Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (2): 144-153.DOI: 10.17521/cjpe.2020.0273
Special Issue: 凋落物
• Research Articles • Previous Articles Next Articles
Fan Lin-Jie1,2,4, LI Cheng-Dao1,2,4, LI Xiang-Yi1,3,*(), Henry J. SUN5, LIN Li-Sha1,2,3, LIU Bo6
Received:
2020-08-10
Accepted:
2020-10-12
Online:
2021-02-20
Published:
2021-03-09
Contact:
LI Xiang-Yi
Supported by:
Fan Lin-Jie, LI Cheng-Dao, LI Xiang-Yi, Henry J. SUN, LIN Li-Sha, LIU Bo. Effects of sand burial on litter decomposition rate and salt content dynamics in an extremely arid region[J]. Chin J Plant Ecol, 2021, 45(2): 144-153.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0273
物种 Species | C (g·kg-1) | N (g·kg-1) | C:N | 纤维素 Cellulose (%) | 半纤维素 Semi-cellulose (%) | 木质素 Lignin (%) | 水溶性盐 Water-soluble salt (%) |
---|---|---|---|---|---|---|---|
花花柴 Karelinia caspia | 367.4 ± 1.07b | 4.65 ± 0.07b | 79.07 ± 1.20b | 24.9 ± 1.4b | 14.3 ± 1.9a | 14.7 ± 0.8a | 18.1 ± 0.6a |
骆驼刺 Alhagi sparsifolia | 419.4 ± 0.58a | 11.75 ± 0.60a | 35.87 ± 1.83c | 28.1 ± 0.7b | 2.8 ± 0.3b | 10.7 ± 0.3b | 11.8 ± 0.3b |
胡杨 Populus euphratica | 413.8 ± 0.70a | 3.57 ± 0.24b | 116.94 ± 7.68a | 35.7 ± 0.2a | 14.2 ± 1.2a | 12.9 ± 1.3a | 5.5 ± 0.1c |
Table 1 Initial leaf litter chemical composition of the three species in extremely arid region (mean ± SE)
物种 Species | C (g·kg-1) | N (g·kg-1) | C:N | 纤维素 Cellulose (%) | 半纤维素 Semi-cellulose (%) | 木质素 Lignin (%) | 水溶性盐 Water-soluble salt (%) |
---|---|---|---|---|---|---|---|
花花柴 Karelinia caspia | 367.4 ± 1.07b | 4.65 ± 0.07b | 79.07 ± 1.20b | 24.9 ± 1.4b | 14.3 ± 1.9a | 14.7 ± 0.8a | 18.1 ± 0.6a |
骆驼刺 Alhagi sparsifolia | 419.4 ± 0.58a | 11.75 ± 0.60a | 35.87 ± 1.83c | 28.1 ± 0.7b | 2.8 ± 0.3b | 10.7 ± 0.3b | 11.8 ± 0.3b |
胡杨 Populus euphratica | 413.8 ± 0.70a | 3.57 ± 0.24b | 116.94 ± 7.68a | 35.7 ± 0.2a | 14.2 ± 1.2a | 12.9 ± 1.3a | 5.5 ± 0.1c |
Fig. 2 Ratio of remaining litter mass at different times of decomposition in extremely arid region (mean ± SE). A, Karelinia caspia. B, Alhagi sparsifolia. C, Populus euphratica. Different lowercase letters indicate that the significant differences between treatments (p < 0.05).
Fig. 3 Values of the litter decomposition constant (k) for different burial treatments in extremely arid region (mean ± SE). Different lowercase letters indicate significant differences between species under the same treatments (p < 0.05).
Fig. 4 Ratio of litter water-soluble salt residue at different times of decomposition in extremely arid region (mean ± SE). A, Karelinia caspia. B, Alhagi sparsifolia. C, Populus euphratica. Different lowercase letters indicate significant differences between treatments (p < 0.05).
Fig. 5 Relationships between litter mass and water-soluble salt residue in extremely arid region. A, Surface. B, 2 cm depth. C, 15 cm depth. The solid line represents the fitting curve of the relationship, and the dotted line represents y = x (1:1).
Fig. 6 Litter dissolved water-soluble salt at different times of decomposition in extremely arid region (mean ± SE). A, Karelinia caspia. B, Alhagi sparsifolia. C, Populus euphratica. Different lowercase letters indicate significant differences between treatments (p < 0.05).
Fig. 7 Ratio of litter water-soluble salt residue of three species under different treatments in extremely arid region (mean ± SE). Different lowercase letters indicate significant differences between treatments (p < 0.05).
[1] | An GX, Zeng FJ, Sun XW, Liu B, Liu Z, Zhang XL (2011). Soil water conditions under various vegetations in southern fringe of Takelamakan Desert. Bulletin of Soil and Water Conservation, 31,63-67. |
[ 安桂香, 曾凡江, 孙旭伟, 刘波, 刘镇, 张晓蕾 (2011). 塔克拉玛干沙漠南缘不同植被区土壤水分状况研究. 水土保持通报, 31,63-67.] | |
[2] |
Austin AT, Araujo PI, Leva PE (2009). Interaction of position, litter type, and water pulses on decomposition of grasses from the semiarid Patagonian steppe. Ecology, 90,2642-2647.
PMID |
[3] |
Austin AT, Ballare CL (2010). Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 107,4618-4622.
DOI PMID |
[4] |
Austin AT, Vivanco L (2006). Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature, 442,555-558.
PMID |
[5] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. China Agriculture Press, Beijing.257-263. |
[ 鲍士旦 (2000). 土壤农化分析. 中国农业出版社, 北京.257-263.] | |
[6] |
Berg B (2000). Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management, 133(1-2),13-22.
DOI URL |
[7] | Berg B, Laskowski R (2006). Litter decomposition: a guide to carbon and nutrient turnover//Luo Y. Advances in Ecological Research. Academic Press, London. |
[8] |
Day TA, Zhang ET, Ruhland CT (2007). Exposure to solar UV-B radiation accelerates mass and lignin loss of Larrea tridentata litter in the Sonoran Desert . Plant Ecology, 193,185-194.
DOI URL |
[9] |
Dong ZW, Zhao Y, Lei JQ, Xi YQ (2018). Distribution pattern and influencing factors of soil salinity at Tamarix cones in the Taklimakan Desert. Chinese Journal of Plant Ecology, 42,873-884.
DOI URL |
[ 董正武, 赵英, 雷加强, 喜银巧 (2018). 塔克拉玛干沙漠不同区域柽柳沙包土壤盐分分布特征及其影响因素. 植物生态学报, 42,873-884.]
DOI |
|
[10] |
Eswaran H, van den Berg E, Reich P (1993). Organic carbon in soils of the world. Soil Science Society of America Journal, 57,192-194.
DOI URL |
[11] |
Fu S, Zou X, Coleman D (2009). Highlights and perspectives of soil biology and ecology research in China. Soil Biology & Biochemistry, 41,868-876.
DOI URL |
[12] |
Gallardo A, Merino J (1993). Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology, 74,152-161.
DOI URL |
[13] |
Gallo ME, Sinsabaugh RL, Cabaniss SE (2006). The role of ultraviolet radiation in litter decomposition in arid ecosystems. Applied Soil Ecology, 34,82-91.
DOI URL |
[14] |
Georgiou CD, Sun HJ, McKay CP, Grintzalis K, Papapostolou I, Zisimopoulos D, Panagiotidis K, Zhang G, Koutsopoulou E, Christidis GE, Margiolaki I (2015). Evidence for photochemical production of reactive oxygen species in desert soils. Nature Communications, 6,7100. DOI: 10.1038/ncomms8100.
DOI URL |
[15] |
Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000). Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6,751-765.
DOI URL |
[16] | He YH, Liu XP, Xie ZK (2015). Enrichment of soil salinity and nutrients under desertification shrub Reaumuria soongorica. Journal of Arid Land Resources and Environment, 29(3),115-119. |
[ 何玉惠, 刘新平, 谢忠奎 (2015). 红砂灌丛对土壤盐分和养分的富集作用. 干旱区资源与环境, 29(3),115-119.] | |
[17] | Heitner C, Scaiano JC (1993). Photochemistry of Lignocellulosic Materials. American Chemical Society, Washington DC. |
[18] | Jia L, An LZ (2004). Studies of desalting ability and desalting structure in Karelinia caspica. Acta Botanica Boreali- occidentalia Sinica, 24,510-515. |
[ 贾磊, 安黎哲 (2004). 花花柴脱盐能力及脱盐结构研究. 西北植物学报, 24,510-515.] | |
[19] |
Jiao J, Zou H, Jia Y, Wang N (2009). Research progress on the effects of soil erosion on vegetation. Acta Ecologica Sinica, 29(2),85-91.
DOI URL |
[20] | Li CD, LI XY, Sun HJ, LI L, Lin LS (2019). Decomposition characteristics of Karelinia caspia, Alhagi sparsifolia and Populus euphratica leaves in extremely arid areas. Journal of Desert Research, 39(2),193-201. |
[ 李成道, 李向义, Sun HJ, 李磊, 林丽莎 (2019). 极端干旱区花花柴( Karelinia caspia)、骆驼刺( Alhagi sparsifolia)和胡杨( Populus euphratica)叶片凋落物分解特征. 中国沙漠, 39(2),193-201.] | |
[21] | Li CJ, Wang SJ, Xie YJ, Sun YQ, Ye YL, Zhang H (2017). Exploitation and utilization situation of halophyte resources in Xinjiang. Journal of Anhui Agricultural Sciences, 45(23),1-5. |
[ 李从娟, 王世杰, 谢贻军, 孙永强, 叶艳丽, 张恒 (2017). 新疆盐生植物资源及开发利用. 安徽农业科学, 45(23),1-5.] | |
[22] |
Liu GF, Cornwell WK, Pan X, Ye D, Liu FH, Huang ZY, Dong M, Cornelissen JHC (2015). Decomposition of 51 semidesert species from wide-ranging phylogeny is faster in standing and sand-buried than in surface leaf litters: implications for carbon and nutrient dynamics. Plant and Soil, 396,175-187.
DOI URL |
[23] | Liu JH, Wang XQ, Ma Y, Tan FZ (2016). Spatial variation of soil salinity on Tamarix ramosissima nebkhas and iterdune in oasis-desert ecotone. Journal of Desert Research, 36(1),181-189. |
[ 刘进辉, 王雪芹, 马洋, 谭凤翥 (2016). 绿洲沙漠过渡带柽柳( Tamarix ramosissima)灌丛沙堆-丘间地系统土壤盐分含量特征. 中国沙漠, 36(1),181-189.] | |
[24] | Liu Q (2014). The Environmental Change Revealed by the Material Composition of the Tamarix cone Sedimentary in the Southern Region of the Taklimakan Desert. PhD dissertation, Hebei Normal University, Shijiazhuang. |
[ 刘倩 (2014). 红柳沙包物质组成揭示的塔克拉玛干沙漠南缘地区环境变化. 博士学位论文, 河北师范大学, 石家庄.] | |
[25] | Liu SR, Hu RG, Cai GC (2012). Effects of enhanced UV-B radiation on terrestrial ecosystem carbon cycle: a review. Chinese Journal of Applied Ecology, 23,1992-1998. |
[ 柳淑蓉, 胡荣桂, 蔡高潮 (2012). UV-B辐射增强对陆地生态系统碳循环的影响. 应用生态学报, 23,1992-1998.] | |
[26] | Luo Y, Hu SJ, Wang XF, Tian CY, Yin CH (2012). A new method to determine soil soluble salt using electrical conductivity index. Acta Pedologica Sinica, 49,1257-1261. |
[ 罗毅, 胡顺军, 王兴繁, 田长彦, 尹传华 (2012). 一种电导率指标测可溶性盐分含量新方法. 土壤学报, 49,1257-1261.] | |
[27] |
Ma Y, Wang XQ, Zhang B, Liu JH, Han ZY, Tang GL (2014). Effects of wind erosion and sand burial on water relations and photosynthesis in Alhagi sparsifolia in the southern edge of the Taklimakan Desert. Chinese Journal of Plant Ecology, 38,491-498.
DOI URL |
[ 马洋, 王雪芹, 张波, 刘进辉, 韩章勇, 唐钢梁 (2014). 风蚀和沙埋对塔克拉玛干沙漠南缘骆驼刺水分和光合作用的影响. 植物生态学报, 38,491-498.]
DOI |
|
[28] | Mao DL, Lei JQ, Li SY, Lui GJ, Zheng ZH, Xue Jie (2015). Spatial differentiation of physico-chemical properties of surface sand materials in the oasis-desert ecotone in Cele, Xinjiang, China. Journal of Desert Research, 35(1),136-144. |
[ 毛东雷, 雷加强, 李生宇, 刘国军, 郑则浩, 薛杰 (2015). 新疆策勒绿洲-沙漠过渡带地表沙物质理化性质空间差异. 中国沙漠, 35(1),136-144.] | |
[29] |
Martínez-Yrízar A, Núñez S, Búrquez A (2007). Leaf litter decomposition in a southern Sonoran Desert ecosystem, northwestern Mexico: effects of habitat and litter quality. Acta Oecologica, 32,291-300.
DOI URL |
[30] |
Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl F, Blöchl A, Hämmerle I, Frank AH, Fuchslueger L, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2012). Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology, 93,770-782.
PMID |
[31] |
Olson JS (1963). Energy storage and the balance of producers and decomposition in ecological systems. Ecology, 44,322-331.
DOI URL |
[32] |
Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315,361-364.
DOI URL |
[33] |
Pauli F (1964). Soil fertility problem in arid and semi-arid lands. Nature, 204,1286-1288.
DOI URL |
[34] |
Pucheta E, Llanos M, Meglioli C, Gaviorno M, Ruiz M, Parera C (2006). Litter decomposition in a sandy Monte desert of western Argentina: influences of vegetation patches and summer rainfall. Austral Ecology, 31,808-816.
DOI URL |
[35] |
Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B: Chemical and Physical Meteorology, 44(2),81-99.
DOI URL |
[36] |
Rath KM, Rousk J (2015). Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review. Soil Biology & Biochemistry, 81,108-123.
DOI URL |
[37] |
Rubino M, Dungait JAJ, Evershed RP, Bertolini T, de Angelis P, D'Onofrio A, Lagomarsino A, Lubritto C, Merola A, Terrasi F, Cotrufo MF (2010). Carbon input belowground is the major C flux contributing to leaf litter mass loss: evidences from a13C labelled-leaf litter experiment . Soil Biology & Biochemistry, 42,1009-1016.
DOI URL |
[38] |
Schreeg LA, Mack MC, Turner BL (2013). Nutrient-specific solubility patterns of leaf litter across 41 lowland tropical woody species. Ecology, 94,94-105.
PMID |
[39] |
Taylor BR, Parkinson D, Parsons WFJ (1989). Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70,97-104.
DOI URL |
[40] |
Throop HL, Archer SR (2007). Interrelationships among shrub encroachment, land management, and litter decomposition in a semidesert grassland. Ecological Applications, 17,1809-1823.
DOI URL |
[41] | Throop HL, Archer SR (2009). Resolving the dryland decomposition conundrum: some new perspectives on potential drivers//Lüttge U, Beyschlag W, Büdel B, Francis D. Progress in Botany. Springer-Verlag, Berlin, Heidelberg.171-194. |
[42] |
Vivanco L, Austin AT (2006). Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia, 150,97-107.
PMID |
[43] | Xia XC, Cao QY, Wang FB, Lei JQ, Zhao YJ (2005). Significance of studying age layers of Tamarix ramosissima sand-hillock in Lop Nur region, Xinjiang. Arid Land Geography, 28,565-568. |
[ 夏训诚, 曹琼英, 王富葆, 雷加强, 赵元杰 (2005). 罗布泊地区红柳沙包年层的研究意义. 干旱区地理, 28,565-568.] | |
[44] | Xu J, Chen YJ, Liu JZ (2020). Research progress of the effects of halophyte shrubs on spatial distribution of soil nutrients and salts and their mechanisms. Journal of Anhui Agricultural Sciences, 48(1),19-23. |
[ 许婕, 陈永金, 刘加珍 (2020). 盐生植物灌丛对土壤养分和盐分空间分布的影响及其机制研究进展. 安徽农业科学, 48(1),19-23.] | |
[45] | Yin CH, Feng G, Tian CY, Bai DS, Zhang FS (2007). Influence of tamarisk shrub on the distribution of soil salinity and moisture on the edge of Taklamakan desert. China Environmental Science, 27,670-675. |
[ 尹传华, 冯固, 田长彦, 白灯莎, 张福锁 (2007). 塔克拉玛干沙漠边缘柽柳对土壤水盐分布的影响. 中国环境科学, 27,670-675.] | |
[46] | Zeng JQ (2017). Advances in forest litter research. Protection Forest Science and Technology, (S1),80-83. |
[ 曾加芹 (2017). 森林凋落物研究开展. 防护林科技, (S1),80-83.] | |
[47] | Zhao YJ, Che GH, Liu H, Zeng J, Xia XC (2016). C and N content in organic matter of Tamarix cone and climatic and environmental change in southern region of Taklimakan desert. Arid Land Geography, 39,461-467. |
[ 赵元杰, 车高红, 刘辉, 曾佳, 夏训诚 (2016). 塔克拉玛干沙漠南缘红柳沙包有机质碳氮含量与气候环境变化. 干旱区地理, 39,461-467.] | |
[48] | Zhou L, Li Y, Tang LS, Huang G (2011). Roles of photodegradation in litter decomposition. Chinese Journal of Ecology, 30,2045-2052. |
[ 周丽, 李彦, 唐立松, 黄刚 (2011). 光降解在凋落物分解中的作用. 生态学杂志, 30,2045-2052.] |
[1] | Die Hu Xinqi Jiang DAI Zhicong Daiyi Chen Yu Zhang Shan-Shan Qi. Arbuscular mycorrhizal fungi enhance the herbicide tolerance of an invasive weed Sphagneticola trilobata [J]. Chin J Plant Ecol, 2024, 48(5): 651-659. |
[2] | LI Hui-Xuan, MA Hong-Liang, YIN Yun-Feng, GAO Ren. Dynamic of labile, recalcitrant carbon and nitrogen during the litter decomposition in a subtropical natural broadleaf forest [J]. Chin J Plant Ecol, 2023, 47(5): 618-628. |
[3] | ZHAO Xiao-Xiang, ZHU Bin-Bin, TIAN Qiu-Xiang, LIN Qiao-Ling, CHEN Long, LIU Feng. Research progress on home-field advantage of leaf litter decomposition [J]. Chin J Plant Ecol, 2023, 47(5): 597-607. |
[4] | LAI Shuo-Tian, WU Fu-Zhong, WU Qiu-Xia, ZHU Jing-Jing, NI Xiang-Yin. Reduced release of labile carbon from Abies fargesii var. faxoniana needle litter after snow removal in an alpine forest [J]. Chin J Plant Ecol, 2023, 47(5): 672-686. |
[5] | ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China [J]. Chin J Plant Ecol, 2023, 47(5): 629-643. |
[6] | LI Xue, DONG Jie, HAN Guang-Xuan, ZHANG Qi-Qi, XIE Bao-Hua, LI Pei-Guang, ZHAO Ming-Liang, CHEN Ke-Long, SONG Wei-Min. Response of soil CO2 and CH4 emissions to changes in moisture and salinity at a typical coastal salt marsh of Yellow River Delta [J]. Chin J Plant Ecol, 2023, 47(3): 434-446. |
[7] | SHI Huan-Huan, XUE Qiong, YU Zhen-Lin, WANG Cheng-Huan. Effects of density and species proportion on intraspecific and interspecific interactions between salt marsh plants during seed germination [J]. Chin J Plant Ecol, 2023, 47(1): 77-87. |
[8] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[9] | WANG Jun-Qiang, LIU Bin, CHANG Feng, MA Zi-Jing, FAN Jia-Hui, HE Xiang-Ju, YOU Si-Xue, Aerziguli ABUDUREXITI, YANG Ying-Ke, SHEN Xin-Yan. Plant functional traits and ecological stoichiometric characteristics under water-salt gradient in the lakeshore zone of Bosten Lake [J]. Chin J Plant Ecol, 2022, 46(8): 961-970. |
[10] | HAN Guang-Xuan, WANG Fa-Ming, MA Jun, XIAO Lei-Lei, CHU Xiao-Jing, ZHAO Ming-Liang. Blue carbon sink function, formation mechanism and sequestration potential of coastal salt marshes [J]. Chin J Plant Ecol, 2022, 46(4): 373-382. |
[11] | HAN Guang-Xuan, LI Juan-Yong, QU Wen-Di. Effects of nitrogen input on carbon cycle and carbon budget in a coastal salt marsh [J]. Chin J Plant Ecol, 2021, 45(4): 321-333. |
[12] | YANG De-Chun, HU Lei, SONG Xiao-Yan, WANG Chang-Ting. Effects of changing precipitation on litter quality and decomposition of different plant functional groups in an alpine meadow [J]. Chin J Plant Ecol, 2021, 45(12): 1314-1328. |
[13] | CHEN Si-Lu, CAI Jin-Song, LIN Cheng-Fang, SONG Hao-Wei, YANG Yu-Sheng. Response of leaf litter decomposition of different tree species to nitrogen addition in a subtropical forest [J]. Chin J Plant Ecol, 2020, 44(3): 214-227. |
[14] | JIA Bing-Rui. Litter decomposition and its underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(8): 648-657. |
[15] | YAN Peng-Fei, ZHAN Peng-Fei, XIAO De-Rong, WANG Yi, YU Rui, LIU Zhen-Ya, WANG Hang. Effects of simulated warming and decomposition interface on the litter decomposition rate of Zizania latifolia and its phyllospheric microbial community structure and function [J]. Chin J Plant Ecol, 2019, 43(2): 107-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn