Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (2): 131-143.DOI: 10.17521/cjpe.2020.0292
Special Issue: 生态系统碳水能量通量
• Research Articles • Previous Articles Next Articles
MOU Li, WU Lin*(), LIU Xue-Fei, LI Xiao-Ling, WANG Han, WU Hao, YU Yu-Rong, DU Sheng-Lan
Received:
2020-08-27
Accepted:
2020-12-12
Online:
2021-02-20
Published:
2021-02-07
Contact:
WU Lin
Supported by:
MOU Li, WU Lin, LIU Xue-Fei, LI Xiao-Ling, WANG Han, WU Hao, YU Yu-Rong, DU Sheng-Lan. Characteristics and environmental factors controlling methane emission from a Sphagnum bog with different plant cover types in a subalpine area, southwest of Hubei, China[J]. Chin J Plant Ecol, 2021, 45(2): 131-143.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0292
Fig. 2 Diurnal changes of methane (CH4) emission fluxes in the Sphagnum bog (mean + SE). ▲, bare land plot; ■, Sphagnum paluster plot; ●, Polytrichum commune plot. The lines represent soil temperature at 5 cm depth, the lines with points represent CH4 emission fluxes, the bars represent air temperature. * represents a significant difference among the three cover types at the same time (p < 0.05), ** represents a significant difference among the three cover types at the same time (p < 0.01).
方差来源 Source of variance | 自由度 df | 光照 Light | 黑暗 Dark | ||||
---|---|---|---|---|---|---|---|
均方根 Mean square | F | p | 均方根 Mean square | F | p | ||
季节 Season | 3 | 9.33 | 39.99 | <0.01 | 4.55 | 39.67 | <0.01 |
植被类型 Vegetation type | 2 | 1.12 | 8.97 | 0.022 | 0.36 | 60.53 | 0.003 8 |
季节×植被类型 Season × Vegetation type | 6 | 0.42 | 1.80 | 0.17 | 0.11 | 0.92 | 0.523 |
Table 1 Results of repeated measures ANOVAs on the effects of vegetation type, season, and their interactions on methane emission fluxes of the Sphagnum bog
方差来源 Source of variance | 自由度 df | 光照 Light | 黑暗 Dark | ||||
---|---|---|---|---|---|---|---|
均方根 Mean square | F | p | 均方根 Mean square | F | p | ||
季节 Season | 3 | 9.33 | 39.99 | <0.01 | 4.55 | 39.67 | <0.01 |
植被类型 Vegetation type | 2 | 1.12 | 8.97 | 0.022 | 0.36 | 60.53 | 0.003 8 |
季节×植被类型 Season × Vegetation type | 6 | 0.42 | 1.80 | 0.17 | 0.11 | 0.92 | 0.523 |
Fig. 3 Seasonal changes in methane emission fluxes in the Sphagnum bog (mean ± SE). B, bare land plot; P, Polytrichum commune plot; S, Sphagnum paluster plot. Different uppercase letters indicate significant difference among the same cover type in different seasons (p < 0.01); different lowercase letters indicate significant difference among the annual methane emissions of three cover types (p < 0.05). * represents a significant difference among the three cover types at the same season (p < 0.05); ** represents a significant difference among the three cover types at the same season (p < 0.01).
Fig. 4 Relationship between methane emission fluxes and air temperature in the Sphagnum bog. B, bare land plot; P, Polytrichum commune plot; S, Sphagnum paluster plot.
Fig. 5 Relationship between methane emission fluxes and soil temperature of 5 cm depth in the Sphagnum bog. B, bare land plot; P, Polytrichum commune plot; S, Sphagnum paluster plot.
Fig. 6 Relationship between methane emission fluxes and water table in the Sphagnum bog. B, bare land plot; P, Polytrichum commune plot; S, Sphagnum paluster plot.
Fig. 7 Schematic diagram of methane emission flux of the Sphagnum bog in different regions. This comprehensive diagram is based on methane emission flux measured by Nykanen et al.(1998), Beetz et al.(2013), Hanson et al.(2016) and this study.
研究区 Study area | 沼泽类型 Wetland type | 研究方法 Research method | 排放区间 Emission range (mg·m-1·h-1) | 年总排放量 Total annual emissions (g·m-1·a-1) | 参考文献 Reference |
---|---|---|---|---|---|
芬兰 Finland | 雨养泥炭沼泽 Bog | 静态箱 Static chamber | 0.038-1.403 | 3.3 | Nyk?nenet al., |
芬兰 Finland | 矿养泥炭沼泽 Fen | 静态箱 Static chamber | 0.013-16.016 | 11.4 | Nyk?nenet al., |
中国神农架 Shennongjia, China | 雨养泥炭沼泽 Bog | 涡度相关 Eddy covariance | -0.337-1.340 | 4.2 | Chen et al., |
中国鄂西南 Southwest Hubei, China | 雨养泥炭沼泽 Bog | 静态箱 Static chamber | 0.022-1.474 | 3.4 | 本研究 This study |
Table 2 CH4-C emission fluxes from the Sphagnum bog in different regions
研究区 Study area | 沼泽类型 Wetland type | 研究方法 Research method | 排放区间 Emission range (mg·m-1·h-1) | 年总排放量 Total annual emissions (g·m-1·a-1) | 参考文献 Reference |
---|---|---|---|---|---|
芬兰 Finland | 雨养泥炭沼泽 Bog | 静态箱 Static chamber | 0.038-1.403 | 3.3 | Nyk?nenet al., |
芬兰 Finland | 矿养泥炭沼泽 Fen | 静态箱 Static chamber | 0.013-16.016 | 11.4 | Nyk?nenet al., |
中国神农架 Shennongjia, China | 雨养泥炭沼泽 Bog | 涡度相关 Eddy covariance | -0.337-1.340 | 4.2 | Chen et al., |
中国鄂西南 Southwest Hubei, China | 雨养泥炭沼泽 Bog | 静态箱 Static chamber | 0.022-1.474 | 3.4 | 本研究 This study |
Fig. 8 Average methane emission fluxes from different cover types of the Sphagnum bogs. B, bare land plot; P, Polytrichum commune plot; S, Sphagnum paluster plot.
[1] |
Alfadhel I, Ge J, Sinan Y, Liu Y (2019). Methane flux and its environmental impact factors in Dajiuhu wetland of Shennongjia. Wuhan University Journal of Natural Sciences, 24,455-460.
DOI URL |
[2] |
Bäckstrand K, Crill PM, Jackowicz-Korczyñski M, Mastepanov M, Christensen TR, Bastviken D (2010). Annual carbon gas budget for a subarctic peatland, Northern Sweden. Biogeosciences, 7,95-108.
DOI URL |
[3] |
Beckmann M, Sheppard SK, Lloyd D (2004). Mass spectrometric monitoring of gas dynamics in peat monoliths: effects of temperature and diurnal cycles on emissions. Atmospheric Environment, 38,6907-6913.
DOI URL |
[4] |
Beetz S, Liebersbach H, Glatzel S, Jurasinski G, Buczko U, Höper H (2013). Effects of land use intensity on the full greenhouse gas balance in an Atlantic peat bog. Biogeosciences, 10,1067-1082.
DOI URL |
[5] |
Blodau C (2002). Carbon cycling in peatlands—A review of processes and controls. Environmental Reviews, 10,111-134.
DOI URL |
[6] |
Bohdálková L, Čuřík J, Aa K, Bůzek F (2012). Dynamics of methane fluxes from two peat bogs in the Ore Mountains, Czech Republic. Plant, Soil and Environment, 59,14-21.
DOI URL |
[7] |
Bohn TJ, Lettenmaier DP, Sathulur K, Bowling LC, Podest E, McDonald KC, Friborg T (2007). Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change. Environmental Research Letters, 2,45015. DOI: 10.1088/1748-9326/2/4/045015.
DOI URL |
[8] |
Brown D (1998). Gas production from an ombrotrophic bog—Effect of climate change on microbial ecology. Climatic Change, 40,277-284.
DOI URL |
[9] | Bu ZJ, Yang YF, Dai D, Wang XW (2005). Age structure and growth pattern of Polytrichum juniperum populations in a mire of Changbai Mountains. Chinese Journal of Applied Ecology, 16,44-48. |
[ 卜兆君, 杨允菲, 代丹, 王宪伟 (2005). 长白山泥炭沼泽桧叶金发藓种群的年龄结构与生长分析. 应用生态学报, 16,44-48.] | |
[10] | Chang YH, Mu CC, Peng WH, Hao L, Han LD (2020). Characteristics of greenhouse gas emissions from seven swamp types in the permafrost region of Daxing'an Mountains, northeast China. Acta Ecologica Sinica, 40,2333-2346. |
[ 常怡慧, 牟长城, 彭文宏, 郝利, 韩丽冬 (2020). 大兴安岭永久冻土区7种沼泽类型土壤温室气体排放特征. 生态学报, 40,2333-2346.] | |
[11] |
Chasar LS, Chanton JP, Glaser PH, Siegel DI (2000). Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the glacial Lake Agassiz Peatland complex. Annals of Botany, 86,655-663.
DOI URL |
[12] | Chen JW, Ge JW, Feng L, Zhou Y, Gan J, Li YF, Zhang ZQ (2020). Methane flux characteristics and its relationship with soil microbial community composition of Dajiuhu peatland in Shennongjia. Earth Science, 45,1082-1092. |
[ 谌佳伟, 葛继稳, 冯亮, 周颖, 甘娟, 李永福, 张志麒 (2020). 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45,1082-1092.] | |
[13] |
Crill PM, Bartlett KB, Harriss RC, Gorham E, Verry ES, Sebacher DI, Madzar L, Sanner W (1988). Methane flux from minnesota peatlands. Global Biogeochemical Cycles, 2,371-384.
DOI URL |
[14] | Cui HJ, Zhang Y, Zhang YF, Tian K, Xiao DR, Wang K, Guo Y, Li LJ (2018). Characteristics of moss bog plant community and interspecific relationships of dominant species in Niangniang Mountain wetland, Guizhou. Chinese Journal of Ecology, 37,2619-2626. |
[ 崔海军, 张勇, 张银峰, 田昆, 肖德荣, 王凯, 郭应, 李龙江 (2018). 贵州娘娘山湿地藓类沼泽植物群落特征及优势种种间关系. 生态学杂志, 37,2619-2626.] | |
[15] |
Dedysh SN (2002). Methanotrophic bacteria of acidic Sphagnum peat bogs. Microbiology, 71,638-650.
DOI URL |
[16] | Duan XN, Wang XK, Ouyang ZY (2005). Effects of vascular plants on methane emissions from natural wetlands. Acta Ecologica Sinica, 25,3375-3382. |
[ 段晓男, 王效科, 欧阳志云 (2005). 维管植物对自然湿地甲烷排放的影响. 生态学报, 25,3375-3382.] | |
[17] |
Frenzel P, Karofeld E (2000). CH4 emission from a hollow-ridge complex in a raised bog: the role of CH4 production and oxidation. Biogeochemistry, 51,91-112.
DOI URL |
[18] |
Gill AL, Giasson MA, Yu R, Finzi AC (2017). Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog. Global Change Biology, 23,5398-5411.
DOI URL |
[19] |
Gorham E (1991). Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1,182-195.
DOI URL |
[20] |
Hanson PJ, Gill AL, Xu X, Phillips JR, Weston DJ, Kolka RK, Riggs JS, Hook LA (2016). Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry, 129,255-272.
DOI URL |
[21] |
Hao L, Mu CC, Chang YH, Shen ZQ, Han LD, Jiang N, Peng WH (2019). Effects of harvest on greenhouse gas emissions from forested swamp during non-growing season in Xiaoxing’an Mountains of China. Chinese Journal of Applied Ecology, 30,1713-1725.
DOI PMID |
[ 郝利, 牟长城, 常怡慧, 申忠奇, 韩丽冬, 姜宁, 彭文宏 (2019). 采伐对小兴安岭森林沼泽非生长季土壤温室气体排放的影响. 应用生态学报, 30,1713-1725.]
PMID |
|
[22] |
Hines ME, Duddleston KN, Rooney-Varga JN, Fields D, Chanton JP (2008). Uncoupling of acetate degradation from methane formation in Alaskan wetlands: connections to vegetation distribution. Global Biogeochemical Cycles, 22, GB2017. DOI: 10.1029/2006GB002903.
DOI |
[23] |
Kelley CA, Martens CS, Ussler III W (1995). Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography, 40,1112-1129.
DOI URL |
[24] |
Kettunen A, Kaitala V, Lehtinen A, Lohila A, Alm J, Silvola J, Martikainen PJ (1999). Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biology & Biochemistry, 31,1741-1749.
DOI URL |
[25] |
Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart GJ, Smolders AJP, Jetten MSM, Damsté JSS, den Camp HJMO (2010). Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nature Geoscience, 3,617-621.
DOI URL |
[26] |
Knoblauch C, Zimmermann U, Blumenberg M, Michaelis W, Pfeiffer EM (2008). Methane turnover and temperature response of methane-oxidizing bacteria in permafrost- affected soils of northeast Siberia. Soil Biology & Biochemistry, 40,3004-3013.
DOI URL |
[27] |
Koponen HT, Martikainen PJ (2004). Soil water content and freezing temperature affect freeze-thaw related N2O production in organic soil. Nutrient Cycling in Agroecosystems, 69,213-219.
DOI URL |
[28] |
Korrensalo A, Männistö E, Alekseychik P, Mammarella I, Rinne J, Vesala T, Tuittila ES (2018). Small spatial variability in methane emission measured from a wet patterned boreal bog. Biogeosciences, 15,1749-1761.
DOI URL |
[29] |
Kox MAR, van den Elzen E, Lamers LPM, Jetten MSM, van Kessel MAHJ (2020). Microbial nitrogen fixation and methane oxidation are strongly enhanced by light in Sphagnum mosses. AMB Express, 10, 61. DOI: 10.1186/s13568-020-00994-9.
DOI |
[30] |
Larmola T, Tuittila ES, Tiirola M, Nykänen H, Martikainen PJ, Yrjälä K, Tuomivirta T, Fritze H (2010). The role of Sphagnum mosses in the methane cycling of a boreal mire. Ecology, 91,2356-2365.
PMID |
[31] |
Leroy F, Gogo S, Guimbaud C, Bernard-Jannin L, Yin X, Belot G, Shuguang W, Laggoun-Défarge F (2019). CO2 and CH4budgets and global warming potential modifications in Sphagnum-dominated peat mesocosms invaded by Molinia caerulea. Biogeosciences, 16,4085-4095.
DOI URL |
[32] | Li YL, Miao JL, He Y (2013). Influence of calculation methods on calculated daily mean temperature. Meteorogical Science and Technology, 41(1),88-92. |
[ 李亚丽, 妙娟利, 贺音 (2013). 日平均计算方法对气温统计值的影响. 气象科技, 41(1),88-92.] | |
[33] | Li YY, Ge JW, Peng FJ, Zhou Y, Li JQ, Wu X, Liu YL, Zhang ZQ (2017). Characteristics of methane flux and their effect factors on Dajiuhu peatland of Shennongjia. Earth Science, 42,832-842. |
[ 李艳元, 葛继稳, 彭凤姣, 周颖, 李金群, 吴先, 刘奕伶, 张志麒 (2017). 神农架大九湖泥炭湿地CH4通量特征及其影响因子. 地球科学, 42,832-842.] | |
[34] | Liu LF, Chen H, Peng CH, Zhu QA, Li BX (2016). CH4 emissions under warming schemes from peatlands of different depths in the Zoige Plateau. Chinese Journal of Applied and Environmental Biology, 22,1-7. |
[ 刘亮锋, 陈槐, 彭长辉, 朱求安, 李宝鑫 (2016). 若尔盖高原不同深度泥炭在增温条件下CH4释放. 应用与环境生物学报, 22,1-7.] | |
[35] |
Meng HN, Song CC, Miao YQ, Mao R, Wang XW (2014). Response of CH4 emissions to moss removal and N addition in boreal peatland of northeast China. Biogeosciences, 11,4809-4816.
DOI URL |
[36] |
Miao Y, Song C, Sun L, Wang X, Meng H, Mao R (2012). Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: effects of active layer depth and vegetation. Biogeosciences, 9,4455-4464.
DOI URL |
[37] |
Mikkelä C, Sundh I, Svensson BH, Nilsson M (1995). Diurnal variation in methane emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire. Biogeochemistry, 28,93-114.
DOI URL |
[38] |
Nykänen H, Alm J, Silvola J, Tolonen K, Martikainen PJ (1998). Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles, 12,53-69.
DOI URL |
[39] |
Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, Jetten MSM, Schouten S, Sinninghe Damsté JS, Lamers LPM, Roelofs JGM, Op Den Camp HJM, Strous M (2005). Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature, 436,1153-1156.
PMID |
[40] |
Rask H, Schoenau J, Anderson D (2002). Factors influencing methane flux from a boreal forest wetland in Saskatchewan, Canada. Soil Biology & Biochemistry, 34,435-443.
DOI URL |
[41] |
Riutta T, Korrensalo A, Laine AM, Laine J, Tuittila ES (2020). Interacting effects of vegetation components and water level on methane dynamics in a boreal fen. Biogeosciences, 17,727-740.
DOI URL |
[42] |
Saarnio S, Alm J, Silvola J, Lohila A, Nykänen H, Martikainen PJ (1997). Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen. Oecologia, 110,414-422.
DOI PMID |
[43] |
Shannon RD, White JR, Lawson JE, Gilmour BS (1996). Methane efflux from emergent vegetation in peatlands. Journal of Ecology, 84,239-246.
DOI URL |
[44] |
Stępniewska Z, Goraj W, Kuźniar A, Szafranek-Nakonieczna A, Banach A, Górski A, Pytlak A, Urban D (2018). Methane oxidation by endophytic bacteria inhabiting Sphagnum sp. and some vascular plants. Wetlands, 38,411-422.
DOI URL |
[45] |
Straková P, Niemi RM, Freeman C, Peltoniemi K, Toberman H, Heiskanen I, Fritze H, Laiho R (2011). Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes. Biogeosciences, 8,2741-2755.
DOI URL |
[46] | Sun XX, Mu CC, Shi LY, Cheng W, Liu X, Wu YX, Feng DJ (2009). Methane emission from forested swamps in Xiaoxing’an Mountains, northeastern China. Chinese Journal of Plant Ecology, 33,535-545. |
[ 孙晓新, 牟长城, 石兰英, 程伟, 刘霞, 吴云霞, 冯登军 (2009). 小兴安岭森林沼泽甲烷排放及其影响因子. 植物生态学报, 33,535-545.]
DOI |
|
[47] |
Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ERC, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, Olefeldt D, Rinne J, Saarnio S, Shurpali N, Tuittila ES, et al. (2014). A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology, 20,2183-2197.
DOI PMID |
[48] |
Turetsky MR, Treat CC, Waldrop MP, Waddington JM, Harden JW, Mcguire AD (2008). Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. Journal of Geophysical Research, 113,G00A10. DOI: 10.1029/2007JG000496.
DOI |
[49] |
Urbanová Z, Bárta J, Picek T (2013). Methane emissions and methanogenic archaea on pristine, drained and restored mountain peatlands, central Europe. Ecosystems, 16,664-677.
DOI URL |
[50] |
Waddington JM, Day SM (2007). Methane emissions from a peatland following restoration. Journal of Geophysical Research: Biogeosciences, 112,G03018. DOI: 10.1029/2007JG000400.
DOI |
[51] |
Waddington JM, Kellner E, Strack M, Price JS (2010). Differential peat deformation, compressibility, and water storage between peatland microforms: implications for ecosystem function and development. Water Resources Research, 46,W07538. DOI: 10.1029/2009WR008802.
DOI |
[52] | Wang H, Wu L, Xue D, Liu XF, Hong L, Mou L, Li XL (2020). Distribution and environmental characteristics of Sphagnum peat bogs in Taishanmiao in Enshi City, Hubei Province. Wetland Science, 18,266-274. |
[ 王涵, 吴林, 薛丹, 刘雪飞, 洪柳, 牟利, 李小玲 (2020). 湖北省恩施市太山庙泥炭藓泥炭沼泽分布及其环境特征研究. 湿地科学, 18,266-274.] | |
[53] | Wang XL, Zhang H, Yao ZS, Zheng XH, Zhang SQ (2016). A preliminary study on methane emission from a seasonal- freezing alpine peat wetland during a non-growing period. Climatic and Environmental Research, 21,282-292. |
[ 王晓龙, 张寒, 姚志生, 郑循华, 张社奇 (2016). 季节性冻结高寒泥炭湿地非生长季甲烷排放特征初探. 气候与环境研究, 21,282-292.] | |
[54] | Wang YY, Yang ZF, Yu T, Wen YB, Xia XQ, Bai RJ (2011). Contrastive studies on different interpolation methods in soil carbon storage calculation in Da'an City, Jilin Province. Carsologica Sinica, 30,479-486. |
[ 汪媛媛, 杨忠芳, 余涛, 文宇博, 夏学齐, 白荣杰 (2011). 土壤碳储量计算中不同插值方法对比研究——以吉林省大安市为例. 中国岩溶, 30,479-486.] | |
[55] | Wang ZX, Lei Y, Liu SX, Fang YP, Man JS, Peng ZL, Zhang L, Ma GL (2005). One subalpine Sphagnum wetland being discovered in Qizimei Mountains Nature Reserve, Hubei. Journal of Central China Normal University(Natural Sciences), 39,387-388. |
[ 汪正祥, 雷耘, 刘胜祥, 方元平, 满金山, 彭宗林, 张柳, 马广礼 (2005). 湖北七姊妹山自然保护区发现亚高山泥炭藓湿地. 华中师范大学学报(自然科学版), 39,387-388.] | |
[56] |
Wuebbles DJ, Hayhoe K (2002). Atmospheric methane and global change. Earth-Science Reviews, 57,177-210.
DOI URL |
[57] | Xiao SH, Zhang ZR, Qin DH, He DJ, Liu JS, Wu JQ, Cai CT, You WB, Shen YQ, Jian LY (2016). Community composition of four types of Sphagnum wetlands and its relationship with environmental factors in Tianbaoyan National Nature Reserve. Chinese Journal of Applied and Environmental Biology, 22,631-638. |
[ 肖石红, 张中瑞, 覃德华, 何东进, 刘进山, 吴建勤, 蔡昌棠, 游巍斌, 沈云强, 简立燕 (2016). 天宝岩国家级自然保护区4种类型泥炭藓沼泽植被组成及其与环境因子的关系. 应用与环境生物学报, 22,631-638.] | |
[58] |
Yavitt JB, Yashiro E, Cadillo-Quiroz H, Zinder SH (2012). Methanogen diversity and community composition in peatlands of the central to northern Appalachian Mountain region, North America. Biogeochemistry, 109,117-131.
DOI URL |
[59] |
Zalman C, Keller JK, Tfaily M, Kolton M, Pfeifer-Meister L, Wilson RM, Lin X, Chanton J, Kostka JE, Gill A, Finzi A, Hopple AM, Bohannan BJM, Bridgham SD (2018). Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands. Biogeochemistry, 139,155-177.
DOI URL |
[60] | Zhan QF (2006). Mosses' Stem Structure and Application of Stem Structure on Brachythecium taxonomy. Master degree dissertation, East China Normal University, Shanghai. |
[ 詹琪芳 (2006). 藓类茎结构及其在青藓属分类中的应用. 硕士学位论文, 华东师范大学, 上海.] | |
[61] | Zhang CF, Sheng LX, Gong C, He CG, Zhang J (2018). Effects of freeze-thaw cycles on soil microbial biomass carbon and carbon emissions from wetland soils, Northeast China. Chinese Journal of Ecology, 37,304-311. |
[ 张超凡, 盛连喜, 宫超, 何春光, 张晶 (2018). 冻融作用对我国东北湿地土壤碳排放与土壤微生物的影响. 生态学杂志, 37,304-311.] |
[1] | DENG Wen-Jie, WU Hua-Zheng, LI Tian-Xiang, ZHOU Li-Na, HU Ren-Yong, JIN Xin-Jie, ZHANG Yong-Pu, ZHANG Yong-Hua, LIU Jin-Liang. Main vegetation types and characteristics in Dongtou National Marine Park, Zhejiang, China [J]. Chin J Plant Ecol, 2024, 48(2): 254-268. |
[2] | ZHANG Hui-Ling, ZHANG Yao-Yi, PENG Qing-Qing, YANG Jing, NI Xiang-Yin, WU Fu-Zhong. Variations of trace-elements resorption efficiency in leaves of different tree species as affected by life forms in a mid-subtropical common garden [J]. Chin J Plant Ecol, 2023, 47(7): 978-987. |
[3] | ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China [J]. Chin J Plant Ecol, 2023, 47(5): 629-643. |
[4] | WAN Chun-Yan, YU Jun-Rui, ZHU Shi-Dan. Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species [J]. Chin J Plant Ecol, 2023, 47(10): 1386-1397. |
[5] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[6] | GAN Zi-Ying, WANG Hao, DING Chi, LEI Mei, YANG Xiao-Gang, CAI Jing-Yan, QIU Qing-Yan, HU Ya-Lin. Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms [J]. Chin J Plant Ecol, 2022, 46(7): 797-810. |
[7] | WANG Guo-Hong, GUO Ke, XIE Zong-Qiang, TANG Zhi-Yao, JIANG Yan-Ling, FANG Jing-Yun. Interpretations, supplements, and modifications of some protocols for compiling Vegegraphy of China [J]. Chin J Plant Ecol, 2022, 46(3): 368-372. |
[8] | LI Dong, TIAN Qiu-Xiang, ZHAO Xiao-Xiang, LIN Qiao-Ling, YUE Peng-Yun, JIANG Qing-Hu, LIU Feng. Soil extracellular enzyme activities and their stoichiometric ratio in the alpine treeline ecotones in Gongga Mountain, China [J]. Chin J Plant Ecol, 2022, 46(2): 232-242. |
[9] | ZHENG Zhou-Tao, ZHANG Yang-Jian. Variation in ecosystem water use efficiency and its attribution analysis during 1982-2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
[10] | Yan-Fang LIU, Weng-Ying WANG, Nan-Ji SUO, Hua-Kun ZHOU, Xu-Feng MAO, Shi-Xiong WANG, Zhe CHEN. Relationship between plant community types and soil nematode communities in Haibei, Qinghai, China [J]. Chin J Plant Ecol, 2022, 46(1): 27-39. |
[11] | ZHANG Huan, ZHANG Yun-Ling, ZHANG Yan-Cai, YAN Ping. Main plant communities and characteristics of Desert Grassland Nature Reserve in Qitai, Xinjiang, China [J]. Chin J Plant Ecol, 2021, 45(8): 918-924. |
[12] | WU Qiu-Xia, WU Fu-Zhong, HU Yi, KANG Zi-Jia, ZHANG Yao-Yi, YANG Jing, YUE Kai, NI Xiang-Yin, YANG Yu-Sheng. Difference in non-structural carbohydrates between fresh and senescent leaves of 11 tree species in a subtropical common-garden [J]. Chin J Plant Ecol, 2021, 45(7): 771-779. |
[13] | HE Lu-Yan, HOU Man-Fu, TANG Wei, LIU Yu-Ting, ZHAO Jun. Vegetation types and their characteristics in karst forests of Junzi Mountain in East Yunnan, China [J]. Chin J Plant Ecol, 2021, 45(12): 1380-1390. |
[14] | CAO Jia-Yu, LIU Jian-Feng, YUAN Quan, XU De-Yu, FAN Hai-Dong, CHEN Hai-Yan, TAN Bin, LIU Li-Bin, YE Duo, NI Jian. Traits of shrubs in forests and bushes reveal different life strategies [J]. Chin J Plant Ecol, 2020, 44(7): 715-729. |
[15] | ZHOU Xiong, SUN Peng-Sen, ZHANG Ming-Fang, LIU Shi-Rong. Spatio-temporal characteristics of vegetation water use efficiency and their relationships with climatic factors in alpine and subalpine area of southwestern China [J]. Chin J Plant Ecol, 2020, 44(6): 628-641. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn