Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (2): 136-147.DOI: 10.17521/cjpe.2021.0060
• Research Articles • Previous Articles Next Articles
XIONG Ying-Jie*, YU Guo*, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan**()
Received:
2021-02-22
Accepted:
2021-09-27
Online:
2022-02-20
Published:
2022-01-07
Contact:
PENG Guo-Quan
About author:
Contributed equally to this work
Supported by:
XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China[J]. Chin J Plant Ecol, 2022, 46(2): 136-147.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0060
Fig. 2 Relationships between lamina area and lamina dry mass (A), lamina area and lamina perimeter (B) of 38 broad-leaved woody species in Tiantong National Forest Park.
指标 (y轴-x轴) Index (y axis-x axis) | 决定系数 Coefficient of determination (R2) | 斜率(95%置信区间) Slope (95% confidence interval) | p |
---|---|---|---|
叶片面积-叶片干质量 Lamina area-lamina dry mass | 0.081 | 1.102 (0.953, 1.274) | <0.001 |
叶片面积-叶片周长 Lamina area-lamina perimeter | 0.897 | 2.029 (1.821, 2.260) | <0.001 |
主脉密度-叶片面积 Major vein density-lamina area | 0.893 | -0.503 (-0.562, -0.451) | <0.001 |
主脉密度-叶片周长 Major vein density-lamina perimeter | 0.705 | -1.021 (-1.226, -0.851) | <0.001 |
主脉密度-叶片干质量 Major vein density-lamina dry mass | 0.712 | -0.555 (-0.664, -0.463) | <0.001 |
主脉密度-主脉单位长度的细胞壁干质量 Major vein density-cell wall dry mass per unit length of major vein | 0.615 | -0.699 (-0.861, -0.567) | <0.001 |
主脉单位长度的细胞壁干质量-叶片面积 Cell wall dry mass per unit length of major vein-lamina area | 0.554 | 0.721 (0.576, 0.901) | <0.001 |
主脉单位长度的细胞壁干质量-叶片周长 Cell wall dry mass per unit length of major vein-lamina perimeter | 0.445 | 1.462 (1.142, 1.872) | <0.001 |
主脉单位长度的细胞壁干质量-叶片干质量 Cell wall dry mass per unit length of major vein-lamina dry mass | 0.412 | 0.794 (0.614, 1.026) | <0.001 |
Table 1 Summary of standardized major axis estimation regression parameters for the scaling relationships between lamina size and vein architecture of 38 broad-leaved woody species in Tiantong National Forest Park
指标 (y轴-x轴) Index (y axis-x axis) | 决定系数 Coefficient of determination (R2) | 斜率(95%置信区间) Slope (95% confidence interval) | p |
---|---|---|---|
叶片面积-叶片干质量 Lamina area-lamina dry mass | 0.081 | 1.102 (0.953, 1.274) | <0.001 |
叶片面积-叶片周长 Lamina area-lamina perimeter | 0.897 | 2.029 (1.821, 2.260) | <0.001 |
主脉密度-叶片面积 Major vein density-lamina area | 0.893 | -0.503 (-0.562, -0.451) | <0.001 |
主脉密度-叶片周长 Major vein density-lamina perimeter | 0.705 | -1.021 (-1.226, -0.851) | <0.001 |
主脉密度-叶片干质量 Major vein density-lamina dry mass | 0.712 | -0.555 (-0.664, -0.463) | <0.001 |
主脉密度-主脉单位长度的细胞壁干质量 Major vein density-cell wall dry mass per unit length of major vein | 0.615 | -0.699 (-0.861, -0.567) | <0.001 |
主脉单位长度的细胞壁干质量-叶片面积 Cell wall dry mass per unit length of major vein-lamina area | 0.554 | 0.721 (0.576, 0.901) | <0.001 |
主脉单位长度的细胞壁干质量-叶片周长 Cell wall dry mass per unit length of major vein-lamina perimeter | 0.445 | 1.462 (1.142, 1.872) | <0.001 |
主脉单位长度的细胞壁干质量-叶片干质量 Cell wall dry mass per unit length of major vein-lamina dry mass | 0.412 | 0.794 (0.614, 1.026) | <0.001 |
指标(y轴-x轴) Index (y axis-x axis) | 斜率 Slope | 决定系数 Coefficient of determination (R2) |
---|---|---|
叶片面积-叶片干质量 Lamina area-lamina dry mass | 1.164 | 0.952 |
叶片面积-叶片周长 Lamina area-lamina perimeter | 2.046 | 0.989 |
主脉密度-叶片面积 Major vein density-lamina area | -0.440 | 0.985 |
主脉密度-叶片周长 Major vein density-lamina perimeter | -0.898 | 0.971 |
主脉密度-叶片干质量 Major vein density-lamina dry mass | -0.508 | 0.924 |
主脉密度-主脉单位长度的细胞壁干质量 Major vein density-Cell wall dry mass per unit length of major vein | -0.817 | 0.923 |
主脉单位长度的细胞壁干质量-叶片面积 Cell wall dry mass per unit length of major vein-lamina area | 0.493 | 0.897 |
主脉单位长度的细胞壁干质量-叶片周长 Cell wall dry mass per unit length of major vein-lamina perimeter | 1.010 | 0.889 |
主脉单位长度的细胞壁干质量-叶片干质量 Cell wall dry mass per unit length of major vein-lamina dry mass | 0.562 | 0.819 |
Table 2 Results of phylogenetic independent contrasts and ordinary regression analyses of lamina size and vein architecture of 38 broad-leaved woody species in Tiantong National Forest Park
指标(y轴-x轴) Index (y axis-x axis) | 斜率 Slope | 决定系数 Coefficient of determination (R2) |
---|---|---|
叶片面积-叶片干质量 Lamina area-lamina dry mass | 1.164 | 0.952 |
叶片面积-叶片周长 Lamina area-lamina perimeter | 2.046 | 0.989 |
主脉密度-叶片面积 Major vein density-lamina area | -0.440 | 0.985 |
主脉密度-叶片周长 Major vein density-lamina perimeter | -0.898 | 0.971 |
主脉密度-叶片干质量 Major vein density-lamina dry mass | -0.508 | 0.924 |
主脉密度-主脉单位长度的细胞壁干质量 Major vein density-Cell wall dry mass per unit length of major vein | -0.817 | 0.923 |
主脉单位长度的细胞壁干质量-叶片面积 Cell wall dry mass per unit length of major vein-lamina area | 0.493 | 0.897 |
主脉单位长度的细胞壁干质量-叶片周长 Cell wall dry mass per unit length of major vein-lamina perimeter | 1.010 | 0.889 |
主脉单位长度的细胞壁干质量-叶片干质量 Cell wall dry mass per unit length of major vein-lamina dry mass | 0.562 | 0.819 |
Fig. 3 Relationships between the major vein density and lamina area (A), lamina dry mass (B), and lamina perimeter (C) of 38 broad-leaved woody species in Tiantong National Forest Park.
Fig. 4 Relationships between the cell wall dry mass per unit length of major vein and lamina area (A), lamina dry mass (B), and lamina perimeter (C) of 38 broad-leaved woody species in Tiantong National Forest Park.
Fig. 5 Relationship between the major vein density and cell wall dry mass per unit length of major vein of 38 broad-leaved woody species in Tiantong National Forest Park.
[1] |
Ackerly D, Knight C, Weiss S, Barton K, Starmer K (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 130, 449-457.
DOI PMID |
[2] | Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA (2009). Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings Biological Sciences, 276, 1771-1776. |
[3] |
Bragg JG, Westoby M (2002). Leaf size and foraging for light in a sclerophyll woodland. Functional Ecology, 16, 633-639.
DOI URL |
[4] | Brodribb TJ, Feild TS (2000). Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant, Cell & Environment, 23, 1381-1388. |
[5] |
Brodribb TJ, Feild TS, Jordan GJ (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 144, 1890-1898.
PMID |
[6] |
Bühler J, Rishmawi L, Pflugfelder D, Huber G, Scharr H, Hülskamp M, Koornneef M, Schurr U, Jahnke S (2015). PhenoVein-A tool for leaf vein segmentation and analysis. Plant Physiology, 169, 2359-2370.
DOI PMID |
[7] | Choat B, Lahr EC, Melcher PJ, Zwieniecki MA, Holbrook NM (2005). The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant, Cell & Environment, 28, 1082-1089. |
[8] |
Dunbar-Co S, Sporck MJ, Sack L (2009). Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation. International Journal of Plant Sciences, 170, 61-75.
DOI URL |
[9] | Fauset S, Freitas HC, Galbraith DR, Sullivan MJP, Aidar MPM, Joly CA, Phillips OL, Vieira SA, Gloor MU (2018). Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant, Cell & Environment, 41, 1618-1631. |
[10] |
Givinish TJ (1987). Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytologist, 106, 131-160.
DOI URL |
[11] | Givnish T (1979). On the adaptive significance of leaf form//Solbrig OT, Jain S, Johnson GB, Raven PH. Topics in Plant Population Biology. Palgrave, London. 375-407. |
[12] |
Givnish TJ, Vermeij GJ (1976). Sizes and shapes of liane leaves. The American Naturalist, 110, 743-778.
DOI URL |
[13] | Harvey PH, Pagel MD (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford. 239. |
[14] |
Hüve K, Remus R, Lüttschwager D, Merbach W (2002). Water transport in impaired leaf vein systems. Plant Biology, 4, 603-611.
DOI URL |
[15] | Kull U, Herbig A (1994). Leaf venation patterns and principles of evolution. Evolution of Natural Structures, 167-175. |
[16] | Lambers H, Poorter H (2004). Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research, 34, 283-362. |
[17] | Leaf Architecture Working Group (1999). Manual of Leaf Architecture-Morphological Description and Categorization of Dicotyledonous and Net-veined Monocotyledonous Angiosperms. Smithsonian Institution, Washington D.C. |
[18] |
Li Y, Reich PB, Schmid B, Shrestha N, Feng X, Lyu T, Maitner BS, Xu X, Li Y, Zou D, Tan ZH, Su X, Tang Z, Guo Q, Feng X, Enquist BJ, Wang Z (2020). Leaf size of woody dicots predicts ecosystem primary productivity. Ecology Letters, 23, 1003-1013.
DOI URL |
[19] |
McDonald PG, Fonseca CR, Overton JM, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50-57.
DOI URL |
[20] |
McKown AD, Cochard H, Sack L (2010). Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. The American Naturalist, 175, 447-460.
DOI URL |
[21] |
Michaletz ST, Cheng D, Kerkhoff AJ, Enquist BJ (2014). Convergence of terrestrial plant production across global climate gradients. Nature, 512, 39-43.
DOI URL |
[22] |
Milla R, Reich PB (2007). The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proceedings of the Royal Society B: Biological Sciences, 274, 2109-2114.
DOI URL |
[23] |
Nardini A, Salleo S (2003). Effects of the experimental blockage of the major veins on hydraulics and gas exchange of Prunus laurocerasus L. leaves. Journal of Experimental Botany, 54, 1213-1219.
PMID |
[24] |
Nardini A, Tyree MT, Salleo S (2001). Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics. Plant Physiology, 125, 1700-1709.
PMID |
[25] | Niinemets Ü, Portsmuth A, Tobias M (2007). Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Functional Ecology, 21, 28-40. |
[26] |
Niklas KJ (1999). A mechanical perspective on foliage leaf form and function. New Phytologist, 143, 19-31.
DOI URL |
[27] | Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007). “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 104, 8891-8896. |
[28] |
Noblin X, Mahadevan L, Coomaraswamy IA, Weitz DA, Holbrook NM, Zwieniecki MA (2008). Optimal vein density in artificial and real leaves. Proceedings of the National Academy of Sciences of the United States of America, 105, 9140-9144.
DOI PMID |
[29] | Paradis J (2004). The relevance of specific language impairment in understanding the role of transfer in second language acquisition. Applied Psycholinguistics, 25, 67-82. |
[30] |
Parkhurst DF, Loucks OL (1972). Optimal leaf size in relation to environment. Journal of Ecology, 60, 505-537.
DOI URL |
[31] |
Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, et al. (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190, 724-739.
DOI URL |
[32] |
Pitman EJG (1939). A note on normal correlation. Biometrika, 31, 9-12.
DOI URL |
[33] |
Price CA, Wing S, Weitz JS (2012). Scaling and structure of dicotyledonous leaf venation networks. Ecology letters, 15, 87-95.
DOI URL |
[34] |
Qin X, Zhu JJ, Guan XY, Yu TH, Cao KF (2017). The correlations of leaf anatomical characteristics with photosynthetic capacity and drought tolerance in seven sugarcane cultivars. Plant Physiology Journal, 53, 705-712.
DOI URL |
[ 秦茜, 朱俊杰, 关心怡, 于天卉, 曹坤芳 (2017). 七个甘蔗品种叶片解剖结构特征与光合能力和耐旱性的关联. 植物生理学报, 53, 705-712.] | |
[35] |
Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001). Evolution and function of leaf venation architecture: a review. Annals of Botany, 87, 553-566.
DOI URL |
[36] |
Sack L, Cowan PD, Holbrook NM (2003). The major veins of mesomorphic leaves revisited: tests for conductive overload in Acer saccharum (Aceraceae) and Quercus rubra (Fagaceae). American Journal of Botany, 90, 32-39.
DOI URL |
[37] | Sack L, Dietrich EM, Streeter CM, Sánchez-Gómez D, Holbrook NM (2008). Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption. Proceedings of the National Academy of Sciences of the United States of America, 105, 1567-1572. |
[38] |
Sack L, Frole K (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 87, 483-491.
DOI URL |
[39] |
Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA (2013). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. Journal of Experimental Botany, 64, 4053-4080.
DOI URL |
[40] |
Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications, 3, 837. DOI: 10.1038/ncomms1835.
DOI URL |
[41] | Salleo S, Raimondo F, Trifilò P, Nardini A (2003). Axial-to-radial water permeability of leaf major veins: a possible determinant of the impact of vein embolism on leaf hydraulics? Plant, Cell & Environment, 26, 1749-1758. |
[42] |
Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.
DOI URL |
[43] |
Tsukaya H (2003). Organ shape and size: a lesson from studies of leaf morphogenesis. Current Opinion in Plant Biology, 6, 57-62.
DOI URL |
[44] |
Wang SY, Yuan SL, Su LT, Lv AM, Zhou P, An Y (2017). Aluminum toxicity in alfalfa (Medicago sativa) is alleviated by exogenous foliar IAA inducing reduction of Al accumulation in cell wall. Environmental and Experimental Botany, 139, 1-13.
DOI URL |
[45] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews of the Cambridge Philosophical Society, 81, 259-291.
DOI URL |
[46] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change: a review. Chinese Journal of Ecology, 31, 702-713. |
[ 杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] | |
[47] | Zhao QL, Tian WB, Zheng Z, Shi QR, You WH, Yan ER (2020). Hydraulic architecture associated with tree height across woody plants in Tiantong, Zhejiang Province. Acta Ecologica Sinica, 40, 6905-6911. |
[ 赵琦琳, 田文斌, 郑忠, 史青茹, 由文辉, 阎恩荣 (2020). 浙江天童木本植物水力结构与树高的关联性. 生态学报, 40, 6905-6911.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn