Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (12): 1314-1328.DOI: 10.17521/cjpe.2021.0211
Special Issue: 全球变化与生态系统; 青藏高原植物生态学:群落生态学
• Research Articles • Previous Articles Next Articles
YANG De-Chun, HU Lei, SONG Xiao-Yan, WANG Chang-Ting()
Received:
2021-06-03
Accepted:
2021-08-18
Online:
2021-12-20
Published:
2021-10-15
Contact:
WANG Chang-Ting
Supported by:
YANG De-Chun, HU Lei, SONG Xiao-Yan, WANG Chang-Ting. Effects of changing precipitation on litter quality and decomposition of different plant functional groups in an alpine meadow[J]. Chin J Plant Ecol, 2021, 45(12): 1314-1328.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0211
Fig. 1 Initial litter chemical composition in different plant functional groups and communities under different precipitation (mean ± SE, n = 3). Different lowercase letters indicate significant differences under different precipitation treatments (p < 0.05). CK, ambient control; Pr-90, 90% decrease of precipitation; Pr-50, 50% decrease of precipitation; Pr-30, 30% decrease of precipitation; Pr+50, 50% increase of precipitation.
凋落物类型 Litter type | 降雨处理 Precipitation treatment | 碳氮比 C:N | 碳磷比 C:P | 氮磷比 N:P | 木质素氮比 Lignin:N |
---|---|---|---|---|---|
禾本科 Grass | Pr-90 | 39.89 ± 7.83b | 284.72 ± 5.46b | 7.29 ± 0.66a | 4.63 ± 1.14b |
Pr-50 | 40.61 ± 5.20b | 218.11 ± 10.87bc | 5.40 ± 0.21b | 4.35 ± 0.32b | |
Pr-30 | 34.56 ± 11.61b | 205.99 ± 32.36bc | 5.05 ± 0.62bc | 4.96 ± 0.69b | |
CK | 59.29 ± 6.13a | 422.31 ± 31.38a | 7.13 ± 0.39a | 8.78 ± 0.79a | |
Pr+50 | 58.95 ± 5.53a | 214.73 ± 14.81c | 3.68 ± 0.37c | 7.59 ± 1.19a | |
莎草科 Sedge | Pr-90 | 32.00 ± 7.20a | 187.68 ± 7.32bc | 6.02 ± 0.60ab | 2.10 ± 0.27b |
Pr-50 | 29.73 ± 7.44a | 157.00 ± 12.52cd | 5.42 ± 0.61bc | 1.75 ± 0.31b | |
Pr-30 | 36.08 ± 5.33a | 203.36 ± 4.81b | 5.72 ± 0.55abc | 3.20 ± 0.72a | |
CK | 35.10 ± 6.74a | 262.80 ± 15.30a | 7.57 ± 0.38a | 2.01 ± 0.24b | |
Pr+50 | 37.79 ± 7.89a | 135.70 ± 12.49d | 3.76 ± 0.80c | 2.10 ± 0.39b | |
杂类草 Forb | Pr-90 | 32.51 ± 3.28ab | 196.31 ± 29.32ab | 5.98 ± 0.62ab | 3.76 ± 0.68abc |
Pr-50 | 34.20 ± 1.58ab | 184.84 ± 2.23ab | 5.41 ± 0.14ab | 4.04 ± 0.21ab | |
Pr-30 | 29.63 ± 0.79b | 187.40 ± 3.94ab | 6.32 ± 0.07a | 4.48 ± 0.12a | |
CK | 35.53 ± 1.09a | 230.84 ± 8.03a | 6.50 ± 0.23a | 3.61 ± 0.30bc | |
Pr+50 | 32.69 ± 4.11ab | 153.42 ± 13.25b | 4.79 ± 0.70b | 3.18 ± 0.09c | |
群落 Community | Pr-90 | 38.53 ± 2.91a | 265.60 ± 16.99a | 6.90 ± 0.37ab | 4.12 ± 0.40a |
Pr-50 | 29.90 ± 2.54cd | 177.17 ± 10.97b | 5.92 ± 0.21b | 3.16 ± 0.56b | |
Pr-30 | 26.51 ± 3.14d | 166.29 ± 16.61bc | 6.26 ± 0.29ab | 3.38 ± 0.40ab | |
CK | 32.51 ± 1.25bc | 231.13 ± 2.96a | 7.12 ± 0.18a | 3.87 ± 0.16ab | |
Pr+50 | 34.59 ± 1.49ab | 128.28 ± 19.92c | 3.69 ± 0.51c | 3.94 ± 0.50ab |
Table 1 Initial stoichiometric ratio of litters in different plant functional groups and communities under different precipitation treatments (mean ± SE, n = 3)
凋落物类型 Litter type | 降雨处理 Precipitation treatment | 碳氮比 C:N | 碳磷比 C:P | 氮磷比 N:P | 木质素氮比 Lignin:N |
---|---|---|---|---|---|
禾本科 Grass | Pr-90 | 39.89 ± 7.83b | 284.72 ± 5.46b | 7.29 ± 0.66a | 4.63 ± 1.14b |
Pr-50 | 40.61 ± 5.20b | 218.11 ± 10.87bc | 5.40 ± 0.21b | 4.35 ± 0.32b | |
Pr-30 | 34.56 ± 11.61b | 205.99 ± 32.36bc | 5.05 ± 0.62bc | 4.96 ± 0.69b | |
CK | 59.29 ± 6.13a | 422.31 ± 31.38a | 7.13 ± 0.39a | 8.78 ± 0.79a | |
Pr+50 | 58.95 ± 5.53a | 214.73 ± 14.81c | 3.68 ± 0.37c | 7.59 ± 1.19a | |
莎草科 Sedge | Pr-90 | 32.00 ± 7.20a | 187.68 ± 7.32bc | 6.02 ± 0.60ab | 2.10 ± 0.27b |
Pr-50 | 29.73 ± 7.44a | 157.00 ± 12.52cd | 5.42 ± 0.61bc | 1.75 ± 0.31b | |
Pr-30 | 36.08 ± 5.33a | 203.36 ± 4.81b | 5.72 ± 0.55abc | 3.20 ± 0.72a | |
CK | 35.10 ± 6.74a | 262.80 ± 15.30a | 7.57 ± 0.38a | 2.01 ± 0.24b | |
Pr+50 | 37.79 ± 7.89a | 135.70 ± 12.49d | 3.76 ± 0.80c | 2.10 ± 0.39b | |
杂类草 Forb | Pr-90 | 32.51 ± 3.28ab | 196.31 ± 29.32ab | 5.98 ± 0.62ab | 3.76 ± 0.68abc |
Pr-50 | 34.20 ± 1.58ab | 184.84 ± 2.23ab | 5.41 ± 0.14ab | 4.04 ± 0.21ab | |
Pr-30 | 29.63 ± 0.79b | 187.40 ± 3.94ab | 6.32 ± 0.07a | 4.48 ± 0.12a | |
CK | 35.53 ± 1.09a | 230.84 ± 8.03a | 6.50 ± 0.23a | 3.61 ± 0.30bc | |
Pr+50 | 32.69 ± 4.11ab | 153.42 ± 13.25b | 4.79 ± 0.70b | 3.18 ± 0.09c | |
群落 Community | Pr-90 | 38.53 ± 2.91a | 265.60 ± 16.99a | 6.90 ± 0.37ab | 4.12 ± 0.40a |
Pr-50 | 29.90 ± 2.54cd | 177.17 ± 10.97b | 5.92 ± 0.21b | 3.16 ± 0.56b | |
Pr-30 | 26.51 ± 3.14d | 166.29 ± 16.61bc | 6.26 ± 0.29ab | 3.38 ± 0.40ab | |
CK | 32.51 ± 1.25bc | 231.13 ± 2.96a | 7.12 ± 0.18a | 3.87 ± 0.16ab | |
Pr+50 | 34.59 ± 1.49ab | 128.28 ± 19.92c | 3.69 ± 0.51c | 3.94 ± 0.50ab |
凋落物化学性质 Litter property | L | Pr | L × Pr | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
碳含量 Carbon (C) content | 6.758 | 0.001 | 1.391 | 0.255 | 1.444 | 0.187 |
氮含量 Nitrogen (N) content | 20.094 | <0.001 | 6.986 | <0.001 | 2.287 | 0.025 |
磷含量 Phosphorus (P) content | 6.708 | 0.001 | 19.042 | <0.001 | 1.767 | 0.088 |
木质素含量 Lignin content | 86.889 | <0.001 | 6.828 | <0.001 | 3.747 | 0.001 |
纤维素含量 Cellulose content | 289.576 | <0.001 | 1.483 | 0.225 | 3.227 | 0.003 |
半纤维素含量 Hemicellulose content | 575.796 | <0.001 | 1.922 | 0.126 | 2.282 | 0.025 |
碳氮比 C:N | 23.248 | <0.001 | 6.978 | <0.001 | 3.426 | 0.002 |
碳磷比 C:P | 28.676 | <0.001 | 38.313 | <0.001 | 5.335 | <0.001 |
氮磷比 N:P | 0.372 | 0.773 | 25.016 | <0.001 | 1.391 | 0.210 |
木质素氮比 Lignin:N | 6.648 | 0.001 | 1.119 | 0.361 | 1.604 | 0.130 |
Table 2 Two-way ANOVA between initial litter properties and litter types and precipitation treatments (mean ± SE, n = 3)
凋落物化学性质 Litter property | L | Pr | L × Pr | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
碳含量 Carbon (C) content | 6.758 | 0.001 | 1.391 | 0.255 | 1.444 | 0.187 |
氮含量 Nitrogen (N) content | 20.094 | <0.001 | 6.986 | <0.001 | 2.287 | 0.025 |
磷含量 Phosphorus (P) content | 6.708 | 0.001 | 19.042 | <0.001 | 1.767 | 0.088 |
木质素含量 Lignin content | 86.889 | <0.001 | 6.828 | <0.001 | 3.747 | 0.001 |
纤维素含量 Cellulose content | 289.576 | <0.001 | 1.483 | 0.225 | 3.227 | 0.003 |
半纤维素含量 Hemicellulose content | 575.796 | <0.001 | 1.922 | 0.126 | 2.282 | 0.025 |
碳氮比 C:N | 23.248 | <0.001 | 6.978 | <0.001 | 3.426 | 0.002 |
碳磷比 C:P | 28.676 | <0.001 | 38.313 | <0.001 | 5.335 | <0.001 |
氮磷比 N:P | 0.372 | 0.773 | 25.016 | <0.001 | 1.391 | 0.210 |
木质素氮比 Lignin:N | 6.648 | 0.001 | 1.119 | 0.361 | 1.604 | 0.130 |
差异来源 Source of variation | MR (%) | RC (%) | RN (%) | RP (%) | ||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | |
L | 51.072 | <0.001 | 23.966 | 0.001 | 138.895 | <0.001 | 73.247 | <0.001 |
T | 334.324 | <0.001 | 284.117 | <0.001 | 49.010 | 0.002 | 239.147 | <0.001 |
Pr | 34.481 | <0.001 | 60.966 | <0.001 | 104.726 | <0.001 | 158.340 | <0.001 |
L × T | 3.550 | 0.029 | 3.529 | 0.030 | 3.489 | 0.031 | 6.871 | 0.002 |
L × Pr | 3.632 | 0.003 | 1.924 | 0.083 | 14.058 | <0.001 | 27.063 | <0.001 |
T × Pr | 7.714 | <0.001 | 6.350 | 0.001 | 9.822 | <0.001 | 73.057 | <0.001 |
L × T × Pr | 3.077 | <0.001 | 1.855 | 0.034 | 3.762 | <0.001 | 5.484 | <0.001 |
Table 3 Repeated measures ANOVA of litter type, decomposition time and precipitation on mass loss and nutrient release
差异来源 Source of variation | MR (%) | RC (%) | RN (%) | RP (%) | ||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | |
L | 51.072 | <0.001 | 23.966 | 0.001 | 138.895 | <0.001 | 73.247 | <0.001 |
T | 334.324 | <0.001 | 284.117 | <0.001 | 49.010 | 0.002 | 239.147 | <0.001 |
Pr | 34.481 | <0.001 | 60.966 | <0.001 | 104.726 | <0.001 | 158.340 | <0.001 |
L × T | 3.550 | 0.029 | 3.529 | 0.030 | 3.489 | 0.031 | 6.871 | 0.002 |
L × Pr | 3.632 | 0.003 | 1.924 | 0.083 | 14.058 | <0.001 | 27.063 | <0.001 |
T × Pr | 7.714 | <0.001 | 6.350 | 0.001 | 9.822 | <0.001 | 73.057 | <0.001 |
L × T × Pr | 3.077 | <0.001 | 1.855 | 0.034 | 3.762 | <0.001 | 5.484 | <0.001 |
Fig. 2 Mass remaining rate of litters in different plant functional groups and communities under different precipitation treatments (mean ± SE, n = 3). CK, ambient control; Pr-90, 90% decrease of precipitation; Pr-50, 50% decrease of precipitation; Pr-30, 30% decrease of precipitation; Pr+50, 50% increase of precipitation. **, p < 0.01.
Fig. 3 Carbon (C), nitrogen (N) and phosphorus (P) remaining rate under different precipitation treatments (mean ± SE, n = 3). CK, ambient control; Pr-90, 90% decrease of precipitation; Pr-50, 50% decrease of precipitation; Pr-30, 30% decrease of precipitation; Pr+50, 50% increase of precipitation. *, p < 0.05; **, p < 0.01.
凋落物类型 Litter type | 降雨处理 Precipitation treatment | 回归方程 Regression equation | R2 | 分解系数 Decomposition coefficient (k) | 半分解时间 t0.5 (a) | 分解95%时间 t0.95 (a) |
---|---|---|---|---|---|---|
禾本科 Grass | Pr-90 | y = e-0.268t | 0.955 | 0.268 | 2.59 | 11.18 |
Pr-50 | y = e-0.438t | 0.935 | 0.438 | 1.58 | 6.84 | |
Pr-30 | y = e-0.373t | 0.987 | 0.373 | 1.86 | 8.03 | |
CK | y = e-0.513t | 0.898 | 0.513 | 1.35 | 5.84 | |
Pr+50 | y = e-0.391t | 0.947 | 0.391 | 1.77 | 7.66 | |
莎草科 Sedge | Pr-90 | y = e-0.387t | 0.989 | 0.387 | 1.79 | 7.74 |
Pr-50 | y = e-0.591t | 0.945 | 0.591 | 1.17 | 5.07 | |
Pr-30 | y = e-0.581t | 0.981 | 0.581 | 1.19 | 5.16 | |
CK | y = e-0.568t | 0.939 | 0.568 | 1.22 | 5.27 | |
Pr+50 | y = e-0.644t | 0.908 | 0.644 | 1.08 | 4.65 | |
杂类草 Forb | Pr-90 | y = e-0.402t | 0.958 | 0.402 | 1.72 | 7.45 |
Pr-50 | y = e-0.628t | 0.962 | 0.628 | 1.10 | 4.77 | |
Pr-30 | y = e-0.668t | 0.894 | 0.668 | 1.04 | 4.49 | |
CK | y = e-0.699t | 0.933 | 0.699 | 0.99 | 4.29 | |
Pr+50 | y = e-0.858t | 0.978 | 0.858 | 0.81 | 3.49 | |
群落 Community | Pr-90 | y = e-0.372t | 0.888 | 0.372 | 1.86 | 8.05 |
Pr-50 | y = e-0.626t | 0.948 | 0.626 | 1.11 | 4.79 | |
Pr-30 | y = e-0.695t | 0.942 | 0.695 | 1.00 | 4.31 | |
CK | y = e-0.710t | 0.959 | 0.710 | 0.98 | 4.22 | |
Pr+50 | y = e-0.737t | 0.945 | 0.737 | 0.94 | 4.07 |
Table 4 Exponential regression equations between mass remaining rate of different litter types and time under different precipitation treatments
凋落物类型 Litter type | 降雨处理 Precipitation treatment | 回归方程 Regression equation | R2 | 分解系数 Decomposition coefficient (k) | 半分解时间 t0.5 (a) | 分解95%时间 t0.95 (a) |
---|---|---|---|---|---|---|
禾本科 Grass | Pr-90 | y = e-0.268t | 0.955 | 0.268 | 2.59 | 11.18 |
Pr-50 | y = e-0.438t | 0.935 | 0.438 | 1.58 | 6.84 | |
Pr-30 | y = e-0.373t | 0.987 | 0.373 | 1.86 | 8.03 | |
CK | y = e-0.513t | 0.898 | 0.513 | 1.35 | 5.84 | |
Pr+50 | y = e-0.391t | 0.947 | 0.391 | 1.77 | 7.66 | |
莎草科 Sedge | Pr-90 | y = e-0.387t | 0.989 | 0.387 | 1.79 | 7.74 |
Pr-50 | y = e-0.591t | 0.945 | 0.591 | 1.17 | 5.07 | |
Pr-30 | y = e-0.581t | 0.981 | 0.581 | 1.19 | 5.16 | |
CK | y = e-0.568t | 0.939 | 0.568 | 1.22 | 5.27 | |
Pr+50 | y = e-0.644t | 0.908 | 0.644 | 1.08 | 4.65 | |
杂类草 Forb | Pr-90 | y = e-0.402t | 0.958 | 0.402 | 1.72 | 7.45 |
Pr-50 | y = e-0.628t | 0.962 | 0.628 | 1.10 | 4.77 | |
Pr-30 | y = e-0.668t | 0.894 | 0.668 | 1.04 | 4.49 | |
CK | y = e-0.699t | 0.933 | 0.699 | 0.99 | 4.29 | |
Pr+50 | y = e-0.858t | 0.978 | 0.858 | 0.81 | 3.49 | |
群落 Community | Pr-90 | y = e-0.372t | 0.888 | 0.372 | 1.86 | 8.05 |
Pr-50 | y = e-0.626t | 0.948 | 0.626 | 1.11 | 4.79 | |
Pr-30 | y = e-0.695t | 0.942 | 0.695 | 1.00 | 4.31 | |
CK | y = e-0.710t | 0.959 | 0.710 | 0.98 | 4.22 | |
Pr+50 | y = e-0.737t | 0.945 | 0.737 | 0.94 | 4.07 |
Fig. 4 Linear regressions between decomposition rate of different litter types and precipitation treatments. CK, ambient control; Pr-90, 90% decrease of precipitation; Pr-50, 50% decrease of precipitation; Pr-30, 30% decrease of precipitation; Pr+50, 50% increase of precipitation. **, p < 0.01; ***, p < 0.001.
Fig. 5 Structural equation model between precipitation, litter types, initial chemical properties and litter decomposition characteristics. Line thickness indicates relative effect size. Solid lines indicate significant paths, whereas dotted lines indicate non-significant paths. Red indicates positive effects, while blue indicates negative effects. R2 indicates variation explained, and numbers on lines are standardized path coefficients. ***, p < 0.001.
[1] |
Austin AT, Vitousek PM (2000). Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawaii. Journal of Ecology, 88, 129-138.
DOI URL |
[2] |
Bloor JMG, Bardgett RD (2012). Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: interactions with plant species diversity and soil nitrogen availability. Perspectives in Plant Ecology, Evolution and Systematics, 14, 193-204.
DOI URL |
[3] | Chapin III FS, Matson PA, Vitouseh PM (2011). Principles of Terrestrial Ecosystem Ecology. Springer, New York. 6-137. |
[4] |
Chen SL, Cai JS, Lin CF, Song HW, Yang YS (2020). Response of leaf litter decomposition of different tree species to nitrogen addition in a subtropical forest. Chinese Journal of Plant Ecology, 44, 214-227.
DOI URL |
[ 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛 (2020). 亚热带不同树种凋落叶分解对氮添加的响应. 植物生态学报, 44, 214-227.]
DOI |
|
[5] |
Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, et al. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065-1071.
DOI PMID |
[6] |
Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776-779.
DOI URL |
[7] | Cromack K, Monk CD (1975). Litter production, decomposition and nutrient cycling in a mixed hardwood watershed and a white pine watershed//Howell FG, Gentry JB, Smith MH. Mineral Cycling in Southeastern Ecosystems. Energy Research and Development Administration, Washington D.C. 609-624. |
[8] | Deng RJ, Yang WQ, Feng RF, Hu JL, Qin JL, Xiong XJ (2009). Mass loss and element release of litter in the subalpine forest over one freeze-thaw season. Acta Ecologica Sinica, 29, 5730-5735. |
[ 邓仁菊, 杨万勤, 冯瑞芳, 胡建利, 秦嘉励, 熊雪晶 (2009). 季节性冻融期间亚高山森林凋落物的质量损失及元素释放. 生态学报, 29, 5730-5735.] | |
[9] |
Ding XH, Luo SZ, Liu JW, Li K, Liu GH (2012). Longitude gradient changes on plant community and soil stoichiometry characteristics of grassland in Hulunbeir. Acta Ecologica Sinica, 32, 3467-3476.
DOI URL |
[ 丁小慧, 罗淑政, 刘金巍, 李魁, 刘国华 (2012). 呼伦贝尔草地植物群落与土壤化学计量学特征沿经度梯度变化. 生态学报, 32, 3467-3476.] | |
[10] |
Du NN, Li WR, Qiu LP, Zhang YJ, Wei XR, Zhang XC (2020). Mass loss and nutrient release during the decomposition of sixteen types of plant litter with contrasting quality under three precipitation regimes. Ecology and Evolution, 10, 3367-3382.
DOI URL |
[11] |
Duan JC, Wang SP, Zhang ZH, Xu GP, Luo CY, Chang XF, Zhu XX, Cui SJ, Zhao XQ, Wang WY, Du MY (2013). Non-additive effect of species diversity and temperature sensitivity of mixed litter decomposition in the alpine meadow on Tibetan Plateau. Soil Biology & Biochemistry, 57, 841-847.
DOI URL |
[12] | Fan CR, Zhang CF, Shi XH, Sun B (2020). Nitrogen loss in surface runoff from Hulun Buir steppe in different grazing systems. Ecology and Environmental Sciences, 29, 951-960. |
[ 樊才睿, 张成福, 史小红, 孙标 (2020). 不同放牧制度草地径流中氮流失及模拟研究. 生态环境学报, 29, 951-960.] | |
[13] |
García-Palacios P, Prieto I, Ourcival JM, Hättenschwiler S (2016). Disentangling the litter quality and soil microbial contribution to leaf and fine root litter decomposition responses to reduced rainfall. Ecosystems, 19, 490-503.
DOI URL |
[14] |
Gavazov KS (2010). Dynamics of alpine plant litter decomposition in a changing climate. Plant and Soil, 337, 19-32.
DOI URL |
[15] | Gu LC, Wang GL, Jing H, Yao X (2017). Response of decomposition and nutrient release in different diameter fine roots of Pinus tabuliformis plantation to N addition. Chinese Journal of Applied Ecology, 28, 2771-2777. |
[ 谷利茶, 王国梁, 景航, 姚旭 (2017). 氮添加对油松不同径级细根分解及其养分释放的影响. 应用生态学报, 28, 2771-2777.] | |
[16] |
Guo GX, Kong WD, Liu JB, Zhao JX, Du HD, Zhang XZ, Xia PH (2015). Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau. Applied Microbiology and Biotechnology, 99, 8765-8776.
DOI URL |
[17] |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122.
DOI URL |
[18] | Hu N, Fan YL, Ding SY, Liao BH (2008). Progress in researches on plant functional groups of terrestrial ecosystems. Acta Ecologica Sinica, 28, 3302-3311. |
[ 胡楠, 范玉龙, 丁圣彦, 廖秉华 (2008). 陆地生态系统植物功能群研究进展. 生态学报, 28, 3302-3311.] | |
[19] | Huang JY, Yu HL, Liu JL, Ma F, Han L (2018). Effects of precipitation levels on the C:N:P stoichiometry in plants, microbes, and soils in a desert steppe in China. Acta Ecologica Sinica, 38, 5362-5373. |
[ 黄菊莹, 余海龙, 刘吉利, 马飞, 韩磊 (2018). 控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响. 生态学报, 38, 5362-5373.] | |
[20] | Huo LX, Hong M, Zhao B, Gao HY, Ye H (2019). Effects of increased nitrogen deposition and changing rainfall patterns on litter decomposition in a desert grassland. Acta Ecologica Sinica, 39, 2139-2146. |
[ 霍利霞, 红梅, 赵巴音那木拉, 高海燕, 叶贺 (2019). 氮沉降和降雨变化对荒漠草原凋落物分解的影响. 生态学报, 39, 2139-2146.] | |
[21] | Ji Q, Yang JP, Chen HJ (2018). Comprehensive analysis of the precipitation changes over the Tibetan Plateau during 1961-2015. Journal of Glaciology and Geocryology, 40, 1090-1099. |
[ 冀钦, 杨建平, 陈虹举 (2018). 1961-2015年青藏高原降水量变化综合分析. 冰川冻土, 40, 1090-1099.] | |
[22] |
Jiang Y, Yao Y, Wang Y (2012). Physiological response, cell wall components, and gene expression of switchgrass under short-term drought stress and recovery. Crop Science, 52, 2718-2727.
DOI URL |
[23] | Jiao M, Shen WJ (2014). Effects of seasonal precipitation variation on litter-fall in lower subtropical evergreen broad-leaved forest. Journal of Tropical and Subtropical Botany, 22, 549-557. |
[ 焦敏, 申卫军 (2014). 模拟降水分配季节变化对南亚热带常绿阔叶林凋落物的影响. 热带亚热带植物学报, 22, 549-557.] | |
[24] | Li QL, Zeng H (2017). Leaf litter decomposition of ten plant species in a forested wetland in South Carolina, USA. Acta Ecologica Sinica, 37, 2342-2351. |
[ 李巧玲, 曾辉 (2017). 美国南卡罗来纳州森林湿地十种典型植物凋落叶的分解特征. 生态学报, 37, 2342-2351.] | |
[25] | Li XF, Han SJ, Zhang Y (2007). Indirect effects of precipitation on litter decomposition of Quercus mongolica. Chinese Journal of Applied Ecology, 18, 261-266. |
[ 李雪峰, 韩士杰, 张岩 (2007). 降水量变化对蒙古栎落叶分解过程的间接影响. 应用生态学报, 18, 261-266.] | |
[26] | Li YN, Zhou XM, Zhang NL, Ma KP (2016). The research of mixed litter effects on litter decomposition in terrestrial ecosystems. Acta Ecologica Sinica, 36, 4977-4987. |
[ 李宜浓, 周晓梅, 张乃莉, 马克平 (2016). 陆地生态系统混合凋落物分解研究进展. 生态学报, 36, 4977-4987.] | |
[27] | Liu W, Wang LH, Liu L, Fu R, Wu XH, Huang CD (2017). Effects of increasing precipitation on leaf litter decomposition in Pinus yunnanensis plantation in Sichuan dry river valley. Journal of Northwest A&F University (Natural Science Edition), 45, 88-95. |
[ 刘尉, 王丽华, 刘林, 符饶, 吴小辉, 黄从德 (2017). 增加降水对四川干旱河谷区云南松人工林凋落叶分解的影响. 西北农林科技大学学报(自然科学版), 45, 88-95.] | |
[28] | Lu RK (1999). Analysis Methods of Soil and Agricultural Chemistry. Chinese Agricultural Science and Technology Press, Beijing. 296-338. |
[ 鲁如坤 (1999). 土壤农业化学分析方法. 中国农业科技出版社, 北京. 296-338.] | |
[29] | Ma ZL, Gao S, Yang WQ, Wu FZ (2015). Dynamics of nitrogen and phosphorus release in decomposing foliar litter at different rainy stages in the subtropical evergreen broad- leaved forest. Chinese Journal of Applied and Environmental Biology, 21, 308-315. |
[ 马志良, 高顺, 杨万勤, 吴福忠 (2015). 亚热带常绿阔叶林凋落叶分解过程中氮和磷在不同雨热季节的释放动态. 应用与环境生物学报, 21, 308-315.] | |
[30] |
Moore TR, Trofymow JA, Prescott CE, Titus BD, CIDET Working Group (2011). Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests. Plant and Soil, 339, 163-175.
DOI URL |
[31] |
Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331.
DOI URL |
[32] |
Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364.
DOI URL |
[33] |
Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B: Chemical and Physical Meteorology, 44, 81-99.
DOI URL |
[34] |
Salamanca EF, Kaneko N, Katagiri S (2003). Rainfall manipulation effects on litter decomposition and the microbial biomass of the forest floor. Applied Soil Ecology, 22, 271-281.
DOI URL |
[35] |
Schimel J, Balser TC, Wallenstein M (2007). Microbial stress- response physiology and its implications for ecosystem function. Ecology, 88, 1386-1394.
DOI PMID |
[36] |
Schuster MJ (2016). Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie. Oecologia, 180, 645-655.
DOI PMID |
[37] |
Semmartin M, Aguiar MR, Distel RA, Moretto AS, Ghersa CM (2004). Litter quality and nutrient cycling affected by grazing-induced species replacements along a precipitation gradient. Oikos, 107, 148-160.
DOI URL |
[38] | Shi MM, Niu DC, Wang Y, Yuan XB, He L, Han BH, Zong WJ, Fu H (2017). Effect of fencing and grazing management on the plant functional traits and functional diversity in an alpine meadow on the Tibetan Plateau. Acta Botanica Boreali-Occidentalia Sinica, 37, 1216-1225. |
[ 石明明, 牛得草, 王莹, 袁晓波, 贺磊, 韩炳宏, 宗文杰, 傅华 (2017). 围封与放牧管理对高寒草甸植物功能性状和功能多样性的影响. 西北植物学报, 37, 1216-1225.] | |
[39] | Shu WW, Chen L, Liu SR, Zeng J, Li H, Zheng L, Chen WJ (2020). Effects of throughfall reduction on litter decomposition of Pinus massoniana plantation in subtropical China. Acta Ecologica Sinica, 40, 4538-4545. |
[ 舒韦维, 陈琳, 刘世荣, 曾冀, 李华, 郑路, 陈文军 (2020). 减雨对南亚热带马尾松人工林凋落物分解的影响. 生态学报, 40, 4538-4545.] | |
[40] | Song HW, Hong HB, Chen SL, Lin CF, Yang YS (2021). Effects of phosphorus addition on fine root decomposition of Castanopsis carlesii, Cunninghamia lanceolata and mixed. Journal of Forest and Environment, 41, 1-9. |
[ 宋豪威, 洪慧滨, 陈思路, 林成芳, 杨玉盛 (2021). 磷添加对米槠和杉木及其混合细根分解的影响. 森林与环境学报, 41, 1-9.] | |
[41] |
Sun Y, He XZ, Hou FJ, Wang ZF, Chang SH (2018). Grazing increases litter decomposition rate but decreases nitrogen release rate in an alpine meadow. Biogeosciences, 15, 4233-4243.
DOI URL |
[42] |
Suseela V, Tharayil N, Xing B, Dukes JS (2013). Labile compounds in plant litter reduce the sensitivity of decomposition to warming and altered precipitation. New Phytologist, 200, 122-133.
DOI PMID |
[43] |
Suzuki Y, Makino A, Mae T (2001). An efficient method for extraction of RNA from rice leaves at different ages using benzyl chloride. Journal of Experimental Botany, 52, 1575-1579.
PMID |
[44] | Van Soest PJ (1963). Use of detergents in analysis of fibrous feeds. 2. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Analytical Chemists, 46, 829-835. |
[45] |
Vigil MF, Kissel DE (1991). Equations for estimating the amount of nitrogen mineralized from crop residues. Soil Science Society of America Journal, 55, 757-761.
DOI URL |
[46] |
Vitousek P (1982). Nutrient cycling and nutrient use efficiency. The American Naturalist, 119, 553-572.
DOI URL |
[47] |
Wang HL, Liu GC, Huang BB, Wang XC, Xing YJ, Wang QG (2021). Long-term nitrogen addition and precipitation reduction decrease soil nematode community diversity in a temperate forest. Applied Soil Ecology, 162, 103895. DOI: 10.1016/j.apsoil.2021.103895.
DOI URL |
[48] | Wang QB, Li LH, Bai YF, Xing XR (2000). Effects of simulated climate change on the decomposition of mixed litter in three steppe communities. Acta Phytoecologica Sinica, 24, 674-679. |
[ 王其兵, 李凌浩, 白永飞, 邢雪荣 (2000). 模拟气候变化对3种草原植物群落混合凋落物分解的影响. 植物生态学报, 24, 674-679.] | |
[49] |
Wang X, Xu Z, Lü X, Wang R, Cai J, Yang S, Li MH, Jiang Y (2017). Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland. Plant and Soil, 418, 241-253.
DOI URL |
[50] | Wang XE, Xue L, Xie TF (2009). A review on litter decomposition. Chinese Journal of Soil Science, 40, 1473-1478. |
[ 王相娥, 薛立, 谢腾芳 (2009). 凋落物分解研究综述. 土壤通报, 40, 1473-1478.] | |
[51] | Wang XY, Zhao XY, Li YL, Lian J, Qu H, Yue XF (2013). Effects of environmental factors on litter decomposition in arid and semi-arid regions: a review. Chinese Journal of Applied Ecology, 24, 3300-3310. |
[ 王新源, 赵学勇, 李玉霖, 连杰, 曲浩, 岳祥飞 (2013). 环境因素对干旱半干旱区凋落物分解的影响研究进展. 应用生态学报, 24, 3300-3310.] | |
[52] | Wang YX, Liu GY, Deng Q, Shi XR, Yuan ZY (2020). Leaf-litter decomposition of Robinia pseudoacacia and Pinus tabulaeformis planted forests at different rainy periods in the loess hilly region. Acta Ecologica Sinica, 40, 6872-6884. |
[ 王云霞, 刘桂要, 邓强, 时新荣, 袁志友 (2020). 黄土丘陵区人工林刺槐和油松凋落叶在不同降雨时期的分解特征. 生态学报, 40, 6872-6884.] | |
[53] |
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
PMID |
[54] | Wei Q, Zhou HK, Yao BQ, Liu ZH, Tian LW, Wang WY, Zhao XQ (2013). Effects of fertilizer and water additions on the litter decomposition of four typical plants in Kobresia humilis meadow. Acta Agrestia Sinica, 21, 875-880. |
[ 魏晴, 周华坤, 姚步青, 刘泽华, 田林卫, 王文颖, 赵新全 (2013). 施肥和增雨雪对矮嵩草草甸4种典型植物凋落物分解的影响. 草地学报, 21, 875-880.] | |
[55] | Wu JS, Li XJ, Shen ZX, Zhang XZ, Shi PL, Yu CQ, Wang JS, Zhou YT (2012). Species diversity distribution pattern of alpine grasslands communities along a precipitation gradient across Northern Tibetan Plateau. Acta Prataculturae Sinica, 21(3), 17-25. |
[ 武建双, 李晓佳, 沈振西, 张宪洲, 石培礼, 余成群, 王景升, 周宇庭 (2012). 藏北高寒草地样带物种多样性沿降水梯度的分布格局. 草业学报, 21(3), 17-25.] | |
[56] | Xiang YB, Zhou SX, Xiao YX, Hu TX, Tu LH, Huang CD, Gao BD (2017). Effects of simulated nitrogen deposition and precipitation changes on litter decomposition in an evergreen broad-leaved forest in the rainy area of western China. Acta Ecologica Sinica, 37, 455-463. |
[ 向元彬, 周世兴, 肖永翔, 胡庭兴, 涂利华, 黄从德, 高保丹 (2017). 模拟氮沉降和降雨对华西雨屏区常绿阔叶林凋落物分解的影响. 生态学报, 37, 455-463.] | |
[57] |
Xiao WY, Chen C, Chen XL, Huang ZQ, Chen HYH (2020). Functional and phylogenetic diversity promote litter decomposition across terrestrial ecosystems. Global Ecology and Biogeography, 29, 2261-2272.
DOI URL |
[58] |
Xu GP, Hu YG, Wang SP, Zhang ZH, Chang XF, Duan JC, Luo CY, Chao ZG, Su AL, Lin QY, Li YN, Du MY (2010). Effects of litter quality and climate change along an elevation gradient on litter mass loss in an alpine meadow ecosystem on the Tibetan Plateau. Plant Ecology, 209, 257-268.
DOI URL |
[59] | Yan HY, Gu XR, Shen H (2010). Microbial decomposition of forest litter: a review. Chinese Journal of Ecology, 29, 1827-1835. |
[ 严海元, 辜夕容, 申鸿 (2010). 森林凋落物的微生物分解. 生态学杂志, 29, 1827-1835.] | |
[60] |
Yan ZQ, Qi YC, Dong YS, Peng Q, Guo SF, He YL, Li ZL (2018). Precipitation and nitrogen deposition alter litter decomposition dynamics in semiarid temperate steppe in Inner Mongolia, China. Rangeland Ecology & Management, 71, 220-227.
DOI URL |
[61] |
Yang G, Chen H, Wu N, Tian JQ, Peng CH, Zhu QA, Zhu D, He YX, Zheng QY, Zhang CB (2014). Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China. Soil Biology & Biochemistry, 78, 83-89.
DOI URL |
[62] | Yang YJ, Liu SR, Chen L, Wang H, Lu LH (2018). Short-term effects of manipulated throughfall reduction on the quantity and quality of litterfall in a Pinus massoniana plantation. Acta Ecologica Sinica, 38, 4770-4778. |
[ 杨予静, 刘世荣, 陈琳, 王晖, 卢立华 (2018). 模拟降雨减少对马尾松人工林凋落物量及其化学性质的短期影响. 生态学报, 38, 4770-4778.] | |
[63] | Yao TD, Zhu LP (2006). The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy. Advances in Earth Science, 21, 459-464. |
[ 姚檀栋, 朱立平 (2006). 青藏高原环境变化对全球变化的响应及其适应对策. 地球科学进展, 21, 459-464.] | |
[64] |
Yin NW, Li JN, Liu X, Lian JP, Fu C, Li W, Jiang JY, Xue YF, Wang J, Chai YR (2017). Lignification response and the difference between stem and root of Brassica napus under heat and drought compound stress. Acta Agronomica Sinica, 43, 1689-1695.
DOI URL |
[ 尹能文, 李加纳, 刘雪, 练剑平, 付春, 李威, 蒋佳怡, 薛雨飞, 王君, 柴友荣 (2017). 高温干旱下油菜的木质化应答及其在茎与根中的差异. 作物学报, 43, 1689-1695.]
DOI |
|
[65] |
Yuan Z, Chen HYH (2009). Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology and Biogeography, 18, 532-542.
DOI URL |
[66] | Yue XY, Zuo XA, Yu Q, Xu C, Lv P, Zhang J (2018). Effects of precipitation and short term extreme drought on leaf traits in Inner Mongolia typical steppe. Journal of Desert Research, 38, 1009-1016. |
[ 岳喜元, 左小安, 庾强, 徐翀, 吕朋, 张晶 (2018). 降水量和短期极端干旱对典型草原植物群落及优势种羊草(Leymus chinensis)叶性状的影响. 中国沙漠, 38, 1009-1016.] | |
[67] |
Zhang HZ, Shi LL, Fu SL (2020). Effects of nitrogen deposition and increased precipitation on soil phosphorus dynamics in a temperate forest. Geoderma, 380, 114650. DOI: 10.1016/j.geoderma.2020.114650.
DOI URL |
[68] | Zhang RY, Shi XM, Li WJ, Guo R, Wang G (2015). Response of species homeostasis and biomass on a sub-alpine grassland. Pratacultural Science, 32, 1539-1547. |
[ 张仁懿, 史小明, 李文金, 郭睿, 王刚 (2015). 亚高寒草甸物种内稳性与生物量变化模式. 草业科学, 32, 1539-1547.] | |
[69] |
Zhang XY, Wang W (2015). Control of climate and litter quality on leaf litter decomposition in different climatic zones. Journal of Plant Research, 128, 791-802.
DOI URL |
[70] |
Zhang ZG, Wei HX (2019). Variations of leaf construction cost and leaf traits within the species of Artemisia ordosica along a precipitation gradient in the Mau Us sandy land. Chinese Journal of Plant Ecology, 43, 979-987.
DOI URL |
[ 张治国, 魏海霞 (2019). 毛乌素沙地油蒿叶建成成本及相关叶性状沿降水梯度的变化. 植物生态学报, 43, 979-987.]
DOI |
|
[71] |
Zheng HF, Chen YM, Liu Y, Heděnec P, Peng Y, Xu ZF, Tan B, Zhang L, Guo L, Wang LF, Vesterdal L (2021). Effects of litter quality diminish and effects of vegetation type develop during litter decomposition of two shrub species in an alpine treeline ecotone. Ecosystems, 24, 197-210.
DOI URL |
[72] | Zhou XQ, Wu FZ, Yang WQ, Zhu JX (2011). Dynamics of microbial biomass during litter decomposition in the alpine forest. Acta Ecologica Sinica, 31, 4144-4152. |
[ 周晓庆, 吴福忠, 杨万勤, 朱剑霄 (2011). 高山森林凋落物分解过程中的微生物生物量动态. 生态学报, 31, 4144-4152.] | |
[73] |
Zhu W, Wang J, Zhang Z, Ren F, Chen L, He JS (2016). Changes in litter quality induced by nutrient addition alter litter decomposition in an alpine meadow on the Qinghai- Tibet Plateau. Scientific Reports, 6, 34290. DOI: 10.1038/ srep34290.
DOI URL |
[74] | Zhu XY, Li ZH, Lin QM, Li GT, Zhao XR (2020). Turnover of soil microbial biomass phosphorus in typical steppe under different simulated rainfalls during spring. Acta Ecologica Sinica, 40, 2655-2661. |
[ 朱晓亚, 李子豪, 林启美, 李贵桐, 赵小蓉 (2020). 模拟不同春季降雨量下典型草原土壤微生物磷周转特征. 生态学报, 40, 2655-2661.] | |
[75] |
Zi HB, Hu L, Wang CT, Wang GX, Wu PF, Lerdau M, Ade LJ (2018). Responses of soil bacterial community and enzyme activity to experimental warming of an alpine meadow. European Journal of Soil Science, 69, 429-438.
DOI URL |
[1] | Wei-Wei SHE Qin shugao Yan-Gui QIAO Yuqing Zhang. Effects of nitrogen and water addition on leaf nitrogen and phosphorus stoichiometry of dominant species in an Artemisia ordosica community [J]. Chin J Plant Ecol, 2024, 48(5): 590-600. |
[2] | LI Bing, ZHU Wan-Wan, HAN Cui, YU Hai-Long, HUANG Ju-Ying. Soil respiration and its influencing factors in a desert steppe in northwestern China under changing precipitation regimes [J]. Chin J Plant Ecol, 2023, 47(9): 1310-1321. |
[3] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[4] | LI Wei-Ying, ZHANG Zheng-Ren, XIN Ya-Xuan, WANG Fei, XIN Pei-Yao, GAO Jie. Needle phenotype variation among natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya [J]. Chin J Plant Ecol, 2023, 47(6): 833-846. |
[5] | LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient [J]. Chin J Plant Ecol, 2023, 47(6): 822-832. |
[6] | ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China [J]. Chin J Plant Ecol, 2023, 47(5): 629-643. |
[7] | LAI Shuo-Tian, WU Fu-Zhong, WU Qiu-Xia, ZHU Jing-Jing, NI Xiang-Yin. Reduced release of labile carbon from Abies fargesii var. faxoniana needle litter after snow removal in an alpine forest [J]. Chin J Plant Ecol, 2023, 47(5): 672-686. |
[8] | ZHAO Xiao-Xiang, ZHU Bin-Bin, TIAN Qiu-Xiang, LIN Qiao-Ling, CHEN Long, LIU Feng. Research progress on home-field advantage of leaf litter decomposition [J]. Chin J Plant Ecol, 2023, 47(5): 597-607. |
[9] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[10] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[11] | LI Hui-Xuan, MA Hong-Liang, YIN Yun-Feng, GAO Ren. Dynamic of labile, recalcitrant carbon and nitrogen during the litter decomposition in a subtropical natural broadleaf forest [J]. Chin J Plant Ecol, 2023, 47(5): 618-628. |
[12] | WANG Xiao-Yue, XU Yi-Xin, LI Chun-Huan, YU Hai-Long, HUANG Ju-Ying. Changes of plant biomass, species diversity, and their influencing factors in a desert steppe of northwestern China under long-term changing precipitation [J]. Chin J Plant Ecol, 2023, 47(4): 479-490. |
[13] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[14] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
[15] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn