.59) |
香农-维纳多样性指数 Shannon-Wiener diversity index | 1.66 (0.00*) | 1.12 (0.39) | 2.78 (0.00*) | |
直观绝对序列变体 Observed ASV | 177.70 (0.00*) | 570.45 (0.83) | 748.15 (0.01*) | |
Pielou均匀度指数 Pielou evenness index | 0.16 (0.00*) | 0.07 (0.27) | 0.22 (0.00*) | |
细菌 Bacteria | Faith系统发育多样性指数 Faith phylogenetic diversity index | -10.29 (0.08) | -0.63 (0.75) | -10.92 (0.20) |
香农-维纳多样性指数 Shannon-Wiener diversity index | 0.03 (0.75) | -1.87 (0.00*) | -1.84 (0.00*) | |
直观数量统计 Observed ASV | -0.60 (0.87) | -759.25 (0.00*) | -759.85 (0.00*) | |
Pielou均匀度指数 Pielou evenness index | 0.00 (0.59) | -0.13 (0.13) | -0.125 (0.07) |
Table 4 Differences in soil bacterial and fungal alpha diversities between groups by U test in Songshan Pinus tabuliformis forest
类别 Category | 指数 Index | 无干扰-高干扰 ND-HD | 低干扰-无干扰 LD-ND | 低干扰-高干扰 LD-HD |
---|---|---|---|---|
真菌 Fungi | Faith系统发育多样性指数 Faith phylogenetic diversity index | 39.06 (0.00*) | -29.73 (0.00*) | 9.33 (0.59) |
香农-维纳多样性指数 Shannon-Wiener diversity index | 1.66 (0.00*) | 1.12 (0.39) | 2.78 (0.00*) | |
直观绝对序列变体 Observed ASV | 177.70 (0.00*) | 570.45 (0.83) | 748.15 (0.01*) | |
Pielou均匀度指数 Pielou evenness index | 0.16 (0.00*) | 0.07 (0.27) | 0.22 (0.00*) | |
细菌 Bacteria | Faith系统发育多样性指数 Faith phylogenetic diversity index | -10.29 (0.08) | -0.63 (0.75) | -10.92 (0.20) |
香农-维纳多样性指数 Shannon-Wiener diversity index | 0.03 (0.75) | -1.87 (0.00*) | -1.84 (0.00*) | |
直观数量统计 Observed ASV | -0.60 (0.87) | -759.25 (0.00*) | -759.85 (0.00*) | |
Pielou均匀度指数 Pielou evenness index | 0.00 (0.59) | -0.13 (0.13) | -0.125 (0.07) |
Fig. 2 Principal co-ordinates analysis (PCoA) of soil microbial communities in different disturbance intensity groups in Beijing Songshan Nature Reserve. A, Soil fungi. B, Soil bacteria. Closer distances between dots and smaller circles represent higher similarity in microbial composition. The confidence interval level is 0.85. LD, low disturbance group; HD, high disturbance group; ND, no disturbance group.
Fig. 3 Soil microbial community structure in different disturbance intensity groups (phylum level) in Beijing Songshan Nature Reserve. A, Soil fungi. B, Soil bacteria. LD, low disturbance group; HD, high disturbance group; ND, no disturbance group. The whole picture is divided into upper and lower part. The upper part from left to right represents low disturbance group, high disturbance group and no disturbance group, respectively, while the lower part represents different microbial taxa; the thicker the chord, the greater proportion of the corresponding microbial taxa. Scale number represent the number of microorganisms.
Fig. 4 LEfSe analysis of fungal communities in different disturbance intensity groups in Beijing Songshan Nature Reserve. HD, high disturbance group; ND, no disturbance group. Linear discriminant analysis (LDA) > 0 indicates biomarkers of ND, LDA < 0 indicates biomarkers of HD; the evolutionary tree (phylum to species level) is constructed according to the LDA results. Among them, the green nodes represent ND hold more abundant fungi than other groups at this level, the red nodes represent HD hold more abundant fungi than other groups at this level, and the green nodes represent that there is no significant difference between groups.
Fig. 5 LEfSe analysis of bacterial communities in different disturbance intensity groups in Beijing Songshan Nature Reserve. HD, high disturbance group; ND, no disturbance group. Linear discriminant analysis (LDA) > 0 indicates biomarkers of ND, LDA < 0 indicates biomarkers of HD; the evolutionary tree (phylum to species level) is constructed according to the LDA results. Among them, the green nodes represent ND hold more abundant bacteria than other groups at this level, the red nodes represent HD hold more abundant bacteria than other groups at this level, and the green nodes represent that there is no significant difference between groups.
变量 Variable | 无干扰-高干扰 ND-HD | 无干扰-低干扰 ND-LD | 高干扰-低干扰 HD-LD |
---|---|---|---|
土壤含水量 Soil water content | 0.04 (0.02*) | 0.01 (0.30) | -0.02 (0.30) |
土壤全氮含量 Soil total nitrogen content | 0.02 (0.43) | 0.00 (0.83) | -0.02 (0.77) |
土壤 pH Soil pH | -0.21 (0.12) | -0.10 (0.69) | 0.11 (0.20) |
土壤速效钾含量 Soil available potassium content | 0.08 (0.00*) | 0.03 (0.34) | -0.05 (0.08) |
土壤有机碳含量 Soil organic carbon content | 0.71 (0.06) | 0.54 (0.19) | -0.17 (0.78) |
土壤有效磷含量 Soil available phosphorus content | 0.30 (0.26) | -0.11 (0.46) | -0.41 (0.13) |
郁闭度 Canopy | 8.75 (0.07) | 7.50 (0.13) | -1.25 (0.93) |
乔木密度 Tree density | 0.06 (0.09) | 0.05 (0.18) | -0.01 (0.88) |
灌木密度 Shrub density | 1.76 (0.00*) | 0.70 (0.05*) | -1.06 (0.00*) |
乔木盖度 Tree cover | 15.00 (0.07) | 11.25 (0.19) | -3.75 (0.80) |
草本盖度 Herb cover | 26.25 (0.00*) | 13.75 (0.05*) | -12.50 (0.05*) |
灌木盖度 Shrub cover | 10.00 (0.07) | 6.25 (0.09) | -3.75 (0.61) |
凋落物盖度 Litter cover | 27.50 (0.00*) | 8.75 (0.30) | -18.75 (0.05*) |
乔木胸径 Tree DBH | 28.87 (0.00*) | 11.59 (0.11) | -17.28 (0.05*) |
灌木胸径 Shrub DBH | 0.46 (0.12) | 0.16 (0.72) | -0.30 (0.36) |
Table 5 Differences in microhabitats and soil edaphic factors between groups by one-way ANOVA, U test and multiple comparisons in Songshan Pinus tabuliformis forest
变量 Variable | 无干扰-高干扰 ND-HD | 无干扰-低干扰 ND-LD | 高干扰-低干扰 HD-LD |
---|---|---|---|
土壤含水量 Soil water content | 0.04 (0.02*) | 0.01 (0.30) | -0.02 (0.30) |
土壤全氮含量 Soil total nitrogen content | 0.02 (0.43) | 0.00 (0.83) | -0.02 (0.77) |
土壤 pH Soil pH | -0.21 (0.12) | -0.10 (0.69) | 0.11 (0.20) |
土壤速效钾含量 Soil available potassium content | 0.08 (0.00*) | 0.03 (0.34) | -0.05 (0.08) |
土壤有机碳含量 Soil organic carbon content | 0.71 (0.06) | 0.54 (0.19) | -0.17 (0.78) |
土壤有效磷含量 Soil available phosphorus content | 0.30 (0.26) | -0.11 (0.46) | -0.41 (0.13) |
郁闭度 Canopy | 8.75 (0.07) | 7.50 (0.13) | -1.25 (0.93) |
乔木密度 Tree density | 0.06 (0.09) | 0.05 (0.18) | -0.01 (0.88) |
灌木密度 Shrub density | 1.76 (0.00*) | 0.70 (0.05*) | -1.06 (0.00*) |
乔木盖度 Tree cover | 15.00 (0.07) | 11.25 (0.19) | -3.75 (0.80) |
草本盖度 Herb cover | 26.25 (0.00*) | 13.75 (0.05*) | -12.50 (0.05*) |
灌木盖度 Shrub cover | 10.00 (0.07) | 6.25 (0.09) | -3.75 (0.61) |
凋落物盖度 Litter cover | 27.50 (0.00*) | 8.75 (0.30) | -18.75 (0.05*) |
乔木胸径 Tree DBH | 28.87 (0.00*) | 11.59 (0.11) | -17.28 (0.05*) |
灌木胸径 Shrub DBH | 0.46 (0.12) | 0.16 (0.72) | -0.30 (0.36) |
Fig. 6 PLS-PM predicted the impact of disturbance intensity on soil microbial alpha diversity in Songshan Pinus tabuliformis forest. A, Soil fungi. B, Soil bacteria. The solid black lines represent the loading values of observed variable, the solid red arrow lines represent a significant negative correlation, and the dashed red (black) arrow lines represent no significant correlation.
Fig. 7 Redundancy analysis (RDA) between soil microbial communities (phylum level) and environmental factor in different disturbance intensity groups in Songshan Pinus tabuliformis forest. A, Soil fungi. B, Soil bacteria. LD, low disturbance group; HD, high disturbance group; ND, no disturbance group. AK, available potassium content; HC, herb cover; LC, litter cover; Tree_DBH, tree diameter at breast height; SWC, soil water content. The longer the solid black arrow line, the greater the influence.
[1] |
Antonsen H, Olsson PA (2005). Relative importance of burnng, mowing and species translocation in the restoration of a former boreal hayfield: responses of plant diversity and the microbial community. Journal of Applied Ecology, 42, 337-347.
DOI URL |
[2] | Bauhus J, Khanna PK (1999). The significance of microbial biomass in forest soils//Rastin N, Bauhus J. Going Underground—Ecological Studies in Forest Soils. Research Signpost, Trivandrum, India. 77-110. |
[3] |
Carey CJ, Beman JM, Eviner VT, Malmstrom CM, Hart SC (2015). Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands. Frontiers in Microbiology, 6, 466. DOI: 10.3389/fmicb.2015.00466.
DOI PMID |
[4] |
Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010). Soil microbial community responses to multiple experimental climate change drivers. Applied and Environmental Microbiology, 76, 999-1007.
DOI PMID |
[5] |
Claesson MJ, O’Sullivan O, Wang Q, Nikkilä J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW (2009). Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE, 4, e6669. DOI: 10.1371/journal.pone.0006669.
DOI |
[6] |
Clegg CD (2006). Impact of Cattle grazing and inorganic fertiliser additions to managed grasslands on the microbial community composition of soils. Applied Soil Ecology, 31, 73-82.
DOI URL |
[7] |
Collins HP, Cavigelli MA (2003). Soil microbial community characteristics along an elevation gradient in the Laguna Mountains of Southern California. Soil Biology & Biochemistry, 35, 1027-1037.
DOI URL |
[8] | Duan GL, Zhu YJ (2019). Review on the effects of tourism disturbance on soil ecosystem. Acta Ecologica Sinica, 39, 8338-8345. |
[段桂兰, 朱寅健 (2019). 旅游干扰对土壤生态系统的影响研究进展. 生态学报, 39, 8338-8345.] | |
[9] | Faithfull N (2002). Methods in Agricultural Chemical Analysis: A Practical Handbook. CABI, Wallingford, UK. |
[10] | Fan YQ, An J, Liang C (2021). Soil microbial structure characteristics of typical vegetation communities in Beijing City Songshan National Nature Reserve. Northern Horticulture, (1), 81-86. |
[范雅倩, 安菁, 梁晨 (2021). 北京市松山国家级自然保护区典型植被群落的土壤微生物群落结构特征. 北方园艺, (1), 81-86.] | |
[11] | Gong J, Lu L, Jin XL, Nan W, Liu F (2009). Impacts of tourist disturbance on plant communities and soil properties in Huangshan Mountain scenic area. Acta Ecologica Sinica, 29, 2239-2251. |
[巩劼, 陆林, 晋秀龙, 南伟, 刘飞 (2009). 黄山风景区旅游干扰对植物群落及其土壤性质的影响. 生态学报, 29, 2239-2251.] | |
[12] | Guan DS, Ding J, Wang L (2000). The impact of tourism and environmental pollution on plants and soil of forests in urban parks of Guangzhou. China Environmental Science, 20, 277-280. |
[管东生, 丁键, 王林 (2000). 旅游和环境污染对广州城市公园森林植物和土壤的影响. 中国环境科学, 20, 277-280.] | |
[13] | Han CC, Yang Y, Liu BR, Xie YZ (2014). Influencing factors of soil microbial diversity in grassland. Pratacultural Science, 31, 2242-2250. |
[韩丛丛, 杨阳, 刘秉儒, 谢应忠 (2014). 草地土壤微生物多样性影响因子. 草业科学, 31, 2242-2250.] | |
[14] | Hu GP, Cao HM, Shi XP, Ye C, Wang F, Wang YW, Hu LC, Wang JW (2021). Effects of Cd stress on bacterial community composition and diversity in mulberry rhizosphere soil. Acta Sericologica Sinica, 47, 510-517. |
[胡桂萍, 曹红妹, 石旭平, 叶川, 王丰, 王亚威, 胡丽春, 王军文 (2021). 镉胁迫对桑树根际细菌群落及其多样性的影响. 蚕业科学, 47, 510-517.] | |
[15] | Huang P, Liu YH (2018). Effects of stand structure and terrain factors on seedling regeneration of Pinus tabuliformis forest in the Songshan National Nature Reserve, Beijing. Chinese Journal of Ecology, 37, 1003-1009. |
[黄萍, 刘艳红 (2018). 北京松山油松林林分结构和地形对幼苗更新的影响. 生态学杂志, 37, 1003-1009.] | |
[16] |
Ingram LJ, Stahl PD, Schuman GE, Buyer JS, Vance GF, Ganjegunte GK, Welker JM, Derner JD (2008). Grazing impacts on soil carbon and microbial communities in a mixed-grass ecosystem. Soil Science Society of America Journal, 72, 939-948.
DOI URL |
[17] |
Jiang X, Niu KC (2021). Effects of grass mixed-sowing on soil microbial diversity on the Qingzang (Tibetan) Plateau. Chinese Journal of Plant Ecology, 45, 539-551.
DOI URL |
[姜鑫, 牛克昌 (2021). 青藏高原禾草混播对土壤微生物多样性的影响. 植物生态学报, 45, 539-551.] | |
[18] | Jiang XW, Ma DL, Zang SY, Zhang DY, Sun HZ (2021). Characteristics of soil bacterial and fungal community of typical forest in the Greater Khingan Mountains based on high-throughput sequencing. Microbiology China, 48, 1093-1105. |
[姜雪薇, 马大龙, 臧淑英, 张冬有, 孙弘哲 (2021). 高通量测序分析大兴安岭典型森林土壤细菌和真菌群落特征. 微生物学通报, 48, 1093-1105.] | |
[19] |
Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6, 6707. DOI:10.1038/ncomms7707.
DOI PMID |
[20] | Li L, Liang YL, Jiang HH, Huang LY, Zhou Y, Yu JN (2012). Impacts of tourist disturbance on soil heavy metal pollution and properties in Wuyishan Scenery District. Guangdong Agricultural Sciences, 39(19), 171-174. |
[李灵, 梁彦兰, 江慧华, 黄丽燕, 周艳, 俞建安 (2012). 旅游干扰对武夷山风景区土壤重金属污染和土壤性质的影响. 广东农业科学, 39(19), 171-174.] | |
[21] | Li N, Zhang LM, Zhang XP (2012). The discussion of affecting factors on soil microbial community structure. Natural Science Journal of Harbin Normal University, 28(6), 70-74. |
[李娜, 张利敏, 张雪萍 (2012). 土壤微生物群落结构影响因素的探讨. 哈尔滨师范大学自然科学学报, 28(6), 70-74.] | |
[22] |
Li NQ, Wu JG, Jiang WJ, Mu XY, Cheng J (2013). Biodiversity and conservation of orchids in Songshan National Nature Reserve, Beijing. Plant Science Journal, 31, 510-516.
DOI URL |
[李南岍, 吴记贵, 蒋万杰, 沐先运, 程瑾 (2013). 北京松山国家级自然保护区兰科植物多样性及其保护评价. 植物科学学报, 31, 510-516.] | |
[23] | Li SS, Ma DL, Zang SY, Wang LL, Sun HZ (2018). Structural and functional characteristics of soil microbial community in the Songjiang wetland under different interferences. Acta Ecologica Sinica, 38, 7979-7989. |
[李森森, 马大龙, 臧淑英, 王璐璐, 孙弘哲 (2018). 不同干扰方式下松江湿地土壤微生物群落结构和功能特征. 生态学报, 38, 7979-7989.] | |
[24] | Li WF, Ye YC, Zhu AF, Rao L, Sun K, Yuan J, Guo X (2017). Spatio-temporal variation of pH in cropland of Jiangxi Province in the past 30 years and its relationship with acid rain and fertilizer application. Journal of Natural Resources, 32, 1942-1953. |
[李伟峰, 叶英聪, 朱安繁, 饶磊, 孙凯, 袁颉, 郭熙 (2017). 近30a江西省农田土壤pH时空变化及其与酸雨和施肥量间关系. 自然资源学报, 32, 1942-1953.]
DOI |
|
[25] | Liu J, Xu ZJR, Peng PH, Pan X (2016). Effects of tourism trampling on soil microbial quantity and enzyme activity in Jiguanshan Forest Park. Jiangsu Agricultural Sciences, 44, 398-402. |
[刘静, 徐峥静茹, 彭培好, 潘欣 (2016). 旅游踩踏对鸡冠山森林公园土壤微生物数量及酶活性的影响. 江苏农业科学, 44, 398-402.] | |
[26] | Ma J, Liu XD, He XL, Jin M, Niu Y, Jing WM, Zhao WJ, Wang RX (2016). Effects of tourism disturbance on soil properties of Qilian Mountains scenery district. Soils, 48, 924-930. |
[马剑, 刘贤德, 何晓玲, 金铭, 牛赟, 敬文茂, 赵维俊, 王荣新 (2016). 旅游干扰对祁连山风景区土壤性质的影响. 土壤, 48, 924-930.] | |
[27] | Ma JH, Zhu YT (2009). Impacts of tourist activities on soil components and properties in the Songshan scenic area. Acta Pedologica Sinica, 46, 164-168. |
[马建华, 朱玉涛 (2009). 嵩山景区旅游活动对土壤组成和性质的影响. 土壤学报, 46, 164-168.] | |
[28] | Man BY, Xiang X, Luo Y, Mao XT, Zhang C, Sun BH, Wang X (2021). Characteristics and influencing factors of soil fungal community of typical vegetation types in Mount Huangshan, East China. Mycosystema, 40, 2735-2751. |
[满百膺, 向兴, 罗洋, 毛小涛, 张超, 孙丙华, 王希 (2021). 黄山典型植被类型土壤真菌群落特征及其影响因素. 菌物学报, 40, 2735-2751.] | |
[29] | Ni SS, Peng L, Gao Y (2016). Impacts of tourist disturbance on soil properties and plant communities in Emeishan Mountain scenic region. Chinese Journal of Agricultural Resources and Regional Planning, 37(3), 93-96. |
[倪珊珊, 彭琳, 高越 (2016). 旅游干扰对峨眉山风景区土壤及植被的影响. 中国农业资源与区划, 37(3), 93-96.] | |
[30] | Niu LL, Yu XX, Yue YJ (2008). Spatial patterns of different age-class individuals in Pinus tabuliformis forest in Songshan Nature Reserve of Beijing, China. Chinese Journal of Applied Ecology, 19, 1414-1418. |
[牛丽丽, 余新晓, 岳永杰 (2008). 北京松山自然保护区天然油松林不同龄级立木的空间点格局. 应用生态学报, 19, 1414-1418.] | |
[31] |
Pei GT, Sun JF, He TX, Hu BQ (2021). Effects of long-term human disturbances on soil microbial diversity and community structure in a karst grassland ecosystem of northwestern Guangxi, China. Chinese Journal of Plant Ecology, 45, 74-84.
DOI URL |
[裴广廷, 孙建飞, 贺同鑫, 胡宝清 (2021). 长期人为干扰对桂西北喀斯特草地土壤微生物多样性及群落结构的影响. 植物生态学报, 45, 74-84.] | |
[32] |
Plassart P, Akpa Vinceslas M, Gangneux C, Mercier A, Barray S, Laval K (2008). Molecular and functional responses of soil microbial communities under grassland restoration. Agriculture Ecosystems & Environment, 127, 286-293.
DOI URL |
[33] | Sanchez G (2013). PLS Path Modeling with R Trowchez Editions. [2022-02-20]. http://www.gaston-sanchez.com/ PLS Path Modeling with R.pdf. |
[34] | Shang B (2008). The Wood Rotting Fungi and Soil Fungi of the Two Dominate Forest Types in Songshan. Master degree dissertation, Beijing Forest University, Beijing. |
[尚蓓 (2008). 松山林区木腐菌与两类主要林型土壤真菌的研究. 硕士学位论文, 北京林业大学, 北京.] | |
[35] |
Sherman C, Unc A, Doniger T, Ehrlich R, Steinberger Y (2019). The effect of human trampling activity on a soil microbial community at the Oulanka Natural Reserve, Finland. Applied Soil Ecology, 135, 104-112.
DOI |
[36] | Song XJ, Zhao TR (1997). Ecological evaluation of Songshan Nature Reserve. Chinese Journal of Enviromental Science, 18(4), 76-78. |
[宋秀杰, 赵彤润 (1997). 松山自然保护区的生态评价. 环境科学, 18(4), 76-78.] | |
[37] |
Strickland MS, Lauber C, Fierer N, Bradford MA (2009). Testing the functional significance of microbial community composition. Ecology, 90, 441-451.
DOI PMID |
[38] |
Talbot JM, Allison SD, Treseder KK (2008). Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology, 22, 955-963.
DOI URL |
[39] | Tan ZJ, Xiao QM, Zu ZB (2007). Effect of recreation activities on soil microflora and activities in Zhangjiajie National Forest Park. Acta Pedologica Sinica, 44, 184-187. |
[谭周进, 肖启明, 祖智波 (2007). 旅游踩踏对张家界国家森林公园土壤微生物区系及活性的影响. 土壤学报, 44, 184-187.] | |
[40] |
Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC (2008). Simultaneous assessment of soil microbial community structure and function through analysis of the meta- transcriptome. PLoS ONE, 3, e2527. DOI: 10.1371/ journal.pone.0002527.
DOI |
[41] |
Wang S, Sheng XL, Zhang L, Han JC, Luo YZ, Xie DT (2017). Effects of agricultural tourism on soil microbial community structure in hilly area of east Sichuan. Chinese Journal of Soil Science, 48, 101-109.
DOI URL |
[王帅, 盛晓磊, 张雷, 韩霁昌, 骆云中, 谢德体 (2017). 川东低山丘陵区农业旅游活动对土壤微生物群落结构的影响. 土壤通报, 48, 101-109.] | |
[42] | Wen YX, Zhong QL, Xia JL, Xiao HY, Zhang XF (2009). The effects of tourist activity on plant species diversity and root system biomass of shrubs in scenic spots of Wuyi Mountain. Progress in Geography, 28, 147-152. |
[文雅香, 钟全林, 夏金林, 肖海燕, 张晓芳 (2009). 旅游对武夷山景区灌木林物种多样性及其根系生物量的影响. 地理科学进展, 28, 147-152.]
DOI |
|
[43] | White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics//Innis MA, Gelfand DH, Sninsky JJ, White TJ. PCR Protocols—A Guide to Methods and Applications. Elsevier, Amsterdam. 315-322. |
[44] |
Yin CT, Jones KL, Peterson DE, Garrett KA, Hulbert SH, Paulitz TC (2010). Members of soil bacterial communities sensitive to tillage and crop rotation. Soil Biology & Biochemistry, 42, 2111-2118.
DOI URL |
[45] |
Young IM, Ritz K (2000). Tillage, habitat space and function of soil microbes. Soil and Tillage Research, 53, 201-213.
DOI URL |
[46] | Yu PT, Liu HY, Chen S (2002). Influences of human disturbances on vegetation of Songshan national level nature reserve. Scientia Silvae Sinicae, 38(4), 162-166. |
[于澎涛, 刘鸿雁, 陈杉 (2002). 人为干扰对松山自然保护区植被的影响. 林业科学, 38(4), 162-166.] | |
[47] | Yu S, Wang JK, Li SY (2008). Effect of long-term fertilization on soil microbial community structure in corn field with the method of PLFA. Acta Ecologica Sinica, 28, 4221-4227. |
[于树, 汪景宽, 李双异 (2008). 应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响. 生态学报, 28, 4221-4227.] | |
[48] |
Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003). Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology, 84, 2042-2050.
DOI URL |
[49] | Zhang SH, Zhao MW, Zhang XP (2011). Effects of tourism disturbance on soil and vegetation in Erlong Mountain scenic region. Chinese Journal of Soil Science, 42, 523-527. |
[张淑花, 赵美微, 张雪萍 (2011). 旅游干扰对二龙山风景区土壤和植被的影响. 土壤通报, 42, 523-527.] | |
[50] |
Zhang Y, Cao CY, Peng M, Xu XJ, Zhang P, Yu QJ, Sun T (2014). Diversity of nitrogen-fixing, ammonia-oxidizing, and denitrifying bacteria in biological soil crusts of a revegetation area in Horqin Sandy Land, Northeast China. Ecological Engineering, 71, 71-79.
DOI URL |
[51] | Zhao JC (2015). Impacts of tourism disturbance on biological diversity and soil properties of typical steppe in Helan mountain scenic area. Bulletin of Soil and Water Conservation, 35(3), 293-298. |
[赵建昌 (2015). 旅游干扰对贺兰山典型草原生物多样性及土壤性质的影响. 水土保持通报, 35(3), 293-298.] | |
[52] | Zhao N, Lu SW, Li SN, Wu JG, Fan YQ (2018). Study on plant diversity of typical plant communities in Songshan Nature Reserve, Beijing. Acta Botanica Boreali-Occidentalia Sinica, 38, 2120-2128. |
[赵娜, 鲁绍伟, 李少宁, 吴记贵, 范雅倩 (2018). 北京松山自然保护区典型植物群落物种多样性研究. 西北植物学报, 38, 2120-2128.] |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | GUO Min, LUO Lin, LIANG Jin, WANG Yan-Jie, ZHAO Chun-Zhang. Effects of freeze-thaw changes on soil physicochemical properties and enzyme activities in root zone of Picea asperata and Fargesia nitida under subalpine forests of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 882-894. |
[3] | ZHANG Qi, FENG Ke, CHANG Zhi-Hui, HE Shuang-Hui, XU Wei-Qi. Effects of shrub encroachment on plant and soil microbial in the forest-grassland ecotone [J]. Chin J Plant Ecol, 2023, 47(6): 770-781. |
[4] | XI Nian-Xun, ZHANG Yuan-Ye, ZHOU Shu-Rong. Plant-soil feedbacks in community ecology [J]. Chin J Plant Ecol, 2023, 47(2): 170-182. |
[5] | FAN Fan, ZHAO Lian-Jun, MA Tian-Yi, XIONG Xin-Yu, ZHANG Yuan-Bin, SHEN Xiao-Li, LI Sheng. Community composition and structure in a 25.2 hm2 subalpine dark coniferous forest dynamics plot in Wanglang, Sichuan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1005-1017. |
[6] | FENG Ji-Guang, ZHANG Qiu-Fang, YUAN Xia, ZHU Biao. Effects of nitrogen and phosphorus addition on soil organic carbon: review and prospects [J]. Chin J Plant Ecol, 2022, 46(8): 855-870. |
[7] | XIE Yu-Hang, JIA Pu, ZHENG Xiu-Tan, LI Jin-Tian, SHU Wen-Sheng, WANG Yu-Tao. Impacts and action pathways of domestication on diversity and community structure of crop microbiome: a review [J]. Chin J Plant Ecol, 2022, 46(3): 249-266. |
[8] | ZHOU Liang, YANG Jun-Long, YANG Hu, DOU Jian-De, HUANG Wei, LI Xiao-Wei. Community characteristics and classification of Amygdalus mongolian in Ningxia, China [J]. Chin J Plant Ecol, 2022, 46(2): 243-248. |
[9] | HAO Jian-Feng, ZHOU Run-Hui, YAO Xiao-Lan, YU Jing, CHEN Cong-Lin, XIANG Lin, WANG Yao-Yao, SU Tian-Cheng, QI Jin-Qiu. Effects of the second generation wild boar grazing on species diversity and soil physicochemical properties of coniferous-broad-leaved mixed forest in Jiajin Mountain, China [J]. Chin J Plant Ecol, 2022, 46(2): 197-207. |
[10] | HUANG Kuai-Kuai, HU Gang, PANG Qing-Ling, ZHANG Bei, HE Ye-Yong, HU Cong, XU Chao-Hao, ZHANG Zhong-Hua. Effects of grazing on species composition and community structure of shrub tussock in subtropical karst mountains, southwest China [J]. Chin J Plant Ecol, 2022, 46(11): 1350-1363. |
[11] | Yan-Fang LIU, Weng-Ying WANG, Nan-Ji SUO, Hua-Kun ZHOU, Xu-Feng MAO, Shi-Xiong WANG, Zhe CHEN. Relationship between plant community types and soil nematode communities in Haibei, Qinghai, China [J]. Chin J Plant Ecol, 2022, 46(1): 27-39. |
[12] | NIE Xiu-Qing, WANG Dong, ZHOU Guo-Ying, XIONG Feng, DU Yan-Gong. Soil microbial biomass carbon, nitrogen, phosphorus and their stoichiometric characteristics in alpine wetlands in the Three Rivers Sources Region [J]. Chin J Plant Ecol, 2021, 45(9): 996-1005. |
[13] | HE Zhong-Quan, LIU Chang-Cheng, CAI Xian-Li, GUO Ke. Types and community characteristics of karst mixed evergreen and deciduous broad-leaved forests in the central Guizhou Plateau, China [J]. Chin J Plant Ecol, 2021, 45(6): 670-680. |
[14] | JIANG Xin, NIU Ke-Chang. Effects of grass mixed-sowing on soil microbial diversity on the Qingzang (Tibetan) Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 539-551. |
[15] | YU Yan-Mei, HUANG Lin-Juan, XUE Yue-Gui. Characteristics of different plant communities in the Dashiwei Tiankeng group, Guangxi, China [J]. Chin J Plant Ecol, 2021, 45(1): 96-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn