Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (8): 872-881.DOI: 10.17521/cjpe.2016.0316
• Research Articles • Previous Articles Next Articles
Ling HAN, Cheng-Zhang ZHAO*(), Wei FENG, Ting XU, Hui-Ling ZHENG, Bei-Bei DUAN
Online:
2017-08-10
Published:
2017-09-29
Contact:
Cheng-Zhang ZHAO
About author:
KANG Jing-yao(1991-), E-mail: Ling HAN, Cheng-Zhang ZHAO, Wei FENG, Ting XU, Hui-Ling ZHENG, Bei-Bei DUAN. Trade-off relationship between vein density and vein diameter of Achnatherum splendens in response to habitat changes in Zhangye wetland[J]. Chin J Plant Ecol, 2017, 41(8): 872-881.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0316
样地 Plot | PAR (μmol·m-2·s-1) | VPD (Pa·kPa) | 土壤含水量 Soil moisture (%) | 土壤电导率 Soil electrical conductivity (ms·cm-1) |
---|---|---|---|---|
冠盖区 Subcanopy areas | 636.30 ± 14.18c | 27.24 ± 2.68c | 40.07 ± 1.24a | 314 ± 13.89c |
过渡区 Transitional areas | 879.20 ± 27.95b | 29.79 ± 4.22b | 37.64 ± 1.07b | 669 ± 15.02b |
空旷区区 Open areas | 1 205.10 ± 50.75a | 31.84 ± 3.34a | 31.4 ± 0.67c | 1 090 ± 20.45a |
Table 1 Biological characteristics and soil characteristics of wetland plant communities in the different microenvironments (mean ± SE, n = 30)
样地 Plot | PAR (μmol·m-2·s-1) | VPD (Pa·kPa) | 土壤含水量 Soil moisture (%) | 土壤电导率 Soil electrical conductivity (ms·cm-1) |
---|---|---|---|---|
冠盖区 Subcanopy areas | 636.30 ± 14.18c | 27.24 ± 2.68c | 40.07 ± 1.24a | 314 ± 13.89c |
过渡区 Transitional areas | 879.20 ± 27.95b | 29.79 ± 4.22b | 37.64 ± 1.07b | 669 ± 15.02b |
空旷区区 Open areas | 1 205.10 ± 50.75a | 31.84 ± 3.34a | 31.4 ± 0.67c | 1 090 ± 20.45a |
样地 Plot | 冠盖区 Subcanopy areas | 过渡区 Transitional areas | 空旷区 Open areas | 可塑性指数 Plasticity index |
---|---|---|---|---|
叶脉密度 Vein destiny (mm·mm-2) | 1.28 ± 0.14c | 1.46 ± 0.15b | 1.59 ± 0.18a | 0.20 |
叶脉直径 Vein diameter (mm) | 0.21 ± 0.04a | 0.18 ± 0.03b | 0.16 ± 0.02c | 0.24 |
叶片长度 Leaf length (cm) | 58.6 ± 0.39a | 51.99 ± 0.28b | 49.08 ± 0.22c | 0.16 |
叶片宽度 Leaf width (cm) | 0.28 ± 0.04c | 0.31 ± 0.05b | 0.34 ± 0.07a | 0.17 |
株丛密度 Bundle density (bundle·m-2) | 4.25 ± 0.32c | 13.50 ± 0.82b | 11.75 ± 1.02a | 0.64 |
Pn (μmol·m-2·s-1) | 13.2 ± 0.12c | 14.01 ± 0.18a | 13.87 ± 0.13b | 0.05 |
Tr (mmol·m-2·s-1) | 6.35 ± 0.07c | 6.83 ± 0.11a | 6.65 ± 0.09b | 0.05 |
WUE (μmol·mmol-1) | 1.93 ± 0.01c | 2.12 ± 0.02b | 2.18 ± 0.03a | 0.11 |
Table 2 Leaf traits characteristics and photosynthetic physiological parameters of Achnatherum splendens in the different microenvironments (mean ± SE, n = 30)
样地 Plot | 冠盖区 Subcanopy areas | 过渡区 Transitional areas | 空旷区 Open areas | 可塑性指数 Plasticity index |
---|---|---|---|---|
叶脉密度 Vein destiny (mm·mm-2) | 1.28 ± 0.14c | 1.46 ± 0.15b | 1.59 ± 0.18a | 0.20 |
叶脉直径 Vein diameter (mm) | 0.21 ± 0.04a | 0.18 ± 0.03b | 0.16 ± 0.02c | 0.24 |
叶片长度 Leaf length (cm) | 58.6 ± 0.39a | 51.99 ± 0.28b | 49.08 ± 0.22c | 0.16 |
叶片宽度 Leaf width (cm) | 0.28 ± 0.04c | 0.31 ± 0.05b | 0.34 ± 0.07a | 0.17 |
株丛密度 Bundle density (bundle·m-2) | 4.25 ± 0.32c | 13.50 ± 0.82b | 11.75 ± 1.02a | 0.64 |
Pn (μmol·m-2·s-1) | 13.2 ± 0.12c | 14.01 ± 0.18a | 13.87 ± 0.13b | 0.05 |
Tr (mmol·m-2·s-1) | 6.35 ± 0.07c | 6.83 ± 0.11a | 6.65 ± 0.09b | 0.05 |
WUE (μmol·mmol-1) | 1.93 ± 0.01c | 2.12 ± 0.02b | 2.18 ± 0.03a | 0.11 |
叶脉密度 Vein destiny | 叶脉直径 Vein diameter | LL | LW | BD | SM | PAR | VPD | Pn | Tr | WUE | |
---|---|---|---|---|---|---|---|---|---|---|---|
叶脉密度 Vein destiny | 1 | ||||||||||
叶脉直径 Vein diameter | -0.98** | 1 | |||||||||
LL | -0.83* | 0.84* | 1 | ||||||||
LW | 0.81* | -0.82* | -0.86* | 1 | |||||||
BD | 0.72* | -0.73 | -0.81* | 0.85* | 1 | ||||||
SM | -0.84* | 0.81* | 0.63 | 0.63 | -0.57 | 1 | |||||
PAR | 0.83* | -0.84* | -0.82* | 0.85* | 0.58 | -0.84* | 1 | ||||
VPD | 0.53 | -0.63 | -0.49 | 0.58 | 0.71 | -0.83* | -0.86* | 1 | |||
Pn | 0.87* | 0.84* | 0.62 | 0.78 | -0.56 | -0.81* | 0.86* | 0.82* | 1 | ||
Tr | 0.83* | 0.81* | 0.61 | 0.73 | 0.53 | -0.87* | 0.83* | 0.86* | 0.89* | 1 | |
WUE | 0.87* | 0.82* | 0.64 | 0.59 | 0.73 | -0.86* | 0.88* | 0.83* | 0.83* | -0.88* | 1 |
Table 3 The correlation analysis between photosynthetic parameters and leaf traits characteristics of Achnatherum splendens in three different habitats
叶脉密度 Vein destiny | 叶脉直径 Vein diameter | LL | LW | BD | SM | PAR | VPD | Pn | Tr | WUE | |
---|---|---|---|---|---|---|---|---|---|---|---|
叶脉密度 Vein destiny | 1 | ||||||||||
叶脉直径 Vein diameter | -0.98** | 1 | |||||||||
LL | -0.83* | 0.84* | 1 | ||||||||
LW | 0.81* | -0.82* | -0.86* | 1 | |||||||
BD | 0.72* | -0.73 | -0.81* | 0.85* | 1 | ||||||
SM | -0.84* | 0.81* | 0.63 | 0.63 | -0.57 | 1 | |||||
PAR | 0.83* | -0.84* | -0.82* | 0.85* | 0.58 | -0.84* | 1 | ||||
VPD | 0.53 | -0.63 | -0.49 | 0.58 | 0.71 | -0.83* | -0.86* | 1 | |||
Pn | 0.87* | 0.84* | 0.62 | 0.78 | -0.56 | -0.81* | 0.86* | 0.82* | 1 | ||
Tr | 0.83* | 0.81* | 0.61 | 0.73 | 0.53 | -0.87* | 0.83* | 0.86* | 0.89* | 1 | |
WUE | 0.87* | 0.82* | 0.64 | 0.59 | 0.73 | -0.86* | 0.88* | 0.83* | 0.83* | -0.88* | 1 |
Fig. 1 Relationship between vein density and vein diameter of Achnatherum splendens among different light conditions. A, subcanopy areas. B, transitional areas. C, open areas.
[1] |
Blonder B, Violle C, Bentley LP (2011). Venation networks and the origin of the leaf economics spectrum.Ecology Letters, 14, 91-100.
DOI URL PMID |
[2] |
Brodribb TJ, Bowman DJMS, Nichols S, Delzon S, Burlett R (2010). Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit.New Phytologist, 188, 533-542.
DOI URL PMID |
[3] |
Brodribb TJ, Jordan GJ (2008). Internal coordination between hydraulics and stomatal control in leaves.Plant, Cell & Environment, 31, 1557-1564.
DOI URL PMID |
[4] |
Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees.New Phytologist, 192, 437-448.
DOI URL |
[5] | Cai J, Tyree MT (2010). The impact of vessel size on vulnerability curves: Data and models for within-species variability in saplings of aspen, Populus tremuloides Michx.Plant, Cell & Environment, 33, 1059-1069. |
[6] |
Cai J, Zhang SX, Tyree MT (2010). A computational algorithm addressing how vessel length might depend on vessel diameter.Plant, Cell & Environment, 33, 1234-1238.
DOI URL PMID |
[7] |
Cavender-Bares J, Cortes P, Rambal S, Joffre R, Miles B, Rocheteau A (2005). Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: A comparison of co-occurring Mediterranean oaks that differ in leaf lifespan.New Phytologist, 168, 597-612.
DOI URL PMID |
[8] | Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG (2014). Variations with slope in stem and leaf traits of Melica przewalskyi in alpine grassland.Chinese Journal of Plant Ecology, 38, 1307-1314.(in English with Chinese abstract)[党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚 (2014). 高寒草地甘肃臭草茎-叶性状的坡度差异性. 植物生态学报, 38, 1307-1314.] |
[9] |
Drezner TD (2007). An analysis of winter temperature and dew point under the canopy of a common Sonoran Desert nurse and the implications for positive plant interactions.Journal of Arid Environments, 69, 554-568.
DOI URL |
[10] | Falster DS, Warton DI, Wright IJ (. Cited: 2016-10-11. |
[11] |
Funk JL, Cornwell WK (2013). Leaf traits within communities: Context may affect the mapping of traits to function.Ecology, 94, 1893-1897.
DOI URL PMID |
[12] |
Givnish TJ (1987). Comparative studies of leaf form: Assessing the relative roles of selective pressures and phylogenetic constraints.New Phytologist, 106, 131-160.
DOI URL |
[13] | Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions.Chinese Journal of Plant Ecology, 39, 300-308.(in Chinese with English abstract)[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.] |
[14] |
Hale BK, Herms DA, Hansen RC, Clausen TP, Arnold D (2005). Effects of drought stress and nutrient availability on dry matter allocation, phenolic glycosides, and rapid induced resistance of poplar to two Lymantriid defoliators.Journal of Chemical Ecology, 31, 2601-2620.
DOI URL PMID |
[15] | Han L, Zhao CZ, Xu T, Feng W, Duan BB, Zheng HL (2016). Trade-off between leaf size and vein density of Achnatherum splendens in Zhangye wetland.Chinese Journal of Plant Ecology, 40, 788-797.(in Chinese with English abstract)[韩玲, 赵成章, 徐婷, 冯威, 段贝贝, 郑慧玲 (2016). 张掖湿地芨芨草叶大小和叶脉密度的权衡关系. 植物生态学报, 40, 788-797.] |
[16] | Hao CS, Wang QK, Sun XL (2016). Effects of light heterogeneity on leaf anatomical structure in Buchloe dactyloides.Chinese Journal of Plant Ecology, 40, 246-254.(in Chinese with English abstract)[郝晨淞, 王庆凯, 孙小玲 (2016). 异质性光对野牛草叶片解剖结构的影响. 植物生态学报, 40, 246-254.] |
[17] |
Hao GY, Hoffmann WA, Scholz FG, Bucci SJ, Meinzer FC, Franco AC, Cao KF, Goldstein G (2008). Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems.Oecologia, 155, 405-415.
DOI URL PMID |
[18] | Harvey PH, Pagel MD (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, UK.Heberling JM, Fridley JD (2012). Biogeographic constraints on the world-wide leaf economics spectrum. Global Ecology and Biogeography, 21, 1137-1146. |
[19] |
James SA, Bell DT (2000). Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances.Tree Physiology, 20, 1007-1018.
DOI URL PMID |
[20] |
Li L, Zeng H, Guo DL (2013). Leaf venation functional traits and their ecological significance.Chinese Journal of Plant Ecology, 37, 691-698.(in Chinese with English abstract)[李乐, 曾辉, 郭大立 (2013). 叶脉网络功能性状及其生态学意义. 植物生态学报,37, 691-698.]
DOI URL |
[21] | Li R, Dang W, Cai J, Zhang SX, Jiang ZM (2016). Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees.Chinese Journal of Plant Ecology, 40, 255-263.(in Chinese with English abstract) [李荣, 党维, 蔡靖, 张硕新, 姜在民 (2016). 6个耐旱树种木质部结构与栓塞脆弱性的关系. 植物生态学报,40, 255-263.] |
[22] |
Matthew-Ogburn R, Edwards EJ (2013). Repeated origin of three-dimensional leaf venation releases constraints on the evolution of succulence in plants.Current Biology, 23, 722-726.
DOI URL PMID |
[23] |
McCulloh KA, Johnson DM, Petitmermet J, McNellis B, Meinzer FC, Lachenbruch B (2015). A comparison of hydraulic architecture in three similarly sized woody species differing in their maximum potential height.Tree Physiology, 35, 723-731.
DOI URL PMID |
[24] | Mencuccini M (2003). The ecological significance of long-distance water transport: Short-term regulation, long- term acclimation and the hydraulic costs of stature across plant life forms.Plant, Cell & Environment, 26, 163-182. |
[25] |
Milios E, Pipinis E, Petrou P, Akritidou S, Smiris P, Aslanidou M (2007). Structure and regeneration patterns of the Juniperus excelsa Bieb. stands in the central part of the Nestos valley in the northeast of Greece, in the context of anthropogenic disturbances and nurse plant facilitation.Ecological Research, 22, 713-723.
DOI URL |
[26] |
Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes.Functional Ecology, 28, 810-818.
DOI URL |
[27] |
Navas ML, Roumet C, Bellmann A, Laurent G, Garnier E (2010). Suites of plant traits in species from different stages of a Mediterranean secondary succession.Plant Biology, 12, 183-196.
DOI URL |
[28] |
Niklas KJ, Enquist BJ (2002). Canonical rules for plant organ biomass partitioning and annual allocation.American Journal of Botany, 89, 812-819.
DOI URL |
[29] |
Ping XY, Zhou GS, Sun JS (2010). Advances in the study of photosynthate allocation and its controls.Chinese Journal of Plant Ecology, 34, 100-111.(in Chinese with English abstract)[平晓燕, 周广胜, 孙敬松 (2010). 植物光合产物分配及其影响因子研究进展, 植物生态学报,34, 100-111.
DOI URL |
[30] |
Pitman EJG (1939). A note on normal correlation.Biometrika, 31, 9-12.
DOI URL |
[31] |
Qin FF, Li Q, Cui ZM, Li HP, Yang ZR (2012). Leaf anatomical structures and ecological adaptabilities to light of three alfalfa cultivars with different fall dormancies under shading during overwintering.Chinese Journal of Plant Ecology, 36, 333-345.(in Chinese with English abstract)[覃凤飞, 李强, 崔棹茗, 李洪萍, 杨智然 (2012). 越冬期遮阴条件下3个不同秋眠型紫花苜蓿品种叶片解剖结构与其光生态适应性. 植物生态学报,36, 333-345.]
DOI URL |
[32] |
Reich PB, Cornelissen H (2014). The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto.Journal of Ecology, 102, 275-301.
DOI URL |
[33] |
Ren QJ, Li HL, Bu HY (2015). Comparison of physiological and leaf morphological traits for photosynthesis of the 51 plant species in the Maqu alpine swamp meadow.Chinese Journal of Plant Ecology, 39, 593-603.(in Chinese with English abstract)[任青吉, 李宏林, 卜海燕 (2015). 玛曲高寒沼泽化草甸51种植物光合生理和叶片形态特征的比较. 植物生态学报,39, 593-603.]
DOI URL |
[34] |
Sack L, Scoffoni C (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future.New Phytologist, 198, 983-1000.
DOI URL PMID |
[35] |
Sack L, Scoffoni C, McKown AD (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns.Nature Communications, 3, 837.
DOI URL PMID |
[36] |
Sellin A, ?unapuu E, Kupper P (2008). Effects of light intensity and duration on leaf hydraulic conductance and distribution of resistance in shoots of silver birch (Betula pendula).Physiologia Plantarum, 134, 412-420.
DOI URL |
[37] |
Sultan SE (2005). An emerging focus on plant ecological development.New Phytologist, 166, 1-5.
DOI URL PMID |
[38] |
van Kleunen M, Fischer M (2007). Progress in the detection of costs of phenotypic plasticity in plants.New Phytologist, 176, 727-730.
DOI URL PMID |
[39] |
Villagra M, Campanello PI, Bucci SJ, Goldstein G (2013). Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species.Tree Physiology, 33, 1308-1318.
DOI URL PMID |
[40] |
Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models.Biometrical Journal, 44, 161-174.
DOI URL |
[41] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry.Biological Reviews, 81, 259-291.
DOI URL PMID |
[42] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: Some leading dimensions of variation between species.Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[43] |
Westoby M, Reich PB, Wright IJ (2013). Understanding ecological variation across species: Area-based vs. mass- based expression of leaf traits.New Phytologist, 199, 322-323.
DOI URL PMID |
[44] |
Wu T, Geng YF, Chai Y, Hao JB, Yuan CM (2014). Response of leaf anatomical structure and photosynthesis characteristics of Parthenocissus himalayana to three habitat types.Ecology and Environmental Sciences, 23, 1586-1592.(in Chinese with English abstract)[吴涛, 耿云芬, 柴勇, 郝佳波, 袁春明 (2014). 三叶爬山虎叶片解剖结构和光合生理特性对3种生境的响应. 生态环境学报,23, 1586-1592.]
DOI URL |
[45] |
Zhang HX, Li S, Zhang SX, Xiong XY, Cai J (2013). Relationships between xylem structure and embolism vulnerability in four Populus clones.Scientia Silvae Sinicae, 49(5), 54-61.(in Chinese with English abstract)[张海昕, 李珊, 张硕新, 熊晓燕, 蔡靖 (2013). 4个杨树无性系木质部导管结构与栓塞脆弱性的关系. 林业科学,49(5), 54-61.]
DOI URL |
[46] |
Zhang MJ, Liu MS, Xu C, Chi T, Hong C (2012). Spatial pattern responses of Achnatherum splendens to environmental stress in different density levels.Acta Ecologica Sinica, 32, 595-604.(in Chinese with English abstract)[张明娟, 刘茂松, 徐驰, 池婷, 洪超 (2012). 不同密度条件下芨芨草空间格局对环境胁迫的响应. 生态学报,32, 595-604.]
DOI URL |
[47] |
Zhang QM, Zhang C, Liu MS, Yu W, Xu C, Wang HJ (2007). The influences of arboraceous layer on spatial patterns and morphological characteristics of herbaceous layer in an arid plant community.Acta Ecologica Sinica, 27, 1265-1271.
DOI URL |
[48] | Zhang SB, Zhang JL, Cao KF (2016). Effects of seasonal drought on water status, leaf spectral traits and fluorescence parameters in Tarenna depauperata Hutchins, a Chinese savanna evergreen species.Plant Science Journal, 34, 117-126.(in Chinese with English abstract)[张树斌, 张教林, 曹坤芳 (2016). 季节性干旱对白皮乌口树水分状况、叶片光谱特征和荧光参数的影响. 植物科学学报,34, 117-126.] |
[49] |
Zhang YF, Wang W, Liang CZ, Wang LX, Pei H, Wang CY, Wang WF (2012). Suitable habitat for the Achnatherum splendens community in typical steppe region of Inner Mongolia.Acta Ecologica Sinica, 32, 1193-1201.(in English with Chinese abstract)[张翼飞, 王炜, 梁存柱, 王立新, 裴浩, 王成燕, 王伟峰 (2012). 内蒙古典型草原区芨芨草群落适生生境. 生态学报,32, 1193-1201.]
DOI URL |
[50] |
Zhang YJ, Cao KF, Sack L, Li N, Wei XM, Goldstein G (2015). Extending the generality of leaf economic design principles in the cycads, an ancient lineage.New Phytologist, 206, 817-829.
DOI URL PMID |
[51] | Zhang YQ, Liang CZ, Wang W, Wang LX, Peng JT, Yang JC, Jia CZ (2010). Soil salinity and distribution.Chinese Journal of Ecology, 29, 2438-2443.(in Chinese with English abstract)[张雅琼, 梁存柱, 王炜, 王立新, 彭江涛, 闫建成, 贾成朕 (2010). 芨芨草群落土壤盐分特征. 生态学杂志,29, 2438-2443.] |
[52] |
Zhao YT, Xu MS, Zhang ZH, Zhou LL, Zhang QQ, Arshad A, Song YJ, Yan ER (2016). Hydraulic architecture of evergreen broad-leaved woody plants at different successional stages in Tiantong National Forest Park, Zhejiang Province, China.Chinese Journal of Plant Ecology, 40, 116-126.(in Chinese with English abstract)[赵延涛, 许洺山, 张志浩, 周刘丽, 张晴晴, Ali ARSHAD, 宋彦君, 阎恩荣 (2016). 浙江天童常绿阔叶林不同演替阶段木本植物的水力结构特征. 植物生态学报,40, 116-126.]
DOI URL |
[53] |
Zou CM, Wang YQ, Liu Y, Zhang XH, Tang S (2015). Responses of photosynthesis and growth to weak light regime in four legume species.Chinese Journal of Plant Ecology, 39, 909-916.(in Chinese with English abstract)[邹长明, 王允青, 刘英, 张晓红, 唐杉 (2015). 四种豆科作物的光合生理和生长发育对弱光的响应. 植物生态学报,39, 909-916.]
DOI URL |
[54] | Zwieniecki MA, Brodribb TJ, Holbrook NM (2007). Hydraulic design of leaves: Insights from rehydration kinetics.Plant, Cell & Environment, 30, 910-921. |
[1] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[2] | ZHANG Jin-Yan, CUN Zhu, SHUANG Sheng-Pu, HONG Jie, MENG Zhen-Gui, CHEN Jun-Wen. Steady-state and dynamic photosynthetic characteristics of shade-tolerant species Panax notoginseng in response to nitrogen levels [J]. Chin J Plant Ecol, 2023, 47(3): 331-347. |
[3] | LI Yao-Qi, WANG Zhi-Heng. Functional biogeography of plants: research progresses and challenges [J]. Chin J Plant Ecol, 2023, 47(2): 145-169. |
[4] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[5] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
[6] | CHENG Si-Qi, JIANG Feng, JIN Guang-Ze. Leaf economics spectrum of broadleaved seedlings and its relationship with defense traits in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 678-686. |
[7] | ZHAI Jiang-Wei, LIN Xin-Hui, WU Rui-Zhe, XU Yi-Xin, JIN Hao-Hao, JIN Guang-Ze, LIU Zhi-Li. Trade-offs between petiole and lamina of different functional plants in Xiao Hinggan Mountains, China [J]. Chin J Plant Ecol, 2022, 46(6): 700-711. |
[8] | HAN Xu-Li, ZHAO Ming-Shui, WANG Zhong-Yuan, YE Lin-Feng, LU Shi-Tong, CHEN Sen, LI Yan, XIE Jiang-Bo. Adaptation of xylem structure and function of three gymnosperms to different habitats [J]. Chin J Plant Ecol, 2022, 46(4): 440-450. |
[9] | QIN Hui-Jun, JIAO Liang, ZHOU Yi, XUE Ru-Hong, QI Chang-Liang, DU Da-Shi. Effects of altitudes on non-structural carbohydrate allocation in different dominate trees in Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(2): 208-219. |
[10] | XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China [J]. Chin J Plant Ecol, 2022, 46(2): 136-147. |
[11] | DAI Yuan-Meng, LI Man-Le, XU Ming-Ze, TIAN Yun, ZHAO Hong-Xian, GAO Sheng-Jie, HAO Shao-Rong, LIU Peng, JIA Xin, ZHA Tian-Shan. Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land [J]. Chin J Plant Ecol, 2022, 46(11): 1376-1387. |
[12] | WANG Jia-Tong, NIU Chun-Yue, HU Tian-Yu, LI Wen-Kai, LIU Ling-Li, GUO Qing-Hua, SU Yan-Jun. Three-dimensional radiative transfer modeling of forest: recent progress, applications, and future opportunities [J]. Chin J Plant Ecol, 2022, 46(10): 1200-1218. |
[13] | Li-Ting YANG, Yan-Yan XIE, Ke-Yi ZUO, Sen XU, Rui GU, Shuang-Lin CHEN, Zi-Wu GUO. Effects of ramet ratio on photosynthetic physiology of Indocalamus decorus clonal system under heterogeneous light environment [J]. Chin J Plant Ecol, 2022, 46(1): 88-101. |
[14] | FANG Jing, YE Lin-Feng, CHEN Sen, LU Shi-Tong, PAN Tian-Tian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats [J]. Chin J Plant Ecol, 2021, 45(6): 650-658. |
[15] | NI Ming-Yuan, ARITSARA Amy Ny Aina, WANG Yong-Qiang, HUANG Dong-Liu, XIANG Wei, WAN Chun-Yan, ZHU Shi-Dan. Analysis of xylem anatomy and function of representative tree species in a mixed evergreen and deciduous broad-leaved forest of mid-subtropical karst region [J]. Chin J Plant Ecol, 2021, 45(4): 394-403. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn