Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (8): 819-827.DOI: 10.17521/cjpe.2020.0091
Special Issue: 凋落物
• Research Articles • Previous Articles Next Articles
YUAN Feng1,2, WANG Yan-Yan1,2, LI Mao-Jin3, JIANG Chuan-Yang4, LIU He-Na1,2, LI Kun-Ling1,2, HONG Tao1,2, WU Cheng-Zhen5, CHEN Can1,2,*()
Received:
2020-03-31
Accepted:
2020-07-03
Online:
2020-08-20
Published:
2020-07-28
Contact:
CHEN Can
Supported by:
YUAN Feng, WANG Yan-Yan, LI Mao-Jin, JIANG Chuan-Yang, LIU He-Na, LI Kun-Ling, HONG Tao, WU Cheng-Zhen, CHEN Can. Dynamic characteristics of metal element content and return of Casuarina equisetifolia litter at different distances to the coastline[J]. Chin J Plant Ecol, 2020, 44(8): 819-827.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0091
海岸距离 Coastal distance (m) | 树高 Tree height (m) | 胸径 Diameter at breast height (cm) | 冠幅 Crown width (m) | 风速 Wind speed (m·s-1) | 密度 Density (trees·hm-2) |
---|---|---|---|---|---|
30 (T1) | 10.67 ± 1.68 | 17.34 ± 1.08 | 3.65 ± 0.11 | 7.8 ± 1.11 | 2 350 |
60 (T2) | 11.70 ± 1.03 | 14.19 ± 4.48 | 3.98 ± 0.98 | 7.2 ± 0.97 | 2 150 |
90 (T3) | 12.93 ± 0.94 | 20.57 ± 1.27 | 4.22 ± 1.17 | 6.4 ± 0.86 | 1 850 |
120 (T4) | 13.53 ± 1.37 | 18.64 ± 3.89 | 3.75 ± 0.95 | 5.8 ± 0.65 | 1 700 |
150 (T5) | 13.40 ± 1.21 | 19.27 ± 4.16 | 3.52 ± 0.87 | 5.3 ± 0.76 | 1 600 |
300 (TCK) | 13.53 ± 1.49 | 25.39 ± 9.01 | 5.37 ± 1.57 | 4.3 ± 0.66 | 1 550 |
Table 1 Basic characteristics of Casuarina equisetifolia at different distances to Fujian coastline (mean ± SD)
海岸距离 Coastal distance (m) | 树高 Tree height (m) | 胸径 Diameter at breast height (cm) | 冠幅 Crown width (m) | 风速 Wind speed (m·s-1) | 密度 Density (trees·hm-2) |
---|---|---|---|---|---|
30 (T1) | 10.67 ± 1.68 | 17.34 ± 1.08 | 3.65 ± 0.11 | 7.8 ± 1.11 | 2 350 |
60 (T2) | 11.70 ± 1.03 | 14.19 ± 4.48 | 3.98 ± 0.98 | 7.2 ± 0.97 | 2 150 |
90 (T3) | 12.93 ± 0.94 | 20.57 ± 1.27 | 4.22 ± 1.17 | 6.4 ± 0.86 | 1 850 |
120 (T4) | 13.53 ± 1.37 | 18.64 ± 3.89 | 3.75 ± 0.95 | 5.8 ± 0.65 | 1 700 |
150 (T5) | 13.40 ± 1.21 | 19.27 ± 4.16 | 3.52 ± 0.87 | 5.3 ± 0.76 | 1 600 |
300 (TCK) | 13.53 ± 1.49 | 25.39 ± 9.01 | 5.37 ± 1.57 | 4.3 ± 0.66 | 1 550 |
海岸距离 Coastal distance (m) | Na | Mn | Fe | Cu | Zn |
---|---|---|---|---|---|
30 (T1) | 6.091 ± 1.135a | 0.067 ± 0.020c | 0.267 ± 0.110a | 0.0043 ± 0.002a | 0.020 ± 0.003b |
60 (T2) | 5.327 ± 1.346a | 0.093 ± 0.033b | 0.226 ± 0.113ab | 0.0036 ± 0.002ab | 0.016 ± 0.003ab |
90 (T3) | 5.084 ± 1.431a | 0.078 ± 0.014bc | 0.175 ± 0.059b | 0.0027 ± 0.002bc | 0.016 ± 0.004ab |
120 (T4) | 4.408 ± 1.689b | 0.063 ± 0.011c | 0.168 ± 0.062b | 0.0022 ± 0.001c | 0.012 ± 0.003ab |
150 (T5) | 3.823 ± 1.283b | 0.073 ± 0.011c | 0.174 ± 0.049b | 0.0033 ± 0.002ac | 0.016 ± 0.002ab |
300 (TCK) | 1.973 ± 0.587c | 0.204 ± 0.036a | 0.188 ± 0.056b | 0.0030 ± 0.001bc | 0.024 ± 0.004a |
平均值 Mean | 4.451 ± 1.442 | 0.096 ± 0.054 | 0.200 ± 0.039 | 0.0032 ± 0.0007 | 0.019 ± 0.009 |
Table 2 Contents of metal elements in Casuarina equisetifolia litters at different distances to the coastline (g·kg-1)(mean ± SD)
海岸距离 Coastal distance (m) | Na | Mn | Fe | Cu | Zn |
---|---|---|---|---|---|
30 (T1) | 6.091 ± 1.135a | 0.067 ± 0.020c | 0.267 ± 0.110a | 0.0043 ± 0.002a | 0.020 ± 0.003b |
60 (T2) | 5.327 ± 1.346a | 0.093 ± 0.033b | 0.226 ± 0.113ab | 0.0036 ± 0.002ab | 0.016 ± 0.003ab |
90 (T3) | 5.084 ± 1.431a | 0.078 ± 0.014bc | 0.175 ± 0.059b | 0.0027 ± 0.002bc | 0.016 ± 0.004ab |
120 (T4) | 4.408 ± 1.689b | 0.063 ± 0.011c | 0.168 ± 0.062b | 0.0022 ± 0.001c | 0.012 ± 0.003ab |
150 (T5) | 3.823 ± 1.283b | 0.073 ± 0.011c | 0.174 ± 0.049b | 0.0033 ± 0.002ac | 0.016 ± 0.002ab |
300 (TCK) | 1.973 ± 0.587c | 0.204 ± 0.036a | 0.188 ± 0.056b | 0.0030 ± 0.001bc | 0.024 ± 0.004a |
平均值 Mean | 4.451 ± 1.442 | 0.096 ± 0.054 | 0.200 ± 0.039 | 0.0032 ± 0.0007 | 0.019 ± 0.009 |
元素 Element | 含量 Content (g·kg-1) | 归还量 Return amount (kg·hm-2) | ||||
---|---|---|---|---|---|---|
方程 Equation | R2 | p | 方程 Equation | R2 | p | |
Na | y = -0.7365x + 7.0288 | 0.913 3 | 0.000 | y = -8.978x + 73.306 | 0.897 3 | 0.000 |
Mn | y = 0.0112x2 - 0.0607x + 0.1395 | 0.689 4 | 0.000 | y = 0.0889x2 - 0.4939x + 1.29 | 0.489 8 | 0.000 |
Fe | y = 0.009x2 - 0.0788x + 0.3393 | 0.977 3 | 0.019 | y = -0.24x + 2.644 | 0.813 4 | 0.002 |
Cu | y = 0.002x2 - 0.0015x + 0.0056 | 0.780 3 | 0.022 | y = 0.0012x2 - 0.0115x + 0.0505 | 0.776 0 | 0.054 |
Zn | y = 0.0013x2 - 0.0086x + 0.0276 | 0.833 1 | 0.019 | y = -0.014x + 0.1962 | 0.664 8 | 0.009 |
Table 3 Equations for the calculation of litter element content and return of Casuarina equisetifolia at different distances to the coastline
元素 Element | 含量 Content (g·kg-1) | 归还量 Return amount (kg·hm-2) | ||||
---|---|---|---|---|---|---|
方程 Equation | R2 | p | 方程 Equation | R2 | p | |
Na | y = -0.7365x + 7.0288 | 0.913 3 | 0.000 | y = -8.978x + 73.306 | 0.897 3 | 0.000 |
Mn | y = 0.0112x2 - 0.0607x + 0.1395 | 0.689 4 | 0.000 | y = 0.0889x2 - 0.4939x + 1.29 | 0.489 8 | 0.000 |
Fe | y = 0.009x2 - 0.0788x + 0.3393 | 0.977 3 | 0.019 | y = -0.24x + 2.644 | 0.813 4 | 0.002 |
Cu | y = 0.002x2 - 0.0015x + 0.0056 | 0.780 3 | 0.022 | y = 0.0012x2 - 0.0115x + 0.0505 | 0.776 0 | 0.054 |
Zn | y = 0.0013x2 - 0.0086x + 0.0276 | 0.833 1 | 0.019 | y = -0.014x + 0.1962 | 0.664 8 | 0.009 |
海岸距离 Coastal distance (m) | Na | Mn | Fe | Cu | Zn |
---|---|---|---|---|---|
30 (T1) | 56.196 ± 19.596a | 0.636 ± 0.264b | 2.388 ± 1.008a | 0.037 ± 0.012a | 0.178 ± 0.048ab |
60 (T2) | 59.136 ± 23.580a | 0.960 ± 0.264ab | 2.364 ± 0.924a | 0.038 ± 0.024ab | 0.176 ± 0.072ab |
90 (T3) | 53.532 ± 17.136a | 0.876 ± 0.360ab | 1.848 ± 0.696ab | 0.026 ± 0.012ab | 0.174 ± 0.060ab |
120 (T4) | 40.656 ± 21.816ac | 0.612 ± 0.252ab | 1.572 ± 0.756ab | 0.020 ± 0.012b | 0.110 ± 0.048b |
150 (T5) | 25.896 ± 10.416bc | 0.528 ± 0.216ab | 1.176 ± 0.432b | 0.024 ± 0.012ab | 0.116 ± 0.048b |
300 (TCK) | 15.864 ± 10.908b | 1.848 ± 1.512a | 1.476 ± 0.948ab | 0.026 ± 0.024ab | 0.128 ± 0.068a |
平均值 Mean | 41.880 ± 17.733 | 0.910 ± 0.489 | 1.804 ± 0.492 | 0.029 ± 0.007 | 0.147 ± 0.0.32 |
Table 4 The amount of nutrients returned from the litter of Casuarina equisetifolia at different distances to the coastline (kg·hm-2)(mean ± SD)
海岸距离 Coastal distance (m) | Na | Mn | Fe | Cu | Zn |
---|---|---|---|---|---|
30 (T1) | 56.196 ± 19.596a | 0.636 ± 0.264b | 2.388 ± 1.008a | 0.037 ± 0.012a | 0.178 ± 0.048ab |
60 (T2) | 59.136 ± 23.580a | 0.960 ± 0.264ab | 2.364 ± 0.924a | 0.038 ± 0.024ab | 0.176 ± 0.072ab |
90 (T3) | 53.532 ± 17.136a | 0.876 ± 0.360ab | 1.848 ± 0.696ab | 0.026 ± 0.012ab | 0.174 ± 0.060ab |
120 (T4) | 40.656 ± 21.816ac | 0.612 ± 0.252ab | 1.572 ± 0.756ab | 0.020 ± 0.012b | 0.110 ± 0.048b |
150 (T5) | 25.896 ± 10.416bc | 0.528 ± 0.216ab | 1.176 ± 0.432b | 0.024 ± 0.012ab | 0.116 ± 0.048b |
300 (TCK) | 15.864 ± 10.908b | 1.848 ± 1.512a | 1.476 ± 0.948ab | 0.026 ± 0.024ab | 0.128 ± 0.068a |
平均值 Mean | 41.880 ± 17.733 | 0.910 ± 0.489 | 1.804 ± 0.492 | 0.029 ± 0.007 | 0.147 ± 0.0.32 |
海岸距离 Coastal distance (m) | Na (g·kg-1) | Mn (g·kg-1) | Fe (g·kg-1) | Cu (mg·kg-1) | Zn (mg·kg-1) |
---|---|---|---|---|---|
30 (T1) | 4.305 ± 1.030a | 0.075 ± 0.019ab | 2.130 ± 0.212a | 0.9 ± 0.07a | 7.0 ± 0.69ab |
60 (T2) | 3.554 ± 0.310ab | 0.074 ± 0.011ab | 2.063 ± 0.181a | 0.8 ± 0.08ab | 5.3 ± 1.08a |
90 (T3) | 3.867 ± 0.844ab | 0.061 ± 0.013a | 2.299 ± 0.433a | 0.8 ± 0.07ab | 6.5 ± 1.66ab |
120 (T4) | 3.106 ± 0.557b | 0.074 ± 0.077ab | 2.742 ± 0.220a | 0.6 ± 0.08b | 8.3 ± 1.16b |
150 (T5) | 2.857 ± 0.186b | 0.082 ± 0.011ab | 2.196 ± 0.281a | 0.8 ± 0.16ab | 6.7 ± 1.28ab |
300 (TCK) | 1.556 ± 0.399c | 0.090 ± 0.021b | 2.701 ± 0.790a | 0.7 ± 0.12b | 10.9 ± 2.47c |
平均值 Mean | 3.208 ± 0.961 | 0.076 ± 0.010 | 2.283 ± 0.241 | 0.8 ± 0.09 | 7.5 ± 1.90 |
Table 5 Metal element content in soils at different distances to the coastline (mean ± SD)
海岸距离 Coastal distance (m) | Na (g·kg-1) | Mn (g·kg-1) | Fe (g·kg-1) | Cu (mg·kg-1) | Zn (mg·kg-1) |
---|---|---|---|---|---|
30 (T1) | 4.305 ± 1.030a | 0.075 ± 0.019ab | 2.130 ± 0.212a | 0.9 ± 0.07a | 7.0 ± 0.69ab |
60 (T2) | 3.554 ± 0.310ab | 0.074 ± 0.011ab | 2.063 ± 0.181a | 0.8 ± 0.08ab | 5.3 ± 1.08a |
90 (T3) | 3.867 ± 0.844ab | 0.061 ± 0.013a | 2.299 ± 0.433a | 0.8 ± 0.07ab | 6.5 ± 1.66ab |
120 (T4) | 3.106 ± 0.557b | 0.074 ± 0.077ab | 2.742 ± 0.220a | 0.6 ± 0.08b | 8.3 ± 1.16b |
150 (T5) | 2.857 ± 0.186b | 0.082 ± 0.011ab | 2.196 ± 0.281a | 0.8 ± 0.16ab | 6.7 ± 1.28ab |
300 (TCK) | 1.556 ± 0.399c | 0.090 ± 0.021b | 2.701 ± 0.790a | 0.7 ± 0.12b | 10.9 ± 2.47c |
平均值 Mean | 3.208 ± 0.961 | 0.076 ± 0.010 | 2.283 ± 0.241 | 0.8 ± 0.09 | 7.5 ± 1.90 |
NaL | MnL | FeL | CuL | ZnL | |
---|---|---|---|---|---|
MnL | 0.426, 0.167 (ns) | 1 | |||
FeL | 0.660, <0.05 | 0.117, 0.717 (ns) | 1 | ||
CuL | 0.388, 0.213 (ns) | -0.034, 0.917 (ns) | 0.724, <0.01 | 1 | |
ZnL | 0.825, <0.01 | 0.324, 0.304 (ns) | 0.740, <0.01 | 0.550, 0.064 (ns) | 1 |
pH | 0.971, <0.05 | 0.777, 0.069 (ns) | 0.695, 0.126 (ns) | 0.613, 0.196 (ns) | 0.617, 0.192 (ns) |
NaS-NaL | MnS-MnL | FeS-FeL | CuS-CuL | ZnS-ZnL | |
0.987, <0.01 | 0.677, 0.140 (ns) | 0.609, 0.200 (ns) | 0.895, <0.05 | 0.769, 0.074 (ns) |
Table 6 Pearson correlation analysis between the metal elements content in the litter of Casuarina equisetifolia at different distances to the coastline and soil elements content (n = 12)
NaL | MnL | FeL | CuL | ZnL | |
---|---|---|---|---|---|
MnL | 0.426, 0.167 (ns) | 1 | |||
FeL | 0.660, <0.05 | 0.117, 0.717 (ns) | 1 | ||
CuL | 0.388, 0.213 (ns) | -0.034, 0.917 (ns) | 0.724, <0.01 | 1 | |
ZnL | 0.825, <0.01 | 0.324, 0.304 (ns) | 0.740, <0.01 | 0.550, 0.064 (ns) | 1 |
pH | 0.971, <0.05 | 0.777, 0.069 (ns) | 0.695, 0.126 (ns) | 0.613, 0.196 (ns) | 0.617, 0.192 (ns) |
NaS-NaL | MnS-MnL | FeS-FeL | CuS-CuL | ZnS-ZnL | |
0.987, <0.01 | 0.677, 0.140 (ns) | 0.609, 0.200 (ns) | 0.895, <0.05 | 0.769, 0.074 (ns) |
[1] | Chapin III FS, Matson PA, Vitouseh PM (2002). Principles of Terrestrial Ecosystem Ecology. Springer, New York. |
[2] | Ebemayer E (1876). Die gesammte Lehre der Waldstreu mit Rücksicht auf die chemische Statik des Waldbaues. Unter Zugrundlegung der in den Königl. Staatsforsten Bayerns angestellten Untersuchungen. Springer, Berlin. |
[3] | Fang YT, Mo JM, Zhou GY, Zhang DQ, Xue JH (2005). Minor nutrient element status of plant and soil in a lower subtropical evergreen broad-leaved forest in Dinghushan Biosphere Reserve. Guihaia, 25, 504-510. |
[ 方运霆, 莫江明, 周国逸, 张德强, 薛璟花 (2005). 鼎湖山南亚热带常绿阔叶林植物和土壤微量元素含量. 广西植物, 25, 504-510.] | |
[4] |
Jia BR (2019). Litter decomposition and its underlying mechanisms. Chinese Journal of Plant Ecology, 43, 648-657.
DOI URL |
[ 贾丙瑞 (2019). 凋落物分解及其影响机制. 植物生态学报, 43, 648-657.] | |
[5] | Jin MH, Ding ZH, Zhou HC, Ye GF (2014). Absorption and enrichment of heavy metals by Casuarina equisetifolia of different stand ages in a coastal zone. Chinese Journal of Ecology, 33, 2183-2187. |
[ 靳明华, 丁振华, 周海超, 叶功富 (2014). 海岸带不同林龄木麻黄对重金属的吸收与富集作用. 生态学杂志, 33, 2183-2187.] | |
[6] |
Jugsujinda A, Patrick Jr WH (1993). Evaluation of toxic conditions associated with oranging symptoms of rice in a flooded Oxisol in Sumatra, Indonesia. Plant and Soil, 152, 237-243.
DOI URL |
[7] |
Knecht MF, Göransson A (2004). Terrestrial plants require nutrients in similar proportions. Tree Physiology, 24, 447-460.
DOI URL PMID |
[8] |
Lado-Monserrat L, Lidón A, Bautista I (2016). Litterfall, litter decomposition and associated nutrient fluxes in Pinus halepensis: influence of tree removal intensity in a Mediterranean forest. European Journal of Forest Research, 135, 203-214.
DOI URL |
[9] | Liu L, Zhao CM, Xu WT, Shen GZ, Xie ZQ (2019). Litter nutrient characteristics of mixed evergreen and deciduous broadleaved forests in Shennongjia, China. Acta Ecologica Sinica, 39, 7611-7620. |
[ 刘璐, 赵常明, 徐文婷, 申国珍, 谢宗强 (2019). 神农架常绿落叶阔叶混交林凋落物养分特征. 生态学报, 39, 7611-7620.] | |
[10] | Li XG, Kang XR, Cai ZY, Zhang HD, Zhang JF, He GP, Chen GC (2019). Heavy metal tolerance, accumulation and distribution in five clones of Casuarina equisetifolia. Chinese Journal of Ecology, 38, 2094-2101. |
[ 李晓刚, 康希睿, 蔡泽宇, 张涵丹, 张建锋, 何贵平, 陈光才 (2019). 木麻黄对土壤重金属的生长响应及积累特征. 生态学杂志, 38, 2094-2101.] | |
[11] | Marschner H (1986). Mineral Nutrition of Higher Plants. Academic Press, London, |
[12] | Mo JM, Xue JH, Fang YT (2004). Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China. Acta Ecologica Sinica, 24, 1413-1420. |
[ 莫江明, 薛璟花, 方运霆 (2004). 鼎湖山主要森林植物凋落物分解及其对N沉降的响应. 生态学报, 24, 1413-1420.] | |
[13] | Ning QR, Li SZ, Jiang LC, Tao JJ, Chen HR, Liu C, Yang XY (2017). Characteristics and factors influencing foliar nutrient resorption in plants. Chinese Journal of Applied and Environmental Biology, 23, 811-817. |
[ 宁秋蕊, 李守中, 姜良超, 陶晶晶, 陈涵睿, 刘聪, 杨贤宇 (2017). 植物叶片养分再吸收特征及其影响因子. 应用与环境生物学报, 23, 811-817.] | |
[14] | Peng SL, Liu Q (2002). The dynamics of forest litter and its responses to global warming. Acta Ecologica Sinica, 22, 1534-1544. |
[ 彭少麟, 刘强 (2002). 森林凋落物动态及其对全球变暖的响应. 生态学报, 22, 1534-1544.] | |
[15] |
Pereira GHA, Jordao HCK, Silva VFV, Pereira MG (2016). Litter and nutrient flows in tropical upland forest flooded by a hydropower plant in the Amazonian basin. Science of the Total Environment, 572, 157-168.
DOI URL |
[16] |
Robert B, Caritat A, Bertoni G, Vilar L, Molinas M (1996). Nutrient content and seasonal fluctuations in the leaf component of cork-oak (Quercus suber L.) litterfall. Vegetatio, 122, 29-35.
DOI URL |
[17] |
Shen A, Zhu JJ, Yan T, Lu DL, Yang K (2018). Effects of leaf nutrient concentration and resorption on leaf falling time of dominant broad-leaved species in a montane region of eastern Liaoning Province, China. Chinese Journal of Plant Ecology, 42, 573-584.
DOI URL |
[ 申奥, 朱教君, 闫涛, 卢德亮, 杨凯 (2018). 辽东山区主要阔叶树种叶片养分含量和再吸收对落叶时间的影响. 植物生态学报, 42, 573-584.] | |
[18] |
Shukla G, Pala NA, Chakravarty S (2017). Quantification of organic carbon and primary nutrients in litter and soil in a foothill forest plantation of eastern Himalaya. Journal of Forestry Research, 28, 1195-1202.
DOI URL |
[19] | Tan FL (2003). Study on litter decomposition and nutrient release in Casuarina equisetifolia protective plantation ecosystem. Scientia Silvae Sinicae, 39(Suppl. 1), 21-26. |
[ 谭芳林 (2003). 木麻黄防护林生态系统凋落物及养分释放研究. 林业科学, 39(Suppl. 1), 21-26.] | |
[20] | Wang J, Huang JH (2001). Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China. Acta Phytoecologica Sinica, 25, 375-380. |
[ 王瑾, 黄建辉 (2001). 暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较. 植物生态学报, 25, 375-380.] | |
[21] | Wu XL, Ye GF, Zhang SJ, Lin YM, Zhang LH (2011). Contents of some mineral elements and their resorption efficiencies in Casuarina equisetifolia branchlets across a coastal gradient. Journal of Applied and Environmental Biology, 17, 645-650. |
[ 吴锡麟, 叶功富, 张尚炬, 林益明, 张立华 (2011). 不同海岸梯度上短枝木麻黄小枝金属元素含量及其再吸收率动态. 应用与环境生物学报, 17, 645-650.] | |
[22] |
Yan ER, Wang XH, Zhou W (2008). Characteristics of litterfall in relation to soil nutrients in mature and degraded evergreen broad-leaved forests of Tiantong, East China. Chinese Journal of Plant Ecology, 32, 1-12.
DOI URL |
[ 阎恩荣, 王希华, 周武 (2008). 天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系. 植物生态学报, 32, 1-12.] | |
[23] | Ye GF, Zhang LH, Lin YM, Wang H, Zhou HC, Zeng Q (2009). Seasonal dynamics of nitrogen and phosphorus concentrations, and nutrient resorption efficiencies of Casuarina equisetifolia branchlets in Dongshan County, Fujian. Acta Ecologica Sinica, 29, 6519-6526. |
[ 叶功富, 张立华, 林益明, 王哼, 周海超, 曾琦 (2009). 福建东山短枝木麻黄小枝氮磷含量及其再吸收率季节动态. 生态学报, 29, 6519-6526.] | |
[24] |
Yuan YX (1996). The roles of microelements in plant life. Bulletin of Biology, 31, 4-8.
DOI URL |
[ 袁玉信 (1996). 微量元素在植物生活中的作用. 生物学通报, 31, 4-8.] | |
[25] | Zhang LL, Zhao XY, Yuan H (2013). Research progress on the effects of wind on plants and plant adaptation strategies. Advance in Earth Science, 28, 1349-1353. |
[ 张琳琳, 赵晓英, 原慧 (2013). 风对植物的作用及植物适应对策研究进展. 地球科学进展, 28, 1349-1353.] | |
[26] | Zhang YD, Liu YC, Gu FX, Guo MM, Miao N, Liu SR (2019). Litter composition and its dynamic in five main forest types in subalpine areas of west Sichuan, China. Acta Ecologica Sinica, 39, 502-508. |
[ 张远东, 刘彦春, 顾峰雪, 郭明明, 缪宁, 刘世荣 (2019). 川西亚高山五种主要森林类型凋落物组成及动态. 生态学报, 39, 502-508.] | |
[27] | Zhang ZR, Song CX (1991). The action of micronutrients played in plant life. Journal of Nanjing University, 27, 530-539. |
[ 张正仁, 宋长铣 (1991). 微量元素在植物生命活动中的作用. 南京大学学报, 27, 530-539.] | |
[28] |
Zhang ZX, Liu P, Xu GD, Zhang JY, Li HJ, Liao JP, Wu SB (2010). Metal element contents of Tsuga chinensis var. tchekiangensis in different community types and its relationship with soil nutrient factors in Eastern China. Chinese Journal of Plant Ecology, 34, 505-516.
DOI URL |
[ 张志祥, 刘鹏, 徐根娣, 张家银, 李洪军, 廖进平, 巫松标 (2010). 不同群落类型下南方铁杉金属元素含量差异及其与土壤养分因子的关系. 植物生态学报, 34, 505-516.] | |
[29] | Zhong CL, Huang YX, Cao CF, Jiang C, Guo JL, Gu F (2017). Responses of element stoichiometry characteristics of Casuarina equisetifolia to distance from the coastline. Journal of Subtropical Resources and Environment, 12, 22-29. |
[ 钟春柳, 黄义雄, 曹春福, 姜超, 郭佳蕾, 古璠 (2017). 不同海岸梯度下木麻黄防护林生态化学计量特征. 亚热带资源与环境学报, 12, 22-29.] | |
[30] | Zhong ZX, Xu YP, Wan KY, Chen F (2007). Trace elements in leaves of 21 rare species of Magnoliaceae and Lauraceae in the ex-situ conservation site of Wuhan botanical garden and trace elements in soil. Journal of Northeast Forestry University, 35(3), 46-48. |
[ 钟志祥, 徐有明, 万开元, 陈防 (2007). 迁栖地樟科与木兰科21种珍稀植物叶片微量元素与土壤微量元素. 东北林业大学学报, 35(3), 46-48.] |
[1] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[2] | ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China [J]. Chin J Plant Ecol, 2023, 47(5): 629-643. |
[3] | ZHENG Yang, SUN Xue-Guang, XIONG Yang-Yang, YUAN Gui-Yun, DING Gui-Jie. Effects of phyllospheric microorganisms on litter decomposition of Pinus massoniana [J]. Chin J Plant Ecol, 2023, 47(5): 687-698. |
[4] | ZHANG Ya-Qi, PANG Dan-Bo, CHEN Lin, CAO Meng-Hao, HE Wen-Qiang, LI Xue-Bin. Response of ammonia oxidizing bacteria to nitrogen fertilization and plant litter input on desert steppe [J]. Chin J Plant Ecol, 2023, 47(5): 699-712. |
[5] | ZHAO Xiao-Xiang, ZHU Bin-Bin, TIAN Qiu-Xiang, LIN Qiao-Ling, CHEN Long, LIU Feng. Research progress on home-field advantage of leaf litter decomposition [J]. Chin J Plant Ecol, 2023, 47(5): 597-607. |
[6] | YU Ji-Mei, WU Fu-Zhong, YUAN Ji, JIN Xia, WEI Shu-Yuan, YUAN Chao-Xiang, PENG Yan, NI Xiang-Yin, YUE Kai. Global patterns and influencing factors of initial concentrations of phenols in plant litter [J]. Chin J Plant Ecol, 2023, 47(5): 608-617. |
[7] | LAI Shuo-Tian, WU Fu-Zhong, WU Qiu-Xia, ZHU Jing-Jing, NI Xiang-Yin. Reduced release of labile carbon from Abies fargesii var. faxoniana needle litter after snow removal in an alpine forest [J]. Chin J Plant Ecol, 2023, 47(5): 672-686. |
[8] | LI Hui-Xuan, MA Hong-Liang, YIN Yun-Feng, GAO Ren. Dynamic of labile, recalcitrant carbon and nitrogen during the litter decomposition in a subtropical natural broadleaf forest [J]. Chin J Plant Ecol, 2023, 47(5): 618-628. |
[9] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[10] | LIU Yao, JIAO Ze-Bin, TAN Bo, LI Han, WANG Li-Xia, LIU Si-Ning, YOU Cheng-Ming, XU Zhen-Feng, ZHANG Li. Litter removal effects on dynamics of soil humic substances in subalpine forests of western Sichuan, China [J]. Chin J Plant Ecol, 2022, 46(3): 330-339. |
[11] | SUN Hao-Zhe, WANG Xiang-Ping, ZHANG Shu-Bin, WU Peng, YANG Lei. Abiotic and biotic modulators of litterfall production and its temporal stability during the succession of broad-leaf and Korean pine mixed forest [J]. Chin J Plant Ecol, 2021, 45(6): 594-605. |
[12] | ZHU Wei-Na, ZHANG Guo-Long, ZHANG Pu-Jin, ZHANG Qian-Qian, REN Jin-Tao, XU Bu-Yun, QING Hua. Decomposition characteristics of leaf litters and roots of six main plant species and their relationships with functional traits in Stipa grandis steppe [J]. Chin J Plant Ecol, 2021, 45(6): 606-616. |
[13] | Fan Lin-Jie, LI Cheng-Dao, LI Xiang-Yi, Henry J. SUN, LIN Li-Sha, LIU Bo. Effects of sand burial on litter decomposition rate and salt content dynamics in an extremely arid region [J]. Chin J Plant Ecol, 2021, 45(2): 144-153. |
[14] | YANG De-Chun, HU Lei, SONG Xiao-Yan, WANG Chang-Ting. Effects of changing precipitation on litter quality and decomposition of different plant functional groups in an alpine meadow [J]. Chin J Plant Ecol, 2021, 45(12): 1314-1328. |
[15] | GAMADAERJI , YANG Ze, TAN Xing-Ru, WANG Shan-Shan, LI Wei-Jing, YOU Cui-Hai, WANG Yan-Bing, ZHANG Bing-Wei, REN Ting-Ting, CHEN Shi-Ping. Effect of altered litter input and nitrogen addition on ecosystem aboveground primary productivity and plant functional group composition in a semiarid grassland [J]. Chin J Plant Ecol, 2020, 44(8): 791-806. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn