Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (4): 394-403.DOI: 10.17521/cjpe.2020.0367
• Research Articles • Previous Articles Next Articles
NI Ming-Yuan, ARITSARA Amy Ny Aina, WANG Yong-Qiang, HUANG Dong-Liu, XIANG Wei, WAN Chun-Yan, ZHU Shi-Dan*()
Received:
2020-11-09
Accepted:
2021-01-18
Online:
2021-04-20
Published:
2021-03-09
Contact:
ZHU Shi-Dan
Supported by:
NI Ming-Yuan, ARITSARA Amy Ny Aina, WANG Yong-Qiang, HUANG Dong-Liu, XIANG Wei, WAN Chun-Yan, ZHU Shi-Dan. Analysis of xylem anatomy and function of representative tree species in a mixed evergreen and deciduous broad-leaved forest of mid-subtropical karst region[J]. Chin J Plant Ecol, 2021, 45(4): 394-403.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0367
物种 Species | 科 Family | 胸径 DBH (cm) | 树高 Height (m) |
---|---|---|---|
落叶 Deciduous | |||
黄梨木 Boniodendron minus | 无患子科Sapindaceae | 12.4 ± 0.3 | 8.3 ± 0.2 |
禾串树 Bridelia balansae | 大戟科Euphorbiaceae | 13.6 ± 1.0 | 7.5 ± 0.5 |
大叶紫珠 Callicarpa macrophylla | 马鞭草科Verbenaceae | 6.5 ± 0.4 | 5.5 ± 0.7 |
麻楝 Chukrasia tabularis | 楝科 Meliaceae | 12.0 ± 1.4 | 8.0 ± 0.5 |
浆果楝 Cipadessa baccifera | 楝科 Meliaceae | 7.9 ± 1.1 | 6.4 ± 0.9 |
毛果巴豆 Croton lachnocarpus | 大戟科Euphorbiaceae | 8.4 ± 0.3 | 6.5 ± 0.2 |
伞花木 Eurycorymbus cavaleriei | 无患子科Sapindaceae | 10.6 ± 0.6 | 7.6 ± 0.3 |
青檀 Pteroceltis tatarinowii | 榆科 Ulmaceae | 15.6 ± 0.6 | 8.7 ± 0.2 |
菜豆树 Radermachera sinica | 紫葳科Bignoniaceae | 13.5 ± 0.5 | 8.3 ± 0.2 |
圆叶乌桕 Triadica rotundifolia | 大戟科Euphorbiaceae | 15.8 ± 4.2 | 8.5 ± 0.3 |
常绿 Evergreen | |||
假鱼骨木 Psydrax dicocca | 茜草科Rubiaceae | 9.2 ± 1.1 | 6.5 ± 0.5 |
灰岩棒柄花 Cleidion bracteosum | 大戟科Euphorbiaceae | 7.3 ± 0.3 | 5.2 ± 0.2 |
岩生厚壳桂 Cryptocarya calcicola | 樟科 Lauraceae | 8.1 ± 0.4 | 6.5 ± 0.2 |
青冈 Cyclobalanopsis glauca | 壳斗科Fagaceae | 10.9 ± 1.2 | 7.4 ± 0.6 |
大叶水榕 Ficus glaberrima | 桑科 Moraceae | 19.5 ± 3.4 | 7.7 ± 0.7 |
山小橘 Glycosmis pentaphylla | 芸香科Rutaceae | 6.4 ± 0.3 | 4.3 ± 0.3 |
黑木姜子 Litsea salicifolia | 樟科 Lauraceae | 7.6 ± 0.8 | 6.8 ± 0.4 |
小芸木 Micromelum integerrimum | 芸香科Rutaceae | 6.2 ± 1.1 | 5.3 ± 0.8 |
千里香 Murraya paniculata | 芸香科Rutaceae | 6.4 ± 0.1 | 5.0 ± 0.2 |
广西密花树 Myrsine kwangsiensis | 紫金牛科 Myrsinaceae | 7.6 ± 0.3 | 6.1 ± 0.2 |
铁榄Sinosideroxylon pedunculatum | 山榄科Sapotaceae | 8.8 ± 0.4 | 6.5 ± 0.2 |
Table 1 Leaf types by longevity, diameter at breast-height (DBH), and height of the 21 karst tree species studied in Mulun, Guangxi (mean ± SD)
物种 Species | 科 Family | 胸径 DBH (cm) | 树高 Height (m) |
---|---|---|---|
落叶 Deciduous | |||
黄梨木 Boniodendron minus | 无患子科Sapindaceae | 12.4 ± 0.3 | 8.3 ± 0.2 |
禾串树 Bridelia balansae | 大戟科Euphorbiaceae | 13.6 ± 1.0 | 7.5 ± 0.5 |
大叶紫珠 Callicarpa macrophylla | 马鞭草科Verbenaceae | 6.5 ± 0.4 | 5.5 ± 0.7 |
麻楝 Chukrasia tabularis | 楝科 Meliaceae | 12.0 ± 1.4 | 8.0 ± 0.5 |
浆果楝 Cipadessa baccifera | 楝科 Meliaceae | 7.9 ± 1.1 | 6.4 ± 0.9 |
毛果巴豆 Croton lachnocarpus | 大戟科Euphorbiaceae | 8.4 ± 0.3 | 6.5 ± 0.2 |
伞花木 Eurycorymbus cavaleriei | 无患子科Sapindaceae | 10.6 ± 0.6 | 7.6 ± 0.3 |
青檀 Pteroceltis tatarinowii | 榆科 Ulmaceae | 15.6 ± 0.6 | 8.7 ± 0.2 |
菜豆树 Radermachera sinica | 紫葳科Bignoniaceae | 13.5 ± 0.5 | 8.3 ± 0.2 |
圆叶乌桕 Triadica rotundifolia | 大戟科Euphorbiaceae | 15.8 ± 4.2 | 8.5 ± 0.3 |
常绿 Evergreen | |||
假鱼骨木 Psydrax dicocca | 茜草科Rubiaceae | 9.2 ± 1.1 | 6.5 ± 0.5 |
灰岩棒柄花 Cleidion bracteosum | 大戟科Euphorbiaceae | 7.3 ± 0.3 | 5.2 ± 0.2 |
岩生厚壳桂 Cryptocarya calcicola | 樟科 Lauraceae | 8.1 ± 0.4 | 6.5 ± 0.2 |
青冈 Cyclobalanopsis glauca | 壳斗科Fagaceae | 10.9 ± 1.2 | 7.4 ± 0.6 |
大叶水榕 Ficus glaberrima | 桑科 Moraceae | 19.5 ± 3.4 | 7.7 ± 0.7 |
山小橘 Glycosmis pentaphylla | 芸香科Rutaceae | 6.4 ± 0.3 | 4.3 ± 0.3 |
黑木姜子 Litsea salicifolia | 樟科 Lauraceae | 7.6 ± 0.8 | 6.8 ± 0.4 |
小芸木 Micromelum integerrimum | 芸香科Rutaceae | 6.2 ± 1.1 | 5.3 ± 0.8 |
千里香 Murraya paniculata | 芸香科Rutaceae | 6.4 ± 0.1 | 5.0 ± 0.2 |
广西密花树 Myrsine kwangsiensis | 紫金牛科 Myrsinaceae | 7.6 ± 0.3 | 6.1 ± 0.2 |
铁榄Sinosideroxylon pedunculatum | 山榄科Sapotaceae | 8.8 ± 0.4 | 6.5 ± 0.2 |
Fig. 1 A stained xylem cross-section image of Radermachera sinica(A), and the same image in which different xylem tissues were manually coded with different colors (B). Green, vessel lumen; Yellow, vessel wall; Red, ray parenchyma; Blue, axial parenchyma; Purple, fibers.
Fig. 3 Distributions of the karst woody species in the global xylem partitioning spectrum (A) and relationships among xylem tissue fractions (B). ●, karst woody species; △, global observations from TRY. Fb,fibers fraction; TPf, total parenchyma fraction; Vs, vessels fraction. ns, p > 0.05; ***, p < 0.001.
Fig. 4 Principal component analysis for 10 xylem traits of woody plant (A), and 21 karst woody species (B) in Mulun, Guangxi. ○, deciduous; ●, evergreen. APf,axial parenchyma fraction; Dh,hydraulically-mean vessel diameter; Fb,fiber fraction; Kt,theoretical hydraulic conductivity; RPf,ray parenchyma fraction; t,double wall thickness measured from vessel pairs; t/b,vessel wall reinforcement coefficient; TPf,total parenchyma fraction; Vd,vessel density; Vs,vessel lumen fraction.
Fig. 5 Reduced major axis regression of vessel wall reinforcement coefficient (t/b) and theoretical hydraulic conductivity (Kt) of 21 karst woody species in Mulun, Guangxi. ○, deciduous (D); ●, evergreen (E). Linear regression of deciduous species (grey): y = -0.31x - 0.67; linear regression of evergreen species (black): y = -0.41x- 0.71. **, p< 0.01.
[1] |
Aguirre-Gutiérrez J, Oliveras I, Rifai S, Fauset S, Adu-Bredu S, Affum-Baffoe K, Baker TR, Feldpausch TR, Gvozdevaite A, Hubau W, Kraft NJB, Lewis SL, Moore S, Niinemets Ü, Peprah T, Phillips OL, Ziemińska K, Enquist B, Malhi Y (2019). Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecology Letters, 22, 855-865.
DOI PMID |
[2] |
Aritsara ANA, Razakandraibe VM, Ramananantoandro T, Gleason SM, Cao KF (2021). Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the co-optimization of hydraulic efficiency and safety. New Phytologist, 229, 1467-1480.
DOI URL |
[3] |
Barbosa ACF, Pace MR, Witovisk L, Angyalossy V (2010). A new method to obtain good anatomical slides of heterogeneous plant parts. IAWA Journal, 31, 373-383.
DOI URL |
[4] |
Cao KF, Fu PL, Chen YJ, Jiang YJ, Zhu SD ( 2014). Implications of the ecophysiological adaptation of plants on tropical karst habitats for the ecological restoration of desertified rocky lands in Southern China. Scientia Sinica Vitae, 44, 238-247.
DOI URL |
[ 曹坤芳, 付培立, 陈亚军, 姜艳娟, 朱师丹 ( 2014). 热带岩溶植物生理生态适应性对于南方石漠化土地生态重建的启示. 中国科学: 生命科学, 44, 238-247.] | |
[5] |
Cao M, Wu C, Liu JC, Jiang YJ (2020). Increasing leaf δ13C values of woody plants in response to water stress induced by tunnel excavation in a karst trough valley: implication for improving water-use efficiency. Journal of Hydrology, 586, 124895. DOI: 10.1016/j.jhydrol.2020.124895.
DOI URL |
[6] |
Carlquist S (2018). Living cells in wood 3. Overview; Functional anatomy of the parenchyma network. Botanical Review, 84, 242-294.
DOI URL |
[7] | Carlquist SJ (2001). Comparative Wood Anatomy. Springer,Berlin. 448. |
[8] | Chen HS, Nie YP, Wang KL ( 2013). Spatio-temporal heterogeneity of water and plant adaptation mechanisms in karst regions: a review. Acta Ecologica Sinica, 33, 317-326. |
[ 陈洪松, 聂云鹏, 王克林 ( 2013). 岩溶山区水分时空异质性及植物适应机理研究进展. 生态学报, 33, 317-326.] | |
[9] |
Chen ZC, Li S, Luan JW, Zhang YT, Zhu SD, Wan XC, Liu SR (2019). Prediction of temperate broadleaf tree species mortality in arid limestone habitats with stomatal safety margins. Tree Physiology, 39, 1428-1437.
DOI URL |
[10] |
Chen ZC, Zhu SD, Zhang YT, Luan JW, Li S, Sun PS, Wan XC, Liu SR (2020). Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species. Tree Physiology, 40, 1029-1042.
DOI URL |
[11] |
Choat B, Ball MC, Luly JG, Holtum JAM (2005). Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees, 19, 305-311.
DOI URL |
[12] |
Deng CY, Zheng JM, Zhang WC, Guo SZ, Xue QH, Ye LY, Sun JW ( 2015). Ecological wood anatomy of Rhizophora stylosa . Chinese Journal of Plant Ecology, 39, 604-615.
DOI URL |
[ 邓传远, 郑俊鸣, 张万超, 郭素枝, 薛秋华, 叶露莹, 孙建文 ( 2015). 红海榄木材结构的生态解剖. 植物生态学报, 39, 604-615.] | |
[13] |
Fan DY, Jie SL, Liu CC, Zhang XY, Xu XW, Zhang SR, Xie ZQ (2011). The trade-off between safety and efficiency in hydraulic architecture in 31 woody species in a karst area. Tree Physiology, 31, 865-877.
DOI URL |
[14] |
Fu PL, Jiang YJ, Wang AY, Brodribb TJ, Zhang JL, Zhu SD, Cao KF (2012). Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Annals of Botany, 110, 189-199.
DOI URL |
[15] |
Geekiyanage N, Goodale UM, Cao KF, Kitajima K (2019). Plant ecology of tropical and subtropical karst ecosystems. Biotropica, 51, 626-640.
DOI |
[16] |
Godfrey JM, Riggio J, Orozco J, Guzmán-Delgado P, Chin ARO, Zwieniecki MA (2020). Ray fractions and carbohydrate dynamics of tree species along a 2750 m elevation gradient indicate climate response, not spatial storage limitation. New Phytologist, 225, 2314-2330.
DOI URL |
[17] | Hacke UG (2015). Functional and Ecological Xylem Anatomy. Springer International Publishing, Cham, Switzerland. |
[18] |
Hacke UG, Sperry JS (2001). Functional and ecological xylem anatomy. Perspectives in Plant Ecology, Evolution and Systematics, 4, 97-115.
DOI URL |
[19] |
Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457-461.
DOI PMID |
[20] | Hacke UG, Spicer R, Schreiber SG, Plavcová L (2017). An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment, 40, 831-845. |
[21] | Hamilton NE, Ferry M (2018). Ggtern: Ternary Diagrams Using ggplot2. Journal of Statistical Software, 87, 1-17. |
[22] | Hu BQ ( 2014). Study on Human-Land Systems in Karst Areas. Science Press, Beijing. 596. |
[ 胡宝清 ( 2014). 喀斯特人地系统研究. 科学出版社,北京. 596.] | |
[23] | Janssen TAJ, Hölttä T, Fleischer K, Naudts K, Dolman H (2020). Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Plant, Cell & Environment, 43, 965-980. |
[24] | Jiang ZC, Li XK, Zeng FP ( 2007). Ecological Reconstruction in Peak Cluster Karst Depression. Geological Publishing House, Beijing. 151. |
[ 蒋忠诚, 李先琨, 曾馥平 ( 2007). 岩溶峰丛洼地生态重建. 地质出版社,北京. 151.] | |
[25] |
Kattge J, Bönisch G, Diaz S, Lavorel S, Prentice I, Leadley P (2020). TRY plant trait database—Enhanced coverage and open access. Global Change Biology, 26, 119-188.
DOI PMID |
[26] |
Liu H, Gleason SM, Hao GY, Hua L, He PC, Goldstein G, Ye Q (2019). Hydraulic traits are coordinated with maximum plant height at the global scale. Science Advances, 5, eaav1332. DOI: 10.1126/sciadv.aav1332.
DOI |
[27] |
Liu L, Song TQ, Peng WX, Wang KL, Du H, Lu SY, Zeng FP ( 2012). Spatial heterogeneity of soil microbial biomass in Mulun National Nature Reserve in karst area. Acta Ecologica Sinica, 32, 207-214.
DOI URL |
[ 刘璐, 宋同清, 彭晚霞, 王克林, 杜虎, 鹿士杨, 曾馥平 ( 2012). 木论喀斯特自然保护区土壤微生物生物量的空间格局. 生态学报, 32, 207-214.] | |
[28] | Liu SJ, Zhang W, Wang KL, Chen HS, Wei GF ( 2010). Spatiotemporal heterogeneity and its formation causes of soil physical properties in karst peak-cluster depression area of northwest Guangxi, China. Chinese Journal of Applied Ecology, 21, 2249-2256. |
[ 刘淑娟, 张伟, 王克林, 陈洪松, 韦国富 ( 2010). 桂西北喀斯特峰丛洼地土壤物理性质的时空分异及成因. 应用生态学报, 21, 2249-2256.] | |
[29] | McCulloh KA, Domec JC, Johnson DM, Smith DD, Meinzer FC (2019). A dynamic yet vulnerable pipeline: integration and coordination of hydraulic traits across whole plants. Plant, Cell & Environment, 42, 2789-2807. |
[30] |
Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009). Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecology, 23, 922-930.
DOI URL |
[31] | Morris H, Gillingham MAF, Plavcová L, Gleason SM, Olson ME, Coomes DA, Fichtler E, Klepsch MM, Martínez- Cabrera HI, McGlinn DJ, Wheeler EA, Zheng JM, Ziemińska K, Jansen S (2018). Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant, Cell & Environment, 41, 245-260. |
[32] |
Morris H, Brodersen C, Schwarze FWMR, Jansen S (2016a). The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the CODIT model. Frontiers in Plant Science, 7, 1665. DOI: 10.3389/ fpls.2016.01665.
DOI |
[33] |
Morris H, Plavcová L, Cvecko P, Fichtler E, Gillingham MAF, Martínez-Cabrera HI, McGlinn DJ, Wheeler E, Zheng JM, Ziemińska K, Jansen S (2016b). A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist, 209, 1553-1565.
DOI URL |
[34] | Peng WX, Wang KL, Song TQ, Zeng FP, Wang JR ( 2008). Controlling and restoration models of complex degradation of vulnerable karst ecosystem. Acta Ecologica Sinica, 28, 811-820. |
[ 彭晚霞, 王克林, 宋同清, 曾馥平, 王久荣 ( 2008). 喀斯特脆弱生态系统复合退化控制与重建模式. 生态学报, 28, 811-820.] | |
[35] |
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167. DOI: 10.1071/ bt12225.
DOI URL |
[36] |
Plavcová L, Hoch G, Morris H, Ghiasi S, Jansen S (2016). The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. American Journal of Botany, 103, 603-612.
DOI PMID |
[37] | Plavcová L, Jansen S (2015). The role of xylem parenchyma in the storage and utilization of nonstructural carbohydrates// Hacke U. Functional and Ecological Xylem Anatomy. Springer International Publishing, Cham,Switzerland. 209-234. |
[38] | Pratt RB, Jacobsen AL (2017). Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics. Plant, Cell & Environment, 40, 897-913. |
[39] |
Qu X, Huang G (2018). Different multi-year mean temperature in mid-summer of South China under different 1.5 °C warming scenarios. Scientific Reports, 8, 13794. DOI: 10. 1038/s41598-018-32277-6.
DOI URL |
[40] |
Rueden CT, Hiner MC, Eliceiri KW (2016). ImageJ: image analysis interoperability for the next generation of biological image data. Microscopy and Microanalysis, 22, 2066-2067.
DOI URL |
[41] |
Santiago LS, de Guzman ME, Baraloto C, Vogenberg JE, Brodie M, Hérault B, Fortunel C, Bonal D (2018). Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 218, 1015-1024.
DOI URL |
[42] | Secchi F, Pagliarani C, Zwieniecki MA (2017). The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant, Cell & Environment, 40, 858-871. |
[43] |
Siddiq Z, Zhang YJ, Zhu SD, Cao KF (2019). Canopy water status and photosynthesis of tropical trees are associated with trunk sapwood hydraulic properties. Plant Physiology and Biochemistry, 139, 724-730.
DOI PMID |
[44] | Song TQ ( 2015). Plants and Environment in Karst Areas of Southwest China. Science Press, Beijing. 607. |
[ 宋同清 ( 2015). 西南喀斯特植物与环境. 科学出版社,北京. 607.] | |
[45] |
Tan FS, Song HQ, Li ZG, Zhang QW, Zhu SD ( 2019). Hydraulic safety margin of 17 co-occurring woody plants in a seasonal rain forest in Guangxi’s Southwest karst landscape, China. Chinese Journal of Plant Ecology, 43, 227-237.
DOI URL |
[ 谭凤森, 宋慧清, 李忠国, 张启伟, 朱师丹 ( 2019). 桂西南喀斯特季雨林木本植物的水力安全. 植物生态学报, 43, 227-237.] | |
[46] |
Tomasella M, Petrussa E, Petruzzellis F, Nardini A, Casolo V (2019). The possible role of non-structural carbohydrates in the regulation of tree hydraulics. International Journal of Molecular Sciences, 21, E144. DOI: 10.3390/ ijms21010144.
DOI |
[47] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. 2nd ed. Springer Heidelberg,Berlin. |
[48] |
Wang J, Wen XF, Zhang XY, Li SG (2018). The strategies of water-carbon regulation of plants in a subtropical primary forest on karst soils in China. Biogeosciences, 15, 4193-4203.
DOI URL |
[49] |
Warton DI, Duursma RA, Falster DS, Taskinen S (2012). Smatr 3—An R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3, 257-259.
DOI URL |
[50] |
Yin YH, Ma DY, Wu SH (2018). Climate change risk to forests in China associated with warming. Scientific Reports, 8, 493. DOI: 10.1038/s41598-017-18798-6.
DOI URL |
[51] | Yuan DX ( 1992). Karst in southwest China and its comparison with karst in North China. Quaternary Sciences, 12, 352-361. |
[ 袁道先 ( 1992). 中国西南部的岩溶及其与华北岩溶的对比. 第四纪研究, 12, 352-361.] | |
[52] | Zheng YW ( 1999). Introduction to Mulun Karst Forest Region. Science Press, Beijing. 254. |
[ 郑颖吾 ( 1999). 木论喀斯特林区概论. 科学出版社,北京. 254.] | |
[53] | Zhou CB, Hu X, Song YY, Gong W, Hu TX ( 2016). Radial variation and its storage function of ray tissue. Journal of Northwest Forestry University, 31, 179-183. |
[ 周朝彬, 胡霞, 宋于洋, 龚伟, 胡庭兴 ( 2016). 射线组织径向变异及其贮藏功能研究进展. 西北林学院学报, 31, 179-183.] | |
[54] | Zhu SD, Chen YJ, Fu PL, Cao KF (2017). Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability. Tree Physiology, 37, 1469-1477. |
[55] |
Zwieniecki MA, Holbrook NM (2009). Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends in Plant Science, 14, 530-534.
DOI PMID |
[1] | BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate [J]. Chin J Plant Ecol, 2023, 47(8): 1144-1158. |
[2] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[3] | LI Yao-Qi, WANG Zhi-Heng. Functional biogeography of plants: research progresses and challenges [J]. Chin J Plant Ecol, 2023, 47(2): 145-169. |
[4] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[5] | ZHAI Jiang-Wei, LIN Xin-Hui, WU Rui-Zhe, XU Yi-Xin, JIN Hao-Hao, JIN Guang-Ze, LIU Zhi-Li. Trade-offs between petiole and lamina of different functional plants in Xiao Hinggan Mountains, China [J]. Chin J Plant Ecol, 2022, 46(6): 700-711. |
[6] | CHENG Si-Qi, JIANG Feng, JIN Guang-Ze. Leaf economics spectrum of broadleaved seedlings and its relationship with defense traits in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 678-686. |
[7] | HAN Xu-Li, ZHAO Ming-Shui, WANG Zhong-Yuan, YE Lin-Feng, LU Shi-Tong, CHEN Sen, LI Yan, XIE Jiang-Bo. Adaptation of xylem structure and function of three gymnosperms to different habitats [J]. Chin J Plant Ecol, 2022, 46(4): 440-450. |
[8] | QIN Hui-Jun, JIAO Liang, ZHOU Yi, XUE Ru-Hong, QI Chang-Liang, DU Da-Shi. Effects of altitudes on non-structural carbohydrate allocation in different dominate trees in Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(2): 208-219. |
[9] | DAI Yuan-Meng, LI Man-Le, XU Ming-Ze, TIAN Yun, ZHAO Hong-Xian, GAO Sheng-Jie, HAO Shao-Rong, LIU Peng, JIA Xin, ZHA Tian-Shan. Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land [J]. Chin J Plant Ecol, 2022, 46(11): 1376-1387. |
[10] | REN Jin-Pei, LI Jun-Peng, WANG Wei-Feng, DAI Yong-Xin, WANG Lin. Responses of leaf hydraulic traits to water conditions in eight tree species and the driving factors [J]. Chin J Plant Ecol, 2021, 45(9): 942-951. |
[11] | ZHENG Jing-Ming, LIU Hong-Yu. Using Strauss-Hardcore model to detect vessel spatial distribution in angiosperms with various vessel configurations [J]. Chin J Plant Ecol, 2021, 45(9): 1024-1032. |
[12] | FANG Jing, YE Lin-Feng, CHEN Sen, LU Shi-Tong, PAN Tian-Tian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats [J]. Chin J Plant Ecol, 2021, 45(6): 650-658. |
[13] | WANG Zhao-Ying, CHEN Xiao-Ping, CHENG Ying, WANG Man-Tang, ZHONG Quan-Lin, LI Man, CHENG Dong-Liang. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains [J]. Chin J Plant Ecol, 2021, 45(3): 242-252. |
[14] | TAN Yi-Bo, TIAN Hong-Deng, ZENG Chun-Yang, SHEN Hao, SHEN Wen-Hui, YE Jian-Ping, GAN Guo-Juan. Canopy mechanical abrasion between adjacent plants influences twig and leaf traits of Tsuga chinensis assemblage in the Mao’er Mountain [J]. Chin J Plant Ecol, 2021, 45(12): 1281-1291. |
[15] | LI Hao, MA Ru-Yu, QIANG Bo, HE Cong, HAN Lu, WANG Hai-Zhen. Effect of current-year twig stem configuration on the leaf display efficiency of Populus euphratica [J]. Chin J Plant Ecol, 2021, 45(11): 1251-1262. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn