Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (11): 1251-1262.DOI: 10.17521/cjpe.2020.0425
• Research Articles • Previous Articles Next Articles
LI Hao, MA Ru-Yu, QIANG Bo, HE Cong, HAN Lu, WANG Hai-Zhen*()
Received:
2020-12-23
Accepted:
2021-07-15
Online:
2021-11-20
Published:
2021-09-02
Contact:
WANG Hai-Zhen
Supported by:
LI Hao, MA Ru-Yu, QIANG Bo, HE Cong, HAN Lu, WANG Hai-Zhen. Effect of current-year twig stem configuration on the leaf display efficiency of Populus euphratica[J]. Chin J Plant Ecol, 2021, 45(11): 1251-1262.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0425
性状 Trait | 生境 Across-habitat | 种内 Across-individual within species | 小枝 Across-twig within plant |
---|---|---|---|
叶数量 Leaf number | 41.22 | 20.45 | 32.26 |
单叶干质量 Individual leaf mass | 18.19 | 26.41 | 47.27 |
单叶面积 Individual leaf area | 43.08 | 25.01 | 26.46 |
小枝茎长度 Twig stem length | 35.31 | 18.14 | 39.71 |
小枝茎粗 Twig stem diameter | 32.74 | 26.26 | 34.41 |
小枝茎体积 Twig stem volume | 1.04 | 35.12 | 55.57 |
小枝纤细率 Twig stem slender ratio | 53.83 | 16.71 | 24.57 |
叶面积比 Leaf area ratio | 37.42 | 14.96 | 40.91 |
叶茎质量比 Leaf/stem mass ratio | 15.16 | 26.92 | 49.53 |
叶密度 Density of leaf number | 0.01 | 26.74 | 73.17 |
比叶面积 Specific leaf area | 65.12 | 0.76 | 31.30 |
小枝茎组织密度 Twig stem tissue density | 52.92 | 0.79 | 42.83 |
小枝茎干质量 Twig stem mass | 0.01 | 41.70 | 58.21 |
小枝干质量 Twig mass | 0.01 | 53.65 | 46.17 |
小枝上总叶干质量 Total leaf mass of twig | 1.06 | 55.61 | 36.63 |
小枝上总叶面积 Total leaf area of twig | 2.76 | 56.80 | 33.15 |
Table 1 Summary of hierarchical variance partitioning (type I) for sixteen leaf-shoot architectural traits of Populus euphratica under different groundwater depth, with the variance at each level standardized to a proportional scale (%)
性状 Trait | 生境 Across-habitat | 种内 Across-individual within species | 小枝 Across-twig within plant |
---|---|---|---|
叶数量 Leaf number | 41.22 | 20.45 | 32.26 |
单叶干质量 Individual leaf mass | 18.19 | 26.41 | 47.27 |
单叶面积 Individual leaf area | 43.08 | 25.01 | 26.46 |
小枝茎长度 Twig stem length | 35.31 | 18.14 | 39.71 |
小枝茎粗 Twig stem diameter | 32.74 | 26.26 | 34.41 |
小枝茎体积 Twig stem volume | 1.04 | 35.12 | 55.57 |
小枝纤细率 Twig stem slender ratio | 53.83 | 16.71 | 24.57 |
叶面积比 Leaf area ratio | 37.42 | 14.96 | 40.91 |
叶茎质量比 Leaf/stem mass ratio | 15.16 | 26.92 | 49.53 |
叶密度 Density of leaf number | 0.01 | 26.74 | 73.17 |
比叶面积 Specific leaf area | 65.12 | 0.76 | 31.30 |
小枝茎组织密度 Twig stem tissue density | 52.92 | 0.79 | 42.83 |
小枝茎干质量 Twig stem mass | 0.01 | 41.70 | 58.21 |
小枝干质量 Twig mass | 0.01 | 53.65 | 46.17 |
小枝上总叶干质量 Total leaf mass of twig | 1.06 | 55.61 | 36.63 |
小枝上总叶面积 Total leaf area of twig | 2.76 | 56.80 | 33.15 |
性状 Trait | 地下水埋深 Ground water depth (m) | ||
---|---|---|---|
1.7 | 4.8 | 7.1 | |
茎长度 Stem length (cm) | 10.72 ± 2.89b | 16.60 ± 4.46a | 17.21 ± 2.47a |
茎直径 Stem diameter (cm) | 0.255 ± 0.023a | 0.211 ± 0.035b | 0.205 ± 0.023b |
茎纤细率 Stem slender ratio (cm·cm-1) | 42.98 ± 12.21b | 78.60 ± 19.36a | 87.74 ± 14.11a |
茎体积 Stem volume (cm3) | 0.38 ± 0.16ab | 0.41 ± 0.17a | 0.32 ± 0.12b |
叶面积比 Leaf area ratio (cm2·g-1) | 486.52 ± 42.05a | 399.11 ± 86.23b | 326.59 ± 98.99b |
叶茎质量比 Leaf/stem mass ratio (g·g-1) | 6.48 ± 2.04a | 5.76 ± 1.38b | 5.66 ± 1.53b |
叶密度 Density of leaf number (No.·cm-1) | 0.72 ± 0.10a | 0.70 ± 0.16a | 0.69 ± 0.05a |
叶数量 Leaf number | 7.27 ± 1.77b | 11.15 ± 2.89a | 11.88 ± 1.04a |
茎干质量 Stem mass (g) | 0.205 ± 0.056b | 0.269 ± 0.103a | 0.273 ± 0.075a |
叶干质量 Total leaf mass (g) | 1.328 ± 0.271a | 1.469 ± 0.475a | 1.457 ± 0.411a |
比叶面积 Specific leaf area (cm2·g-1) | 80.12 ± 7.243a | 72.27 ± 5.273b | 59.44 ± 2.826c |
总叶面积 Total leaf area (cm2) | 99.82 ± 26.085a | 100.89 ± 46.093a | 82.97 ± 23.446b |
单叶面积 Individual leaf area (cm2) | 13.46 ± 2.657a | 8.89 ± 2.453b | 7.09 ± 2.064b |
单叶质量 Individual leaf mass (g) | 0.181 ± 0.033a | 0.129 ± 0.037b | 0.124 ± 0.036b |
叶厚度 Leaf thickness (mm) | 0.268 ± 0.017c | 0.288 ± 0.024b | 0.332 ± 0.015a |
树高 Tree height (m) | 8.36 ± 1.004a | 7.61 ± 1.207a | 4.76 ± 0.583b |
Table 2 Characteristics of stem and leaf functional traits of Populus euphratica at different groundwater depth (mean ± SE)
性状 Trait | 地下水埋深 Ground water depth (m) | ||
---|---|---|---|
1.7 | 4.8 | 7.1 | |
茎长度 Stem length (cm) | 10.72 ± 2.89b | 16.60 ± 4.46a | 17.21 ± 2.47a |
茎直径 Stem diameter (cm) | 0.255 ± 0.023a | 0.211 ± 0.035b | 0.205 ± 0.023b |
茎纤细率 Stem slender ratio (cm·cm-1) | 42.98 ± 12.21b | 78.60 ± 19.36a | 87.74 ± 14.11a |
茎体积 Stem volume (cm3) | 0.38 ± 0.16ab | 0.41 ± 0.17a | 0.32 ± 0.12b |
叶面积比 Leaf area ratio (cm2·g-1) | 486.52 ± 42.05a | 399.11 ± 86.23b | 326.59 ± 98.99b |
叶茎质量比 Leaf/stem mass ratio (g·g-1) | 6.48 ± 2.04a | 5.76 ± 1.38b | 5.66 ± 1.53b |
叶密度 Density of leaf number (No.·cm-1) | 0.72 ± 0.10a | 0.70 ± 0.16a | 0.69 ± 0.05a |
叶数量 Leaf number | 7.27 ± 1.77b | 11.15 ± 2.89a | 11.88 ± 1.04a |
茎干质量 Stem mass (g) | 0.205 ± 0.056b | 0.269 ± 0.103a | 0.273 ± 0.075a |
叶干质量 Total leaf mass (g) | 1.328 ± 0.271a | 1.469 ± 0.475a | 1.457 ± 0.411a |
比叶面积 Specific leaf area (cm2·g-1) | 80.12 ± 7.243a | 72.27 ± 5.273b | 59.44 ± 2.826c |
总叶面积 Total leaf area (cm2) | 99.82 ± 26.085a | 100.89 ± 46.093a | 82.97 ± 23.446b |
单叶面积 Individual leaf area (cm2) | 13.46 ± 2.657a | 8.89 ± 2.453b | 7.09 ± 2.064b |
单叶质量 Individual leaf mass (g) | 0.181 ± 0.033a | 0.129 ± 0.037b | 0.124 ± 0.036b |
叶厚度 Leaf thickness (mm) | 0.268 ± 0.017c | 0.288 ± 0.024b | 0.332 ± 0.015a |
树高 Tree height (m) | 8.36 ± 1.004a | 7.61 ± 1.207a | 4.76 ± 0.583b |
Fig. 1 Relationships between leaf number per twig, density of leaf number and current-year twig stem configuration of Populus euphratica measured at different groundwater depths. GWD, groundwater depth.
指标(y轴-x轴) Index (y axis-x axis) | 地下水埋深 Groundwater depth (m) | 斜率 Slope | 95%置信区间 95% confidence interval | 截距 Intercept | R2 | p1.0, p-1.0 | p |
---|---|---|---|---|---|---|---|
叶数量-茎长度 Leaf number-stem length | 1.7 | 0.787 | 0.635, 0.974 | 0.057 | 0.690 | 0.029 | 0.000 5 |
4.8 | 0.803 | 0.649, 0.994 | 0.070 | 0.571 | 0.044 | 0.000 6 | |
7.1 | 0.813 | 0.652, 1.016 | 0.076 | 0.535 | 0.031 | 0.002 8 | |
叶数量-茎纤细率 Leaf number-stem slender ratio | 1.7 | 0.734 | 0.588, 0.917 | -0.332 | 0.667 | 0.008 | 0.001 3 |
4.8 | 0.981 | 0.735, 1.310 | -0.813 | 0.206 | 0.897 | 0.003 3 | |
7.1 | 0.914 | 0.691, 1.209 | -0.700 | 0.254 | 0.523 | 0.000 9 | |
叶数量-茎体积 Leaf number-stem volume | 1.7 | 0.615 | 0.472, 0.803 | -0.718 | 0.517 | 0.001 | 0.019 0 |
4.8 | 0.480 | 0.387, 0.595 | -0.191 | 0.562 | 0.001 | 0.000 9 | |
7.1 | 0.505 | 0.385, 0.661 | -0.169 | 0.308 | 0.007 | 0.000 2 | |
叶密度-茎长度 Density of leaf number-stem length | 1.7 | -0.559 | -0.753, -0.414 | 0.491 | 0.385 | 0.001 | 0.000 3 |
4.8 | -0.657 | -0.852, -0.507 | 0.620 | 0.358 | 0.002 | 0.030 3 | |
7.1 | -0.687 | -0.893, -0.528 | 0.675 | 0.347 | 0.006 | 0.043 1 | |
叶密度-茎纤细率 Density of leaf number-stem slender ratio | 1.7 | -0.522 | -0.728, -0.374 | 0.676 | 0.232 | 0.001 | 0.007 0 |
4.8 | -0.803 | -0.986, -0.654 | 1.342 | 0.603 | 0.037 | 0.000 5 | |
7.1 | -0.771 | -0.987, -0.603 | 1.314 | 0.424 | 0.039 | 0.013 2 | |
叶密度-茎体积 Density of leaf number-stem volume | 1.7 | -0.437 | -0.634, -0.301 | 0.950 | 0.133 | 0.019 | 0.026 4 |
4.8 | -0.392 | -0.537, -0.287 | 0.833 | 0.158 | 0.001 | 0.012 7 | |
7.1 | -0.426 | -0.579, -0.313 | 0.866 | 0.114 | 0.003 | 0.038 5 |
Table 3 Standardized major axis (SMA) regression analysis on the scaling relationships between current-year twig stem configuration and density of leaf number, or leaf number of Populus euphratica under different groundwater depth
指标(y轴-x轴) Index (y axis-x axis) | 地下水埋深 Groundwater depth (m) | 斜率 Slope | 95%置信区间 95% confidence interval | 截距 Intercept | R2 | p1.0, p-1.0 | p |
---|---|---|---|---|---|---|---|
叶数量-茎长度 Leaf number-stem length | 1.7 | 0.787 | 0.635, 0.974 | 0.057 | 0.690 | 0.029 | 0.000 5 |
4.8 | 0.803 | 0.649, 0.994 | 0.070 | 0.571 | 0.044 | 0.000 6 | |
7.1 | 0.813 | 0.652, 1.016 | 0.076 | 0.535 | 0.031 | 0.002 8 | |
叶数量-茎纤细率 Leaf number-stem slender ratio | 1.7 | 0.734 | 0.588, 0.917 | -0.332 | 0.667 | 0.008 | 0.001 3 |
4.8 | 0.981 | 0.735, 1.310 | -0.813 | 0.206 | 0.897 | 0.003 3 | |
7.1 | 0.914 | 0.691, 1.209 | -0.700 | 0.254 | 0.523 | 0.000 9 | |
叶数量-茎体积 Leaf number-stem volume | 1.7 | 0.615 | 0.472, 0.803 | -0.718 | 0.517 | 0.001 | 0.019 0 |
4.8 | 0.480 | 0.387, 0.595 | -0.191 | 0.562 | 0.001 | 0.000 9 | |
7.1 | 0.505 | 0.385, 0.661 | -0.169 | 0.308 | 0.007 | 0.000 2 | |
叶密度-茎长度 Density of leaf number-stem length | 1.7 | -0.559 | -0.753, -0.414 | 0.491 | 0.385 | 0.001 | 0.000 3 |
4.8 | -0.657 | -0.852, -0.507 | 0.620 | 0.358 | 0.002 | 0.030 3 | |
7.1 | -0.687 | -0.893, -0.528 | 0.675 | 0.347 | 0.006 | 0.043 1 | |
叶密度-茎纤细率 Density of leaf number-stem slender ratio | 1.7 | -0.522 | -0.728, -0.374 | 0.676 | 0.232 | 0.001 | 0.007 0 |
4.8 | -0.803 | -0.986, -0.654 | 1.342 | 0.603 | 0.037 | 0.000 5 | |
7.1 | -0.771 | -0.987, -0.603 | 1.314 | 0.424 | 0.039 | 0.013 2 | |
叶密度-茎体积 Density of leaf number-stem volume | 1.7 | -0.437 | -0.634, -0.301 | 0.950 | 0.133 | 0.019 | 0.026 4 |
4.8 | -0.392 | -0.537, -0.287 | 0.833 | 0.158 | 0.001 | 0.012 7 | |
7.1 | -0.426 | -0.579, -0.313 | 0.866 | 0.114 | 0.003 | 0.038 5 |
Fig. 2 Relationships between leaf area ratio and current-year twig stem configuration of Populus euphratica under different groundwater depths. GWD, groundwater depth.
指标(y轴-x轴) Index (y axis-x axis) | 地下水埋深 Groundwater depth (m) | 斜率 Slope | 95%置信区间 95% Confidence interval | 截距 Intercept | R2 | p-1.0 | p |
---|---|---|---|---|---|---|---|
叶面积比-茎长度 Leaf area ratio-stem length | 1.7 | -0.707 | -0.915, -0.546 | 3.430 | 0.617 | 0.010 | 0.004 9 |
4.8 | -1.070 | -1.449, -0.791 | 3.849 | 0.125 | 0.657 | 0.025 4 | |
7.1 | -1.098 | -1.485, -0.811 | 3.843 | 0.127 | 0.542 | 0.024 1 | |
叶面积比-茎纤细率 Leaf area ratio-stem slender ratio | 1.7 | -0.660 | -0.913, -0.477 | 3.780 | 0.383 | 0.013 | 0.000 7 |
4.8 | -1.308 | -1.745, -0.981 | 5.026 | 0.207 | 0.068 | 0.003 1 | |
7.1 | -1.232 | -1.652, -0.919 | 4.864 | 0.179 | 0.160 | 0.006 5 | |
叶面积比-茎体积 Leaf area ratio-stem volume | 1.7 | -0.568 | -0.789, -0.409 | 4.168 | 0.368 | 0.001 | 0.001 1 |
4.8 | -0.639 | -0.866, -0.472 | 4.197 | 0.122 | 0.004 | 0.033 6 | |
7.1 | -0.680 | -0.927, -0.499 | 4.149 | 0.106 | 0.002 | 0.044 8 | |
叶茎质量比-茎长度 Leaf/stem mass ratio-stem length | 1.7 | -0.774 | -1.015, -0.590 | 1.620 | 0.557 | 0.063 | 0.019 7 |
4.8 | -0.906 | -1.226, -0.669 | 1.819 | 0.123 | 0.518 | 0.026 3 | |
7.1 | -1.014 | -1.367, -0.747 | 1.983 | 0.107 | 0.928 | 0.039 1 | |
叶茎质量比-茎纤细率 Leaf/stem mass ratio-stem slender ratio | 1.7 | -0.723 | -0.998, -0.523 | 2.003 | 0.362 | 0.049 | 0.000 9 |
4.8 | -1.107 | -1.474, -0.831 | 2.815 | 0.218 | 0.482 | 0.002 4 | |
7.1 | -1.139 | -1.523, -0.851 | 2.926 | 0.192 | 0.378 | 0.004 6 | |
叶茎质量比-茎体积 Leaf/stem mass ratio-stem volume | 1.7 | -0.617 | -0.870, -0.437 | 2.417 | 0.271 | 0.007 | 0.005 2 |
4.8 | -0.541 | -0.739, -0.396 | 2.113 | 0.128 | 0.001 | 0.029 6 | |
7.1 | -0.629 | -0.860, -0.460 | 2.265 | 0.107 | 0.015 | 0.043 3 |
Table 4 Standardized major axis (SMA) regression analysis on the scaling relationships between current-year twig stem configuration and leaf area ratio, or leaf/stem mass ratio of Populus euphratica under different groundwater depth
指标(y轴-x轴) Index (y axis-x axis) | 地下水埋深 Groundwater depth (m) | 斜率 Slope | 95%置信区间 95% Confidence interval | 截距 Intercept | R2 | p-1.0 | p |
---|---|---|---|---|---|---|---|
叶面积比-茎长度 Leaf area ratio-stem length | 1.7 | -0.707 | -0.915, -0.546 | 3.430 | 0.617 | 0.010 | 0.004 9 |
4.8 | -1.070 | -1.449, -0.791 | 3.849 | 0.125 | 0.657 | 0.025 4 | |
7.1 | -1.098 | -1.485, -0.811 | 3.843 | 0.127 | 0.542 | 0.024 1 | |
叶面积比-茎纤细率 Leaf area ratio-stem slender ratio | 1.7 | -0.660 | -0.913, -0.477 | 3.780 | 0.383 | 0.013 | 0.000 7 |
4.8 | -1.308 | -1.745, -0.981 | 5.026 | 0.207 | 0.068 | 0.003 1 | |
7.1 | -1.232 | -1.652, -0.919 | 4.864 | 0.179 | 0.160 | 0.006 5 | |
叶面积比-茎体积 Leaf area ratio-stem volume | 1.7 | -0.568 | -0.789, -0.409 | 4.168 | 0.368 | 0.001 | 0.001 1 |
4.8 | -0.639 | -0.866, -0.472 | 4.197 | 0.122 | 0.004 | 0.033 6 | |
7.1 | -0.680 | -0.927, -0.499 | 4.149 | 0.106 | 0.002 | 0.044 8 | |
叶茎质量比-茎长度 Leaf/stem mass ratio-stem length | 1.7 | -0.774 | -1.015, -0.590 | 1.620 | 0.557 | 0.063 | 0.019 7 |
4.8 | -0.906 | -1.226, -0.669 | 1.819 | 0.123 | 0.518 | 0.026 3 | |
7.1 | -1.014 | -1.367, -0.747 | 1.983 | 0.107 | 0.928 | 0.039 1 | |
叶茎质量比-茎纤细率 Leaf/stem mass ratio-stem slender ratio | 1.7 | -0.723 | -0.998, -0.523 | 2.003 | 0.362 | 0.049 | 0.000 9 |
4.8 | -1.107 | -1.474, -0.831 | 2.815 | 0.218 | 0.482 | 0.002 4 | |
7.1 | -1.139 | -1.523, -0.851 | 2.926 | 0.192 | 0.378 | 0.004 6 | |
叶茎质量比-茎体积 Leaf/stem mass ratio-stem volume | 1.7 | -0.617 | -0.870, -0.437 | 2.417 | 0.271 | 0.007 | 0.005 2 |
4.8 | -0.541 | -0.739, -0.396 | 2.113 | 0.128 | 0.001 | 0.029 6 | |
7.1 | -0.629 | -0.860, -0.460 | 2.265 | 0.107 | 0.015 | 0.043 3 |
Fig. 3 Relationships between leaf/stem mass ratio and current-year twig stem configuration of Populus euphratica under different groundwater depths. GWD, groundwater depth.
[1] |
Barigah TS, Charrier O, Douris M, Bonhomme M, Herbette S, Améglio T, Fichot R, Brignolas F, Cochard H (2013). Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Annals of Botany, 112, 1431-1437.
DOI URL |
[2] |
Barthélémy D, Caraglio Y (2007). Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany, 99, 375-407.
PMID |
[3] |
Bittencourt PRL, Pereira L, Oliveira RS (2016). On xylem hy- draulic efficiencies, wood space-use and the safety efficiency tradeoff. New Phytologist, 211, 1152-1155.
DOI PMID |
[4] |
Brouat C, McKey D (2001). Leaf-stem allometry, hollow stems, and the evolution of caulinary domatia in myrmecophytes. New Phytologist, 151, 391-406.
DOI URL |
[5] |
Castro-Díez P, Puyravaud JP, Cornelissen JHC (2000). Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia, 124, 476-486.
DOI PMID |
[6] |
Chaturvedi RK, Tripathi A, Raghubanshi AS, Singh JS (2021). Functional traits indicate a continuum of tree drought strategies across a soil water availability gradient in a tropical dry forest. Forest Ecology and Management, 482, 118740. DOI: 10.1016/j.foreco.2020.118740.
DOI URL |
[7] |
Corner EJH (1949). The durian theory or the origin of the modern tree. Annals of Botany, 13, 367-414.
DOI URL |
[8] |
Diaz S, Cabido M, Casanoves F (1998). Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 9, 113-122.
DOI URL |
[9] |
Fan ZX, Sterck F, Zhang SB, Fu PL, Hao GY (2017). Tradeoff between stem hydraulic efficiency and mechanical strength affects leaf-stem allometry in 28 Ficus tree spcies. Frontiers in Plant Science, 8, 1619. DOI: 10.3389/fpls.2017.01619.
DOI URL |
[10] | Gries D, Zeng F, Foetzki A, Arndt SK, Bruelheide H, Thomas FM, Zhang X, Runge M (2003). Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table. Plant, Cell & Environment, 26, 725-736. |
[11] |
Huang Y, Lechowicz MJ, Price CA, Li L, Wang Y, Zhou D (2016). The underlying basis for the trade-off between leaf size and leafing intensity. Functional Ecology, 30, 199-205.
DOI URL |
[12] | Jiang SW, Zhou DD, Wu GL, Li J (2017). Hydraulic conductivity and its seasonal variation of Populus euphratica shoot at the sites with varying groundwater depths. Arid Zone Research, 34, 648-654. |
[ 蒋少伟, 周多多, 吴桂林, 李君 (2017). 不同地下水埋深下胡杨枝条水力导度及其季节变化. 干旱区研究, 34, 648-654.] | |
[13] |
Kleiman D, Aarssen LW (2007). The leaf size/number trade-off in trees. Journal of Ecology, 95, 376-382.
DOI URL |
[14] |
Lauri PÉ (2019). Cornerʼs rules as a framework for plant morphology, architecture and functioning—Issues and steps forward. New Phytologist, 221, 1679-1684.
DOI URL |
[15] |
Li JH, Peng GQ, Yang DM (2017). Effect of stem length to stem slender ratio of current-year twigs on the leaf display efficiency in evergreen and deciduous broadleaved trees. Chinese Journal of Plant Ecology, 41, 650-660.
DOI URL |
[ 李俊慧, 彭国全, 杨冬梅 (2017). 常绿和落叶阔叶物种当年生小枝茎长度和茎纤细率对展叶效率的影响. 植物生态学报, 41, 650-660.] | |
[16] | Li M, Zheng Y, Guo YR, Cheng L, Lu HD, Guo BQ, Zhong QL, Cheng DL (2017). Scaling relationships between twig size and leaf size of Pinus hwangshanensis along an altitudinal gradient in Wuyi Mountains, China. Chinese Journal of Applied Ecology, 28, 537-544. |
[ 李曼, 郑媛, 郭英荣, 程林, 卢宏典, 郭炳桥, 钟全林, 程栋梁 (2017). 武夷山不同海拔黄山松枝叶大小关系. 应用生态学报, 28, 537-544.] | |
[17] | Li T, Deng JM, Wang GX, Cheng DL, Yu ZL (2009). Isometric scaling relationship between leaf number and size within current-year shoots of woody species across contrasting habitats. Polish Journal of Ecology, 57, 659-667. |
[18] |
Li Y, Zhao CZ, Dong XG, Hou ZJ, Ma XL, Zhang Q (2013). Twig and leaf trait differences in Stellera chamaejasme with slope in alpine grassland. Chinese Journal of Plant Ecology, 37, 709-717.
DOI URL |
[ 李钰, 赵成章, 董小刚, 侯兆疆, 马小丽, 张茜 (2013). 高寒草地狼毒枝-叶性状的坡度差异性. 植物生态学报, 37, 709-717.] | |
[19] | Li YN, Yang DM, Sun SC, Gao XM (2008). Effects of twig size on biomass allocation within twigs and on lamina area supporting efficiency in Rhododendron: allometric scaling analyses. Journal of Plant Ecology (Chinese Version), 32, 1175-1183. |
[ 李亚男, 杨冬梅, 孙书存, 高贤明 (2008). 杜鹃花属植物小枝大小对小枝生物量分配及叶面积支持效率的影响: 异速生长分析. 植物生态学报, 32, 1175-1183.] | |
[20] |
Liu MH, Xin ZM, Xu J, Sun F, Dou LJ, Li YH (2013). Influence of leaf size of plant on leaf transpiration and temperature in arid regions. Chinese Journal of Plant Ecology, 37, 436-442.
DOI URL |
[ 刘明虎, 辛智鸣, 徐军, 孙非, 窦立军, 李永华 (2013). 干旱区植物叶片大小对叶表面蒸腾及叶温的影响. 植物生态学报, 37, 436-442.] | |
[21] | Lu YM, Wang MT, Chen XP, Lyu M, Zhong QL, Cheng DL (2019). Effects of the current-year shoot stem configuration on leaf biomass in different canopy heights of woody plants in evergreen broad-leaved forest in Jiangxi Province, China. Chinese Journal of Applied Ecology, 30, 3653-3661. |
[ 卢艺苗, 王满堂, 陈晓萍, 吕敏, 钟全林, 程栋梁 (2019). 江西常绿阔叶林木本植物不同冠层高度当年生小枝茎构型对叶生物量的影响. 应用生态学报, 30, 3653-3661.] | |
[22] | Ma JX, Chen YN, Li WH, Huang X, Zhu CG, Ma XD (2010). Response of sap flow in Populus euphratica to changes in groundwater depth in the middle and lower reaches of the Tarim River of northwestern China. Chinese Journal of Plant Ecology, 34, 915-923. |
[ 马建新, 陈亚宁, 李卫红, 黄湘, 朱成刚, 马晓东 (2010). 胡杨液流对地下水埋深变化的响应. 植物生态学报, 34, 915-923.] | |
[23] |
Meinzer FC, Clearwater MJ, Goldstein G (2001). Water transport in trees: current perspectives, new insights and some controversies. Environmental and Experimental Botany, 45, 239-262.
PMID |
[24] | Mencuccini M (2003). The ecological significance of long- distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant, Cell & Environment, 26, 163-182. |
[25] |
Niklas KJ, Spatz HC (2004). From the cover: growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proceedings of the National Academy of Sciences of the United States of America, 101, 15661-15663.
PMID |
[26] |
Niklas KJ, Spatz HC (2012). Mechanical properties of wood disproportionately increase with increasing density. American Journal of Botany, 99, 169-170.
DOI PMID |
[27] |
Normand F, Bissery C, Damour G, Lauri PÉ (2008). Hydraulic and mechanical stem properties affect leaf-stem allometry in mango cultivars. New Phytologist, 178, 590-602.
DOI URL |
[28] |
Pan YP, Chen YP, Chen YN, Wang RZ, Ren ZG (2016). Impact of groundwater depth on leaf hydraulic properties and drought vulnerability of Populus euphratica in the Northwest of China. Trees, 30, 2029-2039.
DOI URL |
[29] |
Pickup M, Westoby M, Basden A (2005). Dry mass costs of deploying leaf area in relation to leaf size. Functional Ecology, 19, 88-97.
DOI URL |
[30] |
Poorter H, Remkes C (1990). Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia, 83, 553-559.
DOI URL |
[31] | Reich PB, Cornelissen H (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. |
[32] |
Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998). Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia, 114, 471-482.
DOI URL |
[33] | Ryan MG, Phillips N, Bond BJ (2006). The hydraulic limitation hypothesis revisited. Plant, Cell & Environment, 29, 367-381. |
[34] | Sun J, Wang MT, Cheng L, Lyu M, Sun MK, Chen XP, Zhong QL, Cheng DL (2019). Allometry between twig size and leaf size of typical bamboo species along an altitudinal gradient. Chinese Journal of Applied Ecology, 30, 165-172. |
[ 孙俊, 王满堂, 程林, 吕敏, 孙蒙柯, 陈晓萍, 钟全林, 程栋梁 (2019). 不同海拔典型竹种枝叶大小异速生长关系. 应用生态学报, 30, 165-172.] | |
[35] |
Sun J, Wang MT, Lyu M, Niklas KJ, Zhong QL, Li M, Cheng DL (2019). Stem and leaf growth rates define the leaf size vs. number trade-off. AoB Plants,, 11. DOI: 10.1093/aobpla/plz063.
DOI |
[36] |
Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97, 97-107.
DOI URL |
[37] |
Torrecillas A, Galego R, Pérez-Pastor A, Ruiz-Sánchez MC (1999). Gas exchange and water relations of young apricot plants under drought conditions. The Journal of Agricultural Science, 132, 445-452.
DOI URL |
[38] |
Tyree MT, Davis SD, Cochard H (1994). Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA Journal, 15, 335-360.
DOI URL |
[39] | Wang X, Yang L, Zhao Q, Zhang QD (2020). Response of grassland community functional traits to soil water in a typical the Loess Plateau watershed. Acta Ecologica Sinica, 40, 2691-2697. |
[ 王鑫, 杨磊, 赵倩, 张钦弟 (2020). 黄土高原典型小流域草地群落功能性状对土壤水分的响应. 生态学报, 40, 2691-2697.] | |
[40] |
Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 44, 161-174.
DOI URL |
[41] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
PMID |
[42] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[43] |
Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628.
PMID |
[44] |
Wright IJ, Westoby M, Reich PB (2002). Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology, 90, 534-543.
DOI URL |
[45] |
Xiang S, Liu YL, Fang F, Wu N, Sun SC (2009a). Stem architectural effect on leaf size, leaf number, and leaf mass fraction in plant twigs of woody species. International Journal of Plant Sciences, 170, 999-1008.
DOI URL |
[46] |
Xiang S, Wu N, Sun SC (2009b). Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis. Trees, 23, 637-647.
DOI URL |
[47] |
Yagi T (2004). Within-tree variations in shoot differentiation patterns of 10 tall tree species in a Japanese cool-temperate forest. Canadian Journal of Botany, 82, 228-243.
DOI URL |
[48] |
Yan YM, Fan ZX, Fu PL, Chen H, Lin LX (2021). Size de- pendent associations between tree diameter growth rates and functional traits in an Asian tropical seasonal rainforest. Functional Plant Biology, 48, 231-240.
DOI URL |
[49] |
Yang DM, Niklas KJ, Xiang S, Sun SC (2010). Size-dependent leaf area ratio in plant twigs: implication for leaf size optimization. Annals of Botany, 105, 71-77.
DOI URL |
[50] |
Yang DM, Zhan F, Zhang HW (2012). Trade-off between leaf size and number in current-year twigs of deciduous broad- leaved woody species at different altitudes on Qingliang Mountain, southeastern China. Chinese Journal of Plant Ecology, 36, 281-291.
DOI URL |
[ 杨冬梅, 占峰, 张宏伟 (2012). 清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系. 植物生态学报, 36, 281-291.] | |
[51] |
Zhang GC, Xia JB, Shao HB, Zhang SY (2012). Grading woodland soil water productivity and soil bioavailability in the semi-arid Loess Plateau of China. Clean-Soil, Air, Water, 40, 148-153.
DOI URL |
[52] | Zhang J, Bao YL, Su L, Wang LP, Lu JW, Cao JJ (2019). Response of Phragmites australis leaf traits to soil moisture in Yangguan wetland, Dunhuang. Acta Ecologica Sinica, 39, 7670-7678. |
[ 张剑, 包雅兰, 宿力, 王利平, 陆静雯, 曹建军 (2019). 敦煌阳关湿地芦苇叶性状对土壤水分的响应. 生态学报, 39, 7670-7678.] | |
[53] |
Zhu GJ, Niklas KJ, Li M, Sun J, Lyu M, Chen XP, Wang MT, Zhong QL, Cheng DL (2019). “Diminishing returns” in the scaling between leaf area and twig size in three forest communities along an elevation gradient of Wuyi Mountain, China. Forests, 10, 1138. DOI: 10.3390/f10121138.
DOI URL |
[54] |
Zhu SD, Chen YJ, Fu PL, Cao KF (2017). Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability. Tree Physiology, 37, 1469-1477.
DOI URL |
[1] | WANG Yi-Feng,JIN Jie,HOU Hong-Hong,ZHAO Bo,CAO Jia-Hao,LI Xiao-Jiao. Changes in flowering resource allocation of Saussurea dzeurensis with elevations [J]. Chin J Plan Ecolo, 2015, 39(9): 901-908. |
[2] | SONG Qing-Hua,ZHAO Cheng-Zhang,SHI Yuan-Chun,DU Jing,WANG Ji-Wei,CHEN Jing. Trade-off between root forks and link length of Melica przewalskyi on different aspects of slopes [J]. Chin J Plan Ecolo, 2015, 39(6): 577-585. |
[3] | WANG Hai-Zhen, HAN Lu, XU Ya-Li, NIU Jian-Long. Photosynthetic responses of the heteromorphic leaves in Populus euphratica to light intensity and CO2concentration [J]. Chin J Plant Ecol, 2014, 38(10): 1099-1109. |
[4] | WANG Yi-Feng, LI Mei, LI Shi-Xiong, GUO Jie, CHEN Yu-Ping, WANG Rui-Xue. Variation of reproductive allocation along elevations in Saussurea stella on East Qinghai- Xizang Plateau [J]. Chin J Plant Ecol, 2012, 36(11): 1145-1153. |
[5] | YANG Xiao-Dong, LÜ Guang-Hui. Estimation of hydraulic redistribution ofPopulus euphratica in Ebinur Lake Wetland Nature Reserve in Xinjiang Uygur Autonomous Region, China [J]. Chin J Plant Ecol, 2011, 35(8): 816-824. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn