Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (12): 1289-1297.DOI: 10.17521/cjpe.2016.0215
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
Bei-Bei DUAN, Cheng-Zhang ZHAO*, Ting XU, Hui-Ling ZHENG, Wei FENG, Ling HAN
Online:
2016-12-10
Published:
2016-12-30
Contact:
Cheng-Zhang ZHAO
Bei-Bei DUAN, Cheng-Zhang ZHAO, Ting XU, Hui-Ling ZHENG, Wei FENG, Ling HAN. Correlation analysis between vein density and stomatal traits of Robinia pseudoacacia in different aspects of Beishan Mountain in Lanzhou[J]. Chin J Plant Ecol, 2016, 40(12): 1289-1297.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0215
坡向 Aspect | 群落特征 Community characteristics | 土壤含水量 Soil moisture (%) | |
---|---|---|---|
郁闭度 Crown density (%) | 高度 Height (cm) | ||
南坡 South slope | 67.38 ± 2.71c | 301.72 ± 15.14c | 6.83 ± 0.51c |
东坡 East slope | 79.09 ± 4.01b | 341.03 ± 13.22b | 7.91 ± 0.38b |
西坡 West slope | 78.77 ± 5.29b | 339.45 ± 11.99b | 7.84 ± 0.41b |
北坡 North slope | 87.15 ± 4.91a | 398.55 ± 23.35a | 8.77 ± 0.29a |
Table 1 Main characteristics of plots in different slope aspects (mean ± SE)
坡向 Aspect | 群落特征 Community characteristics | 土壤含水量 Soil moisture (%) | |
---|---|---|---|
郁闭度 Crown density (%) | 高度 Height (cm) | ||
南坡 South slope | 67.38 ± 2.71c | 301.72 ± 15.14c | 6.83 ± 0.51c |
东坡 East slope | 79.09 ± 4.01b | 341.03 ± 13.22b | 7.91 ± 0.38b |
西坡 West slope | 78.77 ± 5.29b | 339.45 ± 11.99b | 7.84 ± 0.41b |
北坡 North slope | 87.15 ± 4.91a | 398.55 ± 23.35a | 8.77 ± 0.29a |
南坡 South slope | 东坡 East slope | 西坡 West slope | 北坡 North slope | |
---|---|---|---|---|
叶脉密度 Vein density (cm·cm-2) | 195.74 ± 9.80a | 177.19 ± 8.56b | 166.59 ± 8.33b | 150.01 ± 7.50c |
气孔密度 Stomatal density (No.·mm-2) | 238.16 ± 11.90a | 224.74 ± 11.24b | 229.85 ± 11.49b | 214.77 ± 11.74c |
气孔大小 Stomatal length (μm) | 7.89 ± 0.39c | 8.76 ± 0.44b | 8.71 ± 0.44b | 9.64 ± 0.48a |
单叶叶面积 Individual leaf area (cm2) | 5.18 ± 0.26c | 6.27 ± 0.31b | 6.46 ± 0.32b | 7.61 ± 0.38a |
PAR (μmol·m-2·s-1) | 1 024.51 ± 51.22a | 925.34 ± 46.27b | 920.57 ± 46.03b | 780.48 ± 39.02c |
Pn (μmol CO2·m-2·s-1) | 6.24 ± 0.31a | 5.02 ± 0.25b | 4.88 ± 0.25b | 4.35 ± 0.22c |
Tr (mmol H2O·m-2·s-1) | 5.81 ± 0.29a | 4.78 ± 0.24b | 4.62 ± 0.23b | 3.89 ± 0.19c |
Table 2 Leaf traits and photosynthetic characteristics of Robinia pseudoacacia in different slope aspects (mean ± SE)
南坡 South slope | 东坡 East slope | 西坡 West slope | 北坡 North slope | |
---|---|---|---|---|
叶脉密度 Vein density (cm·cm-2) | 195.74 ± 9.80a | 177.19 ± 8.56b | 166.59 ± 8.33b | 150.01 ± 7.50c |
气孔密度 Stomatal density (No.·mm-2) | 238.16 ± 11.90a | 224.74 ± 11.24b | 229.85 ± 11.49b | 214.77 ± 11.74c |
气孔大小 Stomatal length (μm) | 7.89 ± 0.39c | 8.76 ± 0.44b | 8.71 ± 0.44b | 9.64 ± 0.48a |
单叶叶面积 Individual leaf area (cm2) | 5.18 ± 0.26c | 6.27 ± 0.31b | 6.46 ± 0.32b | 7.61 ± 0.38a |
PAR (μmol·m-2·s-1) | 1 024.51 ± 51.22a | 925.34 ± 46.27b | 920.57 ± 46.03b | 780.48 ± 39.02c |
Pn (μmol CO2·m-2·s-1) | 6.24 ± 0.31a | 5.02 ± 0.25b | 4.88 ± 0.25b | 4.35 ± 0.22c |
Tr (mmol H2O·m-2·s-1) | 5.81 ± 0.29a | 4.78 ± 0.24b | 4.62 ± 0.23b | 3.89 ± 0.19c |
Fig. 1 Relationship between vein density and stomatal density of Robinia pseudoacacia in different aspects. A, South slope. B, East slope. C, West slope. D, North slope. y and x is two parameter: log stomatal density and log vein density, yA = 0.39x + 1.50 represents the logarithms of the linear relationship between stomatal density and vein density, the rest can be done in the same manner.
Fig. 2 Relationship between vein density and stomatal length of Robinia pseudoacacia in different aspects. A, South slope. B, East slope. C, West slope. D, North slope. y and x is two parameter: log stomatal length and log vein density, yA = -0.16x + 1.25 represents the logarithms of the linear relationship between stomatal length and vein density, the rest can be done in the same manner.
1 | Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF (1987). Allocating resources to reproduction and defense.BioScience, 37, 58-67. |
2 | Beerling DJ, Franks PJ (2010). Plant science: The hidden cost of transpiration.Nature, 464, 495-496. |
3 | Berlyn GP, Miksche JP (1976). Botanical Microtechnique and Cytochemistry. Iowa State University Press, Ames, USA. |
4 | Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum.Ecology Letters, 14, 91-100. |
5 | Brodribb TJ, Feild TS, Sack L (2010). Viewing leaf structure and evolution from a hydraulic perspective.Functional Plant Biology, 37, 488-498. |
6 | Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation ofNothofagus cunninghamii trees. New Phytologist, 192, 437-448. |
7 | Cantón Y, del Barrio G, Solé-Benet A, Lázaro R (2004). Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain.Catena, 55, 341-365. |
8 | Chen WY, LIU CH, LI YY, Min DH (2014). Flag leaf vein traits in winter wheat varieties (lines) and their correlation with stomatal traits.Chinese Journal of Ecology, 33, 1839-1846.(in English with Chinese abstract) [陈伟月, 刘存海, 李秧秧, 闵东红 (2014). 冬小麦品种(系)旗叶叶脉性状及其与气孔性状间的关联性. 生态学杂志, 33, 1839-1846.] |
9 | Chen Y, Xu X, Zhang DR, Wei Y (2006). Correlations between vegetation distribution and topographical factors in the northwest of Longmen Mountain, Sichuan Province.Chinese Journal of Ecology, 25, 1052-1055.(in English with Chinese abstract) [陈瑶, 胥晓, 张德然, 魏勇 (2006). 四川龙门山西北部植被分布与地形因子的相关性. 生态学杂志, 25, 1052-1055.] |
10 | Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG (2014). Variations with slope in stem and leaf traits ofMelica przewalskyi in alpine grassland. Chinese Journal of Plant Ecology, 38, 1307-1314.(in English with Chinese abstract) [党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚 (2014). 高寒草地甘肃臭草茎-叶性状的坡度差异性. 植物生态学报, 38, 1307-1314.] |
11 | Dow GJ, Berry JA, Bergann DC (2014). The physiological importance of developmental mechanisms that enforce proper stomatal spacing inArabidopsis thaliana. New Phytologist, 201, 1205-1217. |
12 | Du J, Zhao CZ, Song QH, Shi YC, Wang JW, Chen J (2016). Plant size differences with twig and leaf traits ofZygophyllum xanthoxylum in the northern slope of Qilian Mountains, China. Chinese Journal of Plant Ecology, 40, 212-220.(in English with Chinese abstract) [杜晶, 赵成章, 宋清华, 史元春, 王继伟, 陈静 (2016). 祁连山北坡霸王枝-叶性状关系的个体大小差异. 植物生态学报, 40, 212-220.] |
13 | Falster DS, Warton DI, Wright IJ (. |
14 | Field TS, Brodribb TJ, Iglesias A, Chatelet DS, Baresch A, Upchurch GR, Jr. Gomez B, Mohr BAR, Coiffard C, Kvacek J, Jaramillo C (2011). Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution.Proceedings of the National Academy of Sciences of the United States of America, 108, 8363-8366. |
15 | Fiorin L, Brodribb TJ, Anfodillo T (2016). Transport efficiency through uniformity: Organization of veins and stomata in angiosperm leaves.New Phytologist, 209, 216-227. |
16 | Gao CJ, Xia XJ, Shi K, Zhou YH, Yu JQ (2012). Response of stomata to global climate changes and the underlying regulation mechanism of stress responses.Plant Physiology Journal, 48, 19-28.(in English with Chinese abstract) [高春娟, 夏晓剑, 师恺, 周艳虹, 喻景权 (2012). 植物气孔对全球环境变化的响应及其调控防御机制. 植物生理学报, 48, 19-28.] |
17 | Gao GL, Zhang XY, Chang ZQ, Yu TF, Zhao H (2016). Environmental response simulation and the up-scaling of plant stomatal conductance. Acta Ecologica Sinica, 36, 1491-1500.(in English with Chinese abstract) [高冠龙, 张小由, 常宗强, 鱼腾飞, 赵虹 (2016). 植物气孔导度的环境响应模拟及其尺度扩展. 生态学报, 36, 1491-1500.] |
18 | Gao J, Cao KF, Wang HX (2004). Water relations and stomatal conductance in nine tree species during a dry period grown in a hot and dry valley.Acta Phytoecologica Sinica, 28, 186-190.(in English with Chinese abstract) [高洁, 曹坤芳, 王焕校 (2004). 干热河谷9种造林树种在旱季的水分关系和气孔导度. 植物生态学报, 28, 186-190.] |
19 | Hethrington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental change.Nature, 424, 901-908. |
20 | Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits.Chinese Journal of Plant Ecology, 39, 1021-1032.(in Chinese with English abstract)[金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.] |
21 | Li J, Wang XC, Shao MA, Zhao YJ, Li XF (2010). Simulation of biomass and soil desiccation ofRobinia pseudoacacia forestlands on semi-arid and semi-humid regions of China’s Loess Plateau. Chinese Journal of Plant Ecology, 34, 330-339.(in Chinese with English abstract)[李军, 王学春, 邵明安, 赵玉娟, 李小芳 (2010). 黄土高原半干旱和半湿润地区刺槐林地生物量与土壤干燥化效应的模拟. 植物生态学报, 34, 330-339.] |
22 | Li L, Zeng H, Guo DL (2013). Leaf venation functional traits and their ecological significance.Chinese Journal of Plant Ecology, 37, 691-698.(in Chinese with English abstract)[李乐, 曾辉, 郭大立 (2013). 叶脉网络功能性状及其生态学意义. 植物生态学报, 37, 691-698.] |
23 | Maherali H, Delucia EH (2001). Influence of climate-driven shifts in biomass allocation on water transport and storage in ponderosa pine.Oecologia, 129, 481-491. |
24 | Maricle BR, Koteyeva NK, Voznesenskaya EV, Thomasson JR, Edwards GE (2009). Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C4 genusSpartina(Poaceae). New Phytologist ,184, 216-233. |
25 | Maseda PH, Fernández RJ (2006). Stay wet or else: Three ways in which plants can adjust hydraulically to their environment.Journal of Experimental Botany, 57, 3963-3977. |
26 | Pitman EJG (1939). A note on normal correlation.Biometrika, 31, 9-12. |
27 | Poorter L, Bongers L, Bongers F (2006). Architecture of 54 moist forest tree species: Traits, trade-offs, and functional groups.Ecology, 87, 1289-1301. |
28 | Ren QJ, Li HL, Bu HY (2015). Comparison of physiological and leaf morphological traits for photosynthesis of the 51 plant species in the Maqu alpine swamp meadow.Chinese Journal of Plant Ecology ,39, 593-603.(in English with Chinese abstract) [任青吉, 李宏林, 卜海燕 (2015). 玛曲高寒沼泽化草甸51种植物光合生理和叶片形态特征的比较. 植物生态学报, 39, 593-603.] |
29 | Sack L, Frole K (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees.Ecology, 87, 483-491. |
30 | Sack L, Scoffoni C (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future.New Phytologist, 198, 983-1000. |
31 | Sack L, Scoffoni C, McKown AD, Frole K, Havran JC, Tran H, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns.Nature Communications, 3, 837. |
32 | Scoffoni C, Kunkle J, Pasquet-Kok J, Vuong C, Patel AJ, Montgomery RA, Thomas J, Givnish TJ, Sack L (2015). Light-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverseHawaiian lobeliads. New Phytologist ,207, 43-58. |
33 | Shen JP, Zhang WH (2014). Characteristics of carbon storage and sequestration ofRobinia pseudoacacia forest land converted by farmland in the Hilly Loess Plateau Region. Acta Ecologica Sinica, 34, 2746-2754.(in English with Chinese abstract) [申家朋, 张文辉 (2014). 黄土丘陵区退耕还林地刺槐人工林碳储量及分配规律. 生态学报, 34, 2746-2754.] |
34 | Shi YC, Zhao CZ, Song QH, Du J, Chen J, Wang JW (2015). Slope-related variations in twig and leaf traits ofRobinia pseudoacacia in the northern mountains of Lanzhou. Chinese Journal of Plant Ecology, 39, 362-370.(in English with Chinese abstract) [史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟 (2015). 兰州北山刺槐枝叶性状的坡向差异性. 植物生态学报, 39, 362-370.] |
35 | Skidmore AK (1989). A comparison of techniques for calculating gradient and aspect from a gridded digital elevation model.International Journal of Geographical Information Science, 3, 323-334. |
36 | Sun SJ, Li FL, Bao WK (2015), Advances on construction of leaf venation system and its significance.Journal of Tropical and Subtropical Botany of Phylogeny, 23, 353-360.(in English with Chinese abstract) [孙素静, 李芳兰, 包维楷 (2015). 叶脉网络系统的构建和系统学意义研究进展. 热带亚热带植物学报, 23, 353-360.] |
37 | Wang N, Zhang Y, Qian WL, Wang ZQ, Gu JC (2016). Effects of elevated CO2 concentration on root and needle anatomy and physiological functions inPinus koraiensis seedlings. Chinese Journal of Plant Ecology, 40, 60-68.(in English with Chinese abstract) [王娜, 张韫, 钱文丽, 王政权, 谷加存 (2016). CO2浓度倍增对红松幼苗根尖和叶解剖结构及生理功能的影响. 植物生态学报, 40, 60-68.] |
38 | Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW (2016). Altitudinal variation in the covariation of stomatal traits with leaf functional traits in Changbai Mountain.Acta Ecologica Sinica, 36, 1-10.(in English with Chinese abstract) [王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟 (2016). 气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律: 以长白山为例. 生态学报, 36, 1-10.] |
39 | Wang SG, Li ZQ, Jia SS, Sun DZ, Shi YG, Fan H, Liang ZH, Jing RL (2013). Relationships of wheat leaf stomatal traits with wheat yield and drought-resistance.Chinese Journal of Applied Ecology, 24, 1609-1614.(in English with Chinese abstract) [王曙光, 李中青, 贾寿山, 孙黛珍, 史雨刚, 范华, 梁增浩, 景蕊莲 (2013). 小麦叶片气孔性状与产量和抗旱性的关系. 应用生态学报, 24, 1609-1614.] |
40 | Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models.Biometrical Journal, 44, 161-174. |
41 | Warton DI, Wright IJ, Falster DS (2006). Bivariate line-fitting methods for allometry.Biological Reviews, 81, 259-291. |
42 | Wei LL, Zhang XQ, Hou ZH, Xu DY, Yu XB (2005). Effects of water stress on photosynthesis and carbon allocation inCunninghamia lancealata seedlings. Acta Phytoecologica Sinica, 29, 394-402.(in Chinese with English abstract)[韦莉莉, 张小全, 侯振宏, 徐德应, 余雪标 (2005). 杉木苗木光合作用及其产物分配对水分胁迫的响应. 植物生态学报, 29, 394-402.] |
43 | Westoby M, Falster DS, Moles AT, Vesk PA, Wright LJ (2002). Plant ecological strategies: Some leading dimensions of variation between species.Annual Review of Ecology Systematics, 33, 125-159. |
44 | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature ,428, 821-827. |
45 | Xu T, Zhao CZ, Duan BB, Han L, Zheng HL, Feng W (2016). Slope-related variations of different levels of vein density and leaf size in Robinia pseudoacacia in the northern mountains of Lanzhou. Chinese Journal of Ecology, 35, 41-47.(in English with Chinese abstract) [徐婷, 赵成章, 段贝贝, 韩玲, 郑慧玲, 冯威 (2016). 兰州北山刺槐不同等级叶脉密度与叶大小关系的坡向差异性. 生态学杂志, 35, 41-47.] |
46 | Xu Z, Zhou G (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass.Journal of Experimental Botany, 59, 3317-3325. |
47 | Yang HM, Wang GX (2001). Leaf stomatal densities and distribution inTriticum Aestivum under drought and CO2 enrichment. Acta Phytoecologica Sinica, 25, 312-316.(in English with Chinese abstract) [杨惠敏, 王根轩 (2001). 干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响. 植物生态学报, 25, 312-316.] |
48 | Yang LM, Han M, Zhou GS, Li JD (2007). The changes of water-use efficiency and stoma density ofLeymus chinensis a long Northeast China Transect. Acta Ecologica Sinica, 27, 16-24.(in Chinese with English abstract)[杨利民, 韩梅, 周广胜, 李建东 (2007). 中国东北样带关键种羊草水分利用效率与气孔密度. 生态学报, 27, 16-24.] |
49 | Yu ZH, Chen YM, Du S (2009). Sap flow dynamics in the leaf-flushing period of aRobinia pseudoacacia plantation in semi-arid region of Loess Plateau. Scientia Silvae Sinicae, 45(4), 53-59.(in Chinese with English abstract)[于占辉, 陈云明, 杜盛 (2009). 黄土高原半干旱区人工林刺槐展叶期树干液流动态分析. 林业科学, 45(4), 53-59.] |
50 | Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF, Hu H (2012). Evolutionary association of stomatal traits with leaf vein density inPaphiopedilum, Orchidaceae. PLOS ONE ,7, e40080, doi: 10.1371/journal.pone.0040080. |
51 | Zhang Y, Yang SJ, Sun M, Cao KF (2014). Stomatal traits are evolutionarily associated with vein density in basal angiosperms.Plant Science Journal, 32, 320-328.(in English with Chinese abstract) [张亚, 杨石建, 孙梅, 曹坤芳 (2014). 基部被子植物气孔性状与叶脉密度的关联进化. 植物科学学报, 32, 320-328.] |
52 | Zuo YM, Chen QB, Deng QQ, Tang J, Luo HW, Wu TK, Yang ZF (2011). Effects of soil moisture, light, and air humidity on stomatal conductance of cassava (Manihot esculenta Crantz). Chinese Journal of Ecology, 30, 689-693.(in English with Chinese abstract) [左应梅, 陈秋波, 邓权权, 唐建, 罗海伟, 巫铁凯, 杨重法 (2011). 土壤水分、光照和空气湿度对木薯气孔导度的影响. 生态学杂志, 30, 689-693.] |
[1] | HE Fei, LI Chuan, Faisal SHAH, LU Xie-Min, WANG Ying, WANG Meng, RUAN Jia, WEI Meng-Lin, MA Xing-Guang, WANG Zhuo, JIANG Hao. Carbon transport and phosphorus uptake in an intercropping system of Robinia pseudoacacia and Amorphophallus konjac mediated by arbuscular mycorrhizal hyphal networks [J]. Chin J Plant Ecol, 2023, 47(6): 782-791. |
[2] | LIU Mei-Jun, CHEN Qiu-Wen, LÜ Jin-Lin, LI Guo-Qing, DU Sheng. Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region [J]. Chin J Plant Ecol, 2023, 47(2): 227-237. |
[3] | SHI Yuan-Chun,ZHAO Cheng-Zhang,SONG Qing-Hua,DU Jing,CHEN Jing,WANG Ji-Wei. Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou [J]. Chin J Plan Ecolo, 2015, 39(4): 362-370. |
[4] | WU Xu,CHEN Yun-Ming,TANG Ya-Kun. Sap flow characteristics and its responses to precipitation in Robinia pseudoacacia and Platycladus orientalis plantations [J]. Chin J Plan Ecolo, 2015, 39(12): 1176-1187. |
[5] | WANG Lin, FENG Jin-Xia, WAN Xian-Chong. Effects of soil thickness on dry-season water relations and growth in Robinia pseudoacacia [J]. Chin J Plant Ecol, 2013, 37(3): 248-255. |
[6] | WANG Hua, OUYANG Zhi-Yun, ZHENG Hua, WANG Xiao-Ke, NI Yong-Ming, REN Yu-Fen. Characteristics of spatial variations in xylem sap flow in urban greening tree species Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia in Beijing, China [J]. Chin J Plant Ecol, 2010, 34(8): 924-937. |
[7] | LI Jun, WANG Xue-Chun, SHAO Ming-An, ZHAO Yu-Juan, LI Xiao-Fang. Simulation of biomass and soil desiccation of Robinia pseudoacacia forestlands on semi-arid and semi-humid regions of China’s Loess Plateau [J]. Chin J Plant Ecol, 2010, 34(3): 330-339. |
[8] | MENG Fan-Juan, WANG Qiu-Yu, WANG Jian-Zhong, LI Shu-Yan, WANG Jiang-Jiang. SALT RESISTANCE OF TETRAPLOID ROBINIA PSEUDOACACIA [J]. Chin J Plant Ecol, 2008, 32(3): 654-663. |
[9] | YIN Jing, QIU Guo-Yu, HE Fan, HE Kang-Ning, TIAN Jing-Hui, ZHANG Wei-Qiang, XIONG Yu-Jiu, ZHAO Shao-Hua, LIU Jian-Xin. LEAF AREA CHARACTERISTICS OF PLANTATION STANDS IN SEMI-ARID LOESS HILL-GULLY REGION OF CHINA [J]. Chin J Plant Ecol, 2008, 32(2): 440-447. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn