Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (8): 924-937.DOI: 10.3773/j.issn.1005-264x.2010.08.005
• Research Articles • Previous Articles Next Articles
WANG Hua1,*(), OUYANG Zhi-Yun1,**(
), ZHENG Hua1, WANG Xiao-Ke1, NI Yong-Ming2, REN Yu-Fen1
Received:
2009-06-23
Accepted:
2010-04-21
Online:
2010-06-23
Published:
2010-09-28
Contact:
OUYANG Zhi-Yun
WANG Hua, OUYANG Zhi-Yun, ZHENG Hua, WANG Xiao-Ke, NI Yong-Ming, REN Yu-Fen. Characteristics of spatial variations in xylem sap flow in urban greening tree species Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia in Beijing, China[J]. Chin J Plant Ecol, 2010, 34(8): 924-937.
树种 Species | 胸径 DBH (cm) | 高度 Height (m) | 冠层投影面 Ac (m2) | 边材面积 As (cm2) | 插针方位 Orientation of sensor | 插针数量和类型 Number and type of sensor |
---|---|---|---|---|---|---|
油松1号 Pinus tabulaeformis No. 1 | 17.00 | 5.90 | 22.02 | 163.56 | 南北 Northsouth | 2TDP30 |
油松2号 P. tabulaeformis No. 2 | 16.20 | 5.70 | 19.97 | 147.52 | 南北 Northsouth | 2TDP30 |
油松3号 P. tabulaeformis No. 3 | 18.70 | 5.80 | 23.31 | 200.60 | 南北 Northsouth | 2TDP30 + 1TDP80 |
雪松1号 Cedrus deodara No. 1 | 23.50 | 7.30 | 37.59 | 300.63 | 东南西北 All aspects | 4TDP30 |
雪松2号 C. deodara No. 2 | 24.20 | 6.40 | 23.22 | 313.50 | 东南西北 All aspects | 4TDP30 |
雪松3号 C. deodara No. 3 | 33.60 | 11.20 | 59.53 | 500.86 | 东南西北 All aspects | 4TDP80 |
刺槐1号 Robinia pseudoacacia No. 1 | 40.40 | 11.50 | 56.71 | 138.80 | 东南西北 All aspects | 4TDP30 |
刺槐2号 R. pseudoacacia No. 2 | 38.60 | 12.30 | 71.00 | 129.57 | 东南西北 All aspects | 4TDP30 |
刺槐3号 R. pseudoacacia No. 3 | 33.50 | 12.10 | 42.96 | 104.59 | 东南西北 All aspects | 4TDP30 |
Table 1 Characteristics of tree structures in the sampled trees for sap flow measurements
树种 Species | 胸径 DBH (cm) | 高度 Height (m) | 冠层投影面 Ac (m2) | 边材面积 As (cm2) | 插针方位 Orientation of sensor | 插针数量和类型 Number and type of sensor |
---|---|---|---|---|---|---|
油松1号 Pinus tabulaeformis No. 1 | 17.00 | 5.90 | 22.02 | 163.56 | 南北 Northsouth | 2TDP30 |
油松2号 P. tabulaeformis No. 2 | 16.20 | 5.70 | 19.97 | 147.52 | 南北 Northsouth | 2TDP30 |
油松3号 P. tabulaeformis No. 3 | 18.70 | 5.80 | 23.31 | 200.60 | 南北 Northsouth | 2TDP30 + 1TDP80 |
雪松1号 Cedrus deodara No. 1 | 23.50 | 7.30 | 37.59 | 300.63 | 东南西北 All aspects | 4TDP30 |
雪松2号 C. deodara No. 2 | 24.20 | 6.40 | 23.22 | 313.50 | 东南西北 All aspects | 4TDP30 |
雪松3号 C. deodara No. 3 | 33.60 | 11.20 | 59.53 | 500.86 | 东南西北 All aspects | 4TDP80 |
刺槐1号 Robinia pseudoacacia No. 1 | 40.40 | 11.50 | 56.71 | 138.80 | 东南西北 All aspects | 4TDP30 |
刺槐2号 R. pseudoacacia No. 2 | 38.60 | 12.30 | 71.00 | 129.57 | 东南西北 All aspects | 4TDP30 |
刺槐3号 R. pseudoacacia No. 3 | 33.50 | 12.10 | 42.96 | 104.59 | 东南西北 All aspects | 4TDP30 |
Fig. 2 Characteristics of sap flux density (Js) at south and north aspects in Pinus tabulaeformis. A-C, Diurnal variation in Js at south and north aspects in each of three Pinus tabulaeformis trees on June, 2008. E-F, Linear relationships between Js on north side (x-axis) and Js on south side (y-axis).
Fig. 3 Characteristics of sap flux density (Js) at north, south, east and west aspects in Cedrus deodara trees. A-C, Diurnal variation in Js at four aspects in each of three Cedrus deodara trees in June, 2008. E-F, Linear relationships between Js on north side (x-axis) and Js on east, south and west sides (y-axis).
Fig. 4 Characteristics of sap flux density (Js) at north, south, east and west aspects in Robinia pseudoacacia trees. A-C, Diurnal variation in Js at four aspects in each of three Robinia pseudoacacia trees in June, 2008. E-F, Linear relationships between Js on north side (x-axis) and Js on east, south and west sides (y-axis).
物种 Species | 方位 Orientation | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|
油松 P. tabulaeformis | 南和北 South and North | Js-south = 5e - 5 + 1.075Js-north | 0.971 | < 0.000 1 |
雪松 C. deodara | 东和北 East and North | Js-east = 3e - 5 + 0.807Js-north | 0.957 | < 0.000 1 |
南和北 South and North | Js-south = 0.0001 + 1.038Js-north | 0.905 | < 0.000 1 | |
西和北 West and North | Js-west = 1e - 5 + 0.817Js-north | 0.936 | < 0.000 1 | |
刺槐 R. pseudoacacia | 东和北 East and North | Js-east = - 6e - 6 + 0.988Js-north | 0.955 | < 0.000 1 |
南和北 South and North | Js-south = 2.9e - 5 + 0.930Js-north | 0.967 | < 0.000 1 | |
西和北 West and North | Js-west = - 1e - 5 + 1.072Js-north | 0.984 | < 0.000 1 |
Table 2 Curve estimation between sap flux density (Js) on north side (x-axis) and Js on east, south, west side (y-axis) in each of three Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia trees from June to November, 2008
物种 Species | 方位 Orientation | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|
油松 P. tabulaeformis | 南和北 South and North | Js-south = 5e - 5 + 1.075Js-north | 0.971 | < 0.000 1 |
雪松 C. deodara | 东和北 East and North | Js-east = 3e - 5 + 0.807Js-north | 0.957 | < 0.000 1 |
南和北 South and North | Js-south = 0.0001 + 1.038Js-north | 0.905 | < 0.000 1 | |
西和北 West and North | Js-west = 1e - 5 + 0.817Js-north | 0.936 | < 0.000 1 | |
刺槐 R. pseudoacacia | 东和北 East and North | Js-east = - 6e - 6 + 0.988Js-north | 0.955 | < 0.000 1 |
南和北 South and North | Js-south = 2.9e - 5 + 0.930Js-north | 0.967 | < 0.000 1 | |
西和北 West and North | Js-west = - 1e - 5 + 1.072Js-north | 0.984 | < 0.000 1 |
树种 Species | 方差同质性检验 Levene’s test for equality of variances | 均值的t检验 t-test for equality of means | ||||
---|---|---|---|---|---|---|
F | 显著度 p | t | 自由度 df | 显著度 p | ||
油松 P. tabulaeformis, | 1.176 | 0.339 | 1.796 | 4 | 0.147 | |
雪松 C. deodara | 0.175 | 0.697 | 0.904 | 4 | 0.417 | |
刺槐 R. pseudoacacia | 7.748 | 0.050 | 2.500 | 4 | 0.067 |
Table 3 The t-test for canopy width from south to north and canopy width from east to west of three Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia trees
树种 Species | 方差同质性检验 Levene’s test for equality of variances | 均值的t检验 t-test for equality of means | ||||
---|---|---|---|---|---|---|
F | 显著度 p | t | 自由度 df | 显著度 p | ||
油松 P. tabulaeformis, | 1.176 | 0.339 | 1.796 | 4 | 0.147 | |
雪松 C. deodara | 0.175 | 0.697 | 0.904 | 4 | 0.417 | |
刺槐 R. pseudoacacia | 7.748 | 0.050 | 2.500 | 4 | 0.067 |
物种 Species | 方位 Orientation | 环境因子 Environmental factors | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|---|
油松 | 南 | 水汽压亏缺 D (kPa) | Js = 0.0028 + 0.0021lnD | 0.569 | < 0.000 1 |
P. tabulaeformis | South | 总辐射Rs (W·m-2) | Js = 0.0007 + 9e - 6Rs | 0.707 | < 0.000 1 |
北 | 水汽压亏缺 D (kPa) | Js = 0.0025 + 0.00019lnD | 0.555 | < 0.000 1 | |
North | 总辐射Rs (W·m-2) | Js = 0.0006 + 8e - 6Rs | 0.682 | < 0.000 1 | |
雪松 | 东 | 水汽压亏缺 D (kPa) | Js = 0.002 + 0.0014lnD | 0.364 | < 0.000 1 |
C. deodara | East | 总辐射Rs (W·m-2) | Js = 0.0008 + 6e - 6Rs | 0.562 | < 0.000 1 |
南 | 水汽压亏缺 D (kPa) | Js = 0.0026 + 0.0019lnD | 0.447 | < 0.000 1 | |
South | 总辐射Rs (W·m-2) | Js = 0.0009 + 8e - 6Rs | 0.655 | < 0.000 1 | |
西 | 水汽压亏缺 D (kPa) | Js = 0.002 + 0.0015lnD | 0.410 | < 0.000 1 | |
West | 总辐射Rs (W·m-2) | Js = 0.0007 + 6e - 6Rs | 0.609 | < 0.000 1 | |
北 | 水汽压亏缺 D (kPa) | Js = 0.0023 + 0.0018lnD | 0.460 | < 0.000 1 | |
North | 总辐射Rs (W·m-2) | Js = 0.0008 + 7e - 6Rs | 0.642 | < 0.000 1 | |
刺槐 | 东 | 水汽压亏缺 D (kPa) | Js = 0.0022 + 0.0014lnD | 0.565 | < 0.000 1 |
R. pseudoacacia | East | 总辐射Rs (W·m-2) | Js = 0.0008 + 6e - 6Rs | 0.679 | < 0.000 1 |
南 | 水汽压亏缺 D (kPa) | Js = 0.0021 + 0.0013lnD | 0.515 | < 0.000 1 | |
South | 总辐射Rs (W·m-2) | Js = 0.0008 + 6e - 6Rs | 0.636 | < 0.000 1 | |
西 | 水汽压亏缺 D (kPa) | Js = 0.0023 + 0.0015lnD | 0.535 | < 0.000 1 | |
West | 总辐射Rs (W·m-2) | Js = 0.0009 + 6e - 6Rs | 0.618 | < 0.000 1 | |
北 | 水汽压亏缺 D (kPa) | Js = 0.0021 + 0.0013lnD | 0.493 | < 0.000 1 | |
North | 总辐射Rs (W·m-2) | Js = 0.0009 + 6e - 6Rs | 0.597 | < 0.000 1 |
Table 4 Curve estimation between sap flux density (Js) at four aspects and vapor pressure deficit (D), total radiation (Rs) in Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia from June to November, 2008
物种 Species | 方位 Orientation | 环境因子 Environmental factors | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|---|
油松 | 南 | 水汽压亏缺 D (kPa) | Js = 0.0028 + 0.0021lnD | 0.569 | < 0.000 1 |
P. tabulaeformis | South | 总辐射Rs (W·m-2) | Js = 0.0007 + 9e - 6Rs | 0.707 | < 0.000 1 |
北 | 水汽压亏缺 D (kPa) | Js = 0.0025 + 0.00019lnD | 0.555 | < 0.000 1 | |
North | 总辐射Rs (W·m-2) | Js = 0.0006 + 8e - 6Rs | 0.682 | < 0.000 1 | |
雪松 | 东 | 水汽压亏缺 D (kPa) | Js = 0.002 + 0.0014lnD | 0.364 | < 0.000 1 |
C. deodara | East | 总辐射Rs (W·m-2) | Js = 0.0008 + 6e - 6Rs | 0.562 | < 0.000 1 |
南 | 水汽压亏缺 D (kPa) | Js = 0.0026 + 0.0019lnD | 0.447 | < 0.000 1 | |
South | 总辐射Rs (W·m-2) | Js = 0.0009 + 8e - 6Rs | 0.655 | < 0.000 1 | |
西 | 水汽压亏缺 D (kPa) | Js = 0.002 + 0.0015lnD | 0.410 | < 0.000 1 | |
West | 总辐射Rs (W·m-2) | Js = 0.0007 + 6e - 6Rs | 0.609 | < 0.000 1 | |
北 | 水汽压亏缺 D (kPa) | Js = 0.0023 + 0.0018lnD | 0.460 | < 0.000 1 | |
North | 总辐射Rs (W·m-2) | Js = 0.0008 + 7e - 6Rs | 0.642 | < 0.000 1 | |
刺槐 | 东 | 水汽压亏缺 D (kPa) | Js = 0.0022 + 0.0014lnD | 0.565 | < 0.000 1 |
R. pseudoacacia | East | 总辐射Rs (W·m-2) | Js = 0.0008 + 6e - 6Rs | 0.679 | < 0.000 1 |
南 | 水汽压亏缺 D (kPa) | Js = 0.0021 + 0.0013lnD | 0.515 | < 0.000 1 | |
South | 总辐射Rs (W·m-2) | Js = 0.0008 + 6e - 6Rs | 0.636 | < 0.000 1 | |
西 | 水汽压亏缺 D (kPa) | Js = 0.0023 + 0.0015lnD | 0.535 | < 0.000 1 | |
West | 总辐射Rs (W·m-2) | Js = 0.0009 + 6e - 6Rs | 0.618 | < 0.000 1 | |
北 | 水汽压亏缺 D (kPa) | Js = 0.0021 + 0.0013lnD | 0.493 | < 0.000 1 | |
North | 总辐射Rs (W·m-2) | Js = 0.0009 + 6e - 6Rs | 0.597 | < 0.000 1 |
Fig. 5 Characteristics of sap flux density (Js) at different depths in Pinus tabulaeformis trees. A, Diurnal variation in Js on the north aspect with two depths in Pinus tabulaeformis No. 3 tree on 3th, August, 2008. B, Linear relationships between Js at depth of 15 mm (x-axis) and Js at depth of 75 mm (y-axis). Arrows point to the time lag.
Fig. 6 Characteristics of sap flux density (Js) at different depths at four aspects in Cedrus deodara No. 3. A-D, Diurnal variation in Js at four aspects with two depths in Cedrus deodara No. 3 tree on 3rd, August, 2008. E-H, Linear relationships between Js at depth of 15 mm (x-axis) and Js at depth of 75 mm (y-axis). Arrows point to the time lag.
物种 Species | 深度 Depth | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|
油松 Pinus tabulaeformis | 15 mm vs 75 mm | Js-75mm = 4e - 5 + 0.149Js-15mm | 0.943 | < 0.000 1 |
雪松 Cedrus deodara | 15 mm vs 75 mm | Js-75mm = 2e - 5 + 0.105Js-15mm | 0.889 | < 0.000 1 |
Table 5 Curve estimation between sap flux density (Js) between Js at depth of 15 mm and Js at depth of 75 mm in Pinus tabulaeformis and Cedrus deodara from July to November
物种 Species | 深度 Depth | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|
油松 Pinus tabulaeformis | 15 mm vs 75 mm | Js-75mm = 4e - 5 + 0.149Js-15mm | 0.943 | < 0.000 1 |
雪松 Cedrus deodara | 15 mm vs 75 mm | Js-75mm = 2e - 5 + 0.105Js-15mm | 0.889 | < 0.000 1 |
物种 Species | 深度 Depth | 环境因子 Environmental factors | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|---|
油松 Pinus tabulaeformis | 15 mm | 水汽压亏缺 D (kPa) | Js-15cm = 0.004 + 0.0029lnD | 0.607 | < 0.000 1 |
总辐射Rs (W·m-2) | Js-15cm = 0.0009 + 1e - 5Rs | 0.664 | < 0.000 1 | ||
75 mm | 水汽压亏缺 D (kPa) | Js-75cm = 0.0006 + 0.0004lnD | 0.541 | < 0.000 1 | |
总辐射Rs (W·m-2) | Js-75cm = 0.0002 + 2e - 6Rs | 0.584 | < 0.000 1 | ||
雪松 Cedrus deodara | 15 mm | 水汽压亏缺 D (kPa) | Js-15cm = 0.003 + 0.002 1lnD | 0.570 | < 0.000 1 |
总辐射Rs (W·m-2) | Js-15cm = 0.0007 + 9e - 6Rs | 0.674 | < 0.000 1 | ||
75 mm | 水汽压亏缺 D (kPa) | Js-75cm = 0.0003 + 0.0002lnD | 0.546 | < 0.000 1 | |
总辐射Rs (W·m-2) | Js-75cm = 1e - 4 + 1e - 6Rs | 0.626 | < 0.000 1 |
Table 6 Curve estimation between sap flux density (Js) at depth of 15 mm, 75 mm and vapor pressure deficit (D), total radiation (Rs) in Pinus tabulaeformis and in Cedrus deodara from July to November
物种 Species | 深度 Depth | 环境因子 Environmental factors | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|---|
油松 Pinus tabulaeformis | 15 mm | 水汽压亏缺 D (kPa) | Js-15cm = 0.004 + 0.0029lnD | 0.607 | < 0.000 1 |
总辐射Rs (W·m-2) | Js-15cm = 0.0009 + 1e - 5Rs | 0.664 | < 0.000 1 | ||
75 mm | 水汽压亏缺 D (kPa) | Js-75cm = 0.0006 + 0.0004lnD | 0.541 | < 0.000 1 | |
总辐射Rs (W·m-2) | Js-75cm = 0.0002 + 2e - 6Rs | 0.584 | < 0.000 1 | ||
雪松 Cedrus deodara | 15 mm | 水汽压亏缺 D (kPa) | Js-15cm = 0.003 + 0.002 1lnD | 0.570 | < 0.000 1 |
总辐射Rs (W·m-2) | Js-15cm = 0.0007 + 9e - 6Rs | 0.674 | < 0.000 1 | ||
75 mm | 水汽压亏缺 D (kPa) | Js-75cm = 0.0003 + 0.0002lnD | 0.546 | < 0.000 1 | |
总辐射Rs (W·m-2) | Js-75cm = 1e - 4 + 1e - 6Rs | 0.626 | < 0.000 1 |
Fig. 7 Error to whole-tree transpiration caused by spatial variation. A, Error to whole-tree transpiration caused by axial variation of sap flux density (Js) on different orientation in Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia. B, Error to whole-tree transpiration caused by radial variation of Js at different depth in Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia.
Fig. 8 Diurnal variation in sap flux density (Js) at four aspects with two depths in Cedrus deodara No. 3 from DOY210 to DOY213. A, Diurnal variation in Js at four aspects at the depth of 15 mm in Cedrus deodara No. 3. B, Diurnal variation in Js at four aspects at the depth of 75 mm in Cedrus deodara No. 3.
[1] | Campbell GS, Norman JM (1998). An Introduction to Environmental Biophysics 2nd. Springer-Verlag, New York. 40-45. |
[2] |
Delzon S, Sartore M, Granier A, Loustau D (2004). Radial profiles of sap flow with increasing tree size in maritime pine. Tree Physiology, 24, 1285-1293.
DOI URL PMID |
[3] | Fan M (樊敏), Ma LY (马履一), Wang RH (王瑞辉) (2008). Variation of stem sap flow of Robinia pseudoacacia in spring and summer. Scientia Silvae Sinicae (林业科学), 44(1), 41-45. (in Chinese with English abstract) |
[4] |
Ford CR, Goranson CE, Mitchell RJ, Will RE, Teskey RO (2004a). Diurnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees. Tree Physiology, 24, 941-950.
URL PMID |
[5] |
Ford CR, McGuire MA, Mitchell RJ, Teskey RO (2004b). Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use. Tree Physiology, 24, 241-249.
URL PMID |
[6] |
Granier A (1987). Evaluation of transpiration in a Douglas- firstand by means of sap flow measurements. Tree Physiology, 3, 309-320.
DOI URL PMID |
[7] |
Granier A, Anfodillo T, Sabatti M, Cochard H, Dreyer E, Tomasi M, Valentini R, Breda N (1994). Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analysis. Tree Physiology, 14, 1383-1396.
URL PMID |
[8] | Guo MH (郭明辉), Chen GS (陈广胜), Wang JM (王金满), Chen XW (陈祥伟), Liu Q (刘强) (2000). The relationships between anatomical characteristics of wood and meteorological factors of plantation. Journal of Northeast Forestry University (东北林业大学学报), 28(4), 30-35. (in Chinese with English abstract) |
[9] |
Hatton TJ, Catchpole EA, Vertessy RA (1990). Integration of sapflux density to estimate plant water use. Tree Physiology, 6, 201-209.
URL PMID |
[10] |
Infante JM, Mauchamp A, Fernández-Alés R, Joffre R, Rambal S (2001). Within-tree variation in transpiration in isolated evergreen oak trees, evidence in support of the pipe model theory. Tree Physiology, 21, 409-414.
DOI URL PMID |
[11] | Kumagai T, Aoki S, Nagasawa H, Mabuchi T, Kubota K, Inoue S, Utsumi Y, Otsuki K (2005). Effects of tree-to-tree and radial variations on sap flow estimates of transpiration in Japanese cedar. Agricultural and Forest Meteorology, 135, 110-116. |
[12] | Luttschwager D, Remus R (2007). Radial distribution of sap flux density in trunks of a mature beech stand. Annals of Forest Science, 64, 431-438. |
[13] | Lu P, Chacko EK (1998). Evaluation of Granier’s sap flow meter in mango (Mangifera indica L.) trees. Agronomie, 18, 461-471. |
[14] |
Lu P, Muller WJ, Chacko EK (2000). Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. Tree Physiology, 20, 683-692.
DOI URL PMID |
[15] | Ma L (马玲), Zhao P (赵平), Rao XQ (饶兴权), Cai XA (蔡锡安), Zeng XP (曾小平), Lu P (陆平) (2005). Effects of environmental factors on sap flow in Acacia mangium. Acta Ecologica Sinica (生态学报), 25, 2145-2151. (in Chinese with English abstract) |
[16] | Ma LY (马履一), Wang HT (王华田) (2002). Spatial and chronic fluctuation of sapwood flow and its relevant variables of Pinus tabulaeformis. Journal of Beijing Forestry University (北京林业大学学报), 24(3), 23-27. (in Chinese with English abstract) |
[17] |
Nadezhdina N, Cerma’k J, Ceulemans R (2002). Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors. Tree Physiology, 22, 907-918.
URL PMID |
[18] | Nowak DJ, Dwyer JF (2007). Understanding the benefits and costs of urban forest ecosystems. In: Kuser JE ed. Understanding the Benefits and Costs of Urban Forest Ecosystems Springer Netherlands Press, Amsterdam. 25-46. |
[19] | Phillips N, Oren R, Zimmermann R (1996). Radial patterns of xylem sap flow in non-, diffuse- and ring-porous tree species. Plant, Cell & Environment, 19, 983-990. |
[20] |
Poyatos R, Cermák J, Llorens P (2007). Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens) and its implications for tree and stand transpiration measurements. Tree Physiology, 27, 537-548.
DOI URL PMID |
[21] | Qi QQ (祁庆钦) (2008). Studies on Forecast of Radial Anatomy Specific in Chinese Pine Plantation Based on Neural Network (基于神经网络的人工林油松木材径向解剖特性预测研究) Master Dissertation, Inner Mongolia Agriculture University, Huhhot. 32-35. (in Chinese) |
[22] | Sun PS (孙鹏森), Ma LY (马履一), Wang XP (王小平), Zhai MP (翟明普) (2000). Temporal and spatial variation sap flow of Chinese pine (Pinus tabulaeformis). Journal of Beijing Forestry University (北京林业大学学报), 22(5), 1-6. (in Chinese with English abstract) |
[23] | Tateishi M, Kumagai T, Utsumi Y, Umebayasi T, Shiiba Y, Inoue K, Kaji K, Cho K, Otsuki K (2008). Spatial variations in xylem sap flux density in evergreen oak trees with radial-porous wood: comparisons with anatomical observations. Trees-Structure and Function, 22, 23-30. |
[24] | Wang RH (王瑞辉) (2006). Research on Water Consumption and Irrigation Regime of Main Landscape Tree Species in Beijing City (北京主要园林树种耗水性及节水灌溉制度研究) PhD Dissertation, Beijing Forestry University, Beijing. 22. (in Chinese) |
[25] | Wu LP (吴丽萍), Wang XD (王学东), Yu QE (尉全恩), Shi F (史福), Chen ZX (陈正新), Zhu ZH (朱智宏), Zhang YE (张云娥) (2003). Study on spatial and temporal variability for stem-sap flow of Pinus sylvestris var. mongolica. Research of Soil and Water Conservation (水土保持研究), 10(4), 66-68. (in Chinese with English abstract) |
[26] | Wei YC (魏彦昌), Miao H (苗鸿), Ouyang ZY (欧阳志云), Shi JT (史俊通), Wang XK (王效科) (2003). Application and assessment of ecological water demand of urbans. Urban Environment & Urban Ecology (城市环境与城市生态), 16(Suppl.), 18-20. (in Chinese with English abstract) |
[27] | Zhang WJ (张文娟), Zhang ZQ (张志强), Li SD (李湛东), Zhang XF (张晓放), Dong KY (董克宇), Chen LX (陈立欣), Wang GY (王国玉) (2009). Transpiration of four tree species under an urban environment. Acta Ecologica Sinica (生态学报), 29, 5942-5952. (in Chinese with English abstract) |
[1] | HE Fei, LI Chuan, Faisal SHAH, LU Xie-Min, WANG Ying, WANG Meng, RUAN Jia, WEI Meng-Lin, MA Xing-Guang, WANG Zhuo, JIANG Hao. Carbon transport and phosphorus uptake in an intercropping system of Robinia pseudoacacia and Amorphophallus konjac mediated by arbuscular mycorrhizal hyphal networks [J]. Chin J Plant Ecol, 2023, 47(6): 782-791. |
[2] | LIU Mei-Jun, CHEN Qiu-Wen, LÜ Jin-Lin, LI Guo-Qing, DU Sheng. Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region [J]. Chin J Plant Ecol, 2023, 47(2): 227-237. |
[3] | Bei-Bei DUAN, Cheng-Zhang ZHAO, Ting XU, Hui-Ling ZHENG, Wei FENG, Ling HAN. Correlation analysis between vein density and stomatal traits of Robinia pseudoacacia in different aspects of Beishan Mountain in Lanzhou [J]. Chin J Plant Ecol, 2016, 40(12): 1289-1297. |
[4] | SHI Yuan-Chun,ZHAO Cheng-Zhang,SONG Qing-Hua,DU Jing,CHEN Jing,WANG Ji-Wei. Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou [J]. Chin J Plan Ecolo, 2015, 39(4): 362-370. |
[5] | WU Xu,CHEN Yun-Ming,TANG Ya-Kun. Sap flow characteristics and its responses to precipitation in Robinia pseudoacacia and Platycladus orientalis plantations [J]. Chin J Plan Ecolo, 2015, 39(12): 1176-1187. |
[6] | WANG Lin, FENG Jin-Xia, WAN Xian-Chong. Effects of soil thickness on dry-season water relations and growth in Robinia pseudoacacia [J]. Chin J Plant Ecol, 2013, 37(3): 248-255. |
[7] | LI Jun, WANG Xue-Chun, SHAO Ming-An, ZHAO Yu-Juan, LI Xiao-Fang. Simulation of biomass and soil desiccation of Robinia pseudoacacia forestlands on semi-arid and semi-humid regions of China’s Loess Plateau [J]. Chin J Plant Ecol, 2010, 34(3): 330-339. |
[8] | ZANG Chun-Xin, YANG Jie, YUAN Jie, LIU Xin, SONG Bing-Yu. TRANSPIRATION CHARACTERISTICS OF INDIVIDUAL SHRUBS OF CARAGANA INTERMEDIA IN MU US SANDY LAND OF NORTH-CENTRAL CHINA [J]. Chin J Plant Ecol, 2009, 33(4): 719-727. |
[9] | MENG Fan-Juan, WANG Qiu-Yu, WANG Jian-Zhong, LI Shu-Yan, WANG Jiang-Jiang. SALT RESISTANCE OF TETRAPLOID ROBINIA PSEUDOACACIA [J]. Chin J Plant Ecol, 2008, 32(3): 654-663. |
[10] | YIN Jing, QIU Guo-Yu, HE Fan, HE Kang-Ning, TIAN Jing-Hui, ZHANG Wei-Qiang, XIONG Yu-Jiu, ZHAO Shao-Hua, LIU Jian-Xin. LEAF AREA CHARACTERISTICS OF PLANTATION STANDS IN SEMI-ARID LOESS HILL-GULLY REGION OF CHINA [J]. Chin J Plant Ecol, 2008, 32(2): 440-447. |
[11] | WANG Hua, ZHAO Ping, CAI Xi-An, WANG Quan, MA Ling, RAO Xing-Quan, ZENG Xiao-Ping. PARTITIONING OF NIGHT SAP FLOW OF ACACIA MANGIUM AND ITS IMPLICATION FOR ESTIMATING WHOLE-TREE TRANSPIRATION [J]. Chin J Plant Ecol, 2007, 31(5): 777-786. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn