Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (10): 1099-1109.DOI: 10.3724/SP.J.1258.2014.00104
• Research Articles • Previous Articles Next Articles
WANG Hai-Zhen1,*(), HAN Lu1, XU Ya-Li1, NIU Jian-Long1
Received:
2014-05-30
Accepted:
2014-07-16
Online:
2014-05-30
Published:
2021-04-20
Contact:
WANG Hai-Zhen
WANG Hai-Zhen, HAN Lu, XU Ya-Li, NIU Jian-Long. Photosynthetic responses of the heteromorphic leaves in Populus euphratica to light intensity and CO2concentration[J]. Chin J Plant Ecol, 2014, 38(10): 1099-1109.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00104
Fig. 1 Photosynthetic light response curves in heteromorphic leaves of Populus euphratica at leaf temperature of 25 °C and CO2concentration of 370 μmol·mol-1. A, oval leaf. B, serrated broad-oval leaf. C, lanceolate leaf.
叶形 Leaf shape | 初始量子效率 Initial quantum efficiency (α) | 最大净光合速率 Maximum net photosynthetic rate (Pnmax, μmol·m-2·s-1) | 光饱和点 Light saturation point (LSP, μmol·m-2·s-1) | 光补偿点Light compensation point (LCP, μmol·m-2·s-1) | 暗呼吸速率 Dark respiration rate (Rd, μmol·m-2·s-1) | 决定系数Determination coefficient (R2) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
卵形叶 Oval leaf | 0.087 9 ± 0.008 3A | 17.47 ± 1.329 2A | 1 881.71 ± 70.13ab | 28.91 ± 2.573 2B | 2.31 ± 0.123 0b | 0.998 2 | |||||||
锯齿叶 Serrated broad-oval leaf | 0.083 6 ± 0.006 2A | 16.54 ± 1.132 5A | 2 066.15 ± 112.53a | 42.60 ± 3.838 0A | 3.08 ± 0.093 8a | 0.997 0 | |||||||
条形叶 Lanceolate leaf | 0.059 1 ± 0.004 1B | 12.56 ± 1.077 3B | 1 428.63 ± 66.15b | 25.42 ± 1.335 2B | 1.38 ± 0.120 5c | 0.996 2 |
Table 1 Estimates of parameters from photosynthetic light response curves in the heteromorphic leaves of Populus euphratica (modified rectangular hyperbolic model) (mean ± SE)
叶形 Leaf shape | 初始量子效率 Initial quantum efficiency (α) | 最大净光合速率 Maximum net photosynthetic rate (Pnmax, μmol·m-2·s-1) | 光饱和点 Light saturation point (LSP, μmol·m-2·s-1) | 光补偿点Light compensation point (LCP, μmol·m-2·s-1) | 暗呼吸速率 Dark respiration rate (Rd, μmol·m-2·s-1) | 决定系数Determination coefficient (R2) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
卵形叶 Oval leaf | 0.087 9 ± 0.008 3A | 17.47 ± 1.329 2A | 1 881.71 ± 70.13ab | 28.91 ± 2.573 2B | 2.31 ± 0.123 0b | 0.998 2 | |||||||
锯齿叶 Serrated broad-oval leaf | 0.083 6 ± 0.006 2A | 16.54 ± 1.132 5A | 2 066.15 ± 112.53a | 42.60 ± 3.838 0A | 3.08 ± 0.093 8a | 0.997 0 | |||||||
条形叶 Lanceolate leaf | 0.059 1 ± 0.004 1B | 12.56 ± 1.077 3B | 1 428.63 ± 66.15b | 25.42 ± 1.335 2B | 1.38 ± 0.120 5c | 0.996 2 |
Fig. 2 Intercellular CO2response cures of photosynthesis in the heteromorphic leaves of Populus euphratica. A, Oval leaf. B, Serrated broad-oval leaf. C, Lanceolate leaf.
叶形 Leaf shape | 初始羧化效率 Initial carboxylation efficiency (CE,mol·m-2·s-1) | 光合能力 Photosynthetic capacity (Amax, μmol·m-2·s-1) | 饱和胞间CO2浓度 Saturated intercellular CO2concentration (Cisat, μmol·mol-1) | CO2补偿点 CO2compensation point (Γ, μmol·mol-1) | 光呼吸速率 Photorespiration Rate (Rp, μmol·m-2·s-1) | 决定系数Determination coefficient (R2) |
---|---|---|---|---|---|---|
卵形叶 Oval leaf | 0.089 6 ± 0.007 2a | 46.07 ± 3.81A | 1 060.12 ± 106.09a | 62.38 ± 6.21a | 8.90 ± 0.785 4a | 0.992 6 |
锯齿叶 Serrated broad-oval leaf | 0.087 8 ± 0.005 7a | 39.01 ± 3.51B | 1 082.25 ± 117.06a | 77.67 ± 7.47a | 9.12 ± 0.762 7a | 0.996 8 |
条形叶 Lanceolate leaf | 0.076 5 ± 0.003 8a | 24.48 ± 2.21C | 1 051.86 ± 88.47a | 66.79 ± 5.26a | 6.65 ± 0.526 1a | 0.997 8 |
Table 2 Estimates of parameters from the intercellular CO2 response curves of photosynthesis in the heteromorphic leaves of Populus euphratica (modified rectangular hyperbolic model) (mean ± SE)
叶形 Leaf shape | 初始羧化效率 Initial carboxylation efficiency (CE,mol·m-2·s-1) | 光合能力 Photosynthetic capacity (Amax, μmol·m-2·s-1) | 饱和胞间CO2浓度 Saturated intercellular CO2concentration (Cisat, μmol·mol-1) | CO2补偿点 CO2compensation point (Γ, μmol·mol-1) | 光呼吸速率 Photorespiration Rate (Rp, μmol·m-2·s-1) | 决定系数Determination coefficient (R2) |
---|---|---|---|---|---|---|
卵形叶 Oval leaf | 0.089 6 ± 0.007 2a | 46.07 ± 3.81A | 1 060.12 ± 106.09a | 62.38 ± 6.21a | 8.90 ± 0.785 4a | 0.992 6 |
锯齿叶 Serrated broad-oval leaf | 0.087 8 ± 0.005 7a | 39.01 ± 3.51B | 1 082.25 ± 117.06a | 77.67 ± 7.47a | 9.12 ± 0.762 7a | 0.996 8 |
条形叶 Lanceolate leaf | 0.076 5 ± 0.003 8a | 24.48 ± 2.21C | 1 051.86 ± 88.47a | 66.79 ± 5.26a | 6.65 ± 0.526 1a | 0.997 8 |
叶形 Leaf shape | 最大羧化速率 Maximum carboxylation rate ( Vcmax, μmol·m-2·s-1) | 最大电子传递速率 Maximum electron transport rate (Jmax, μmol·m-2·s-1) | 磷酸丙糖利用率 Triose-phosphate utilization rate (TPU, μmol·m-2·s-1) | Jmax/Vcmax |
---|---|---|---|---|
卵形叶 Oval leaf | 93.72 ± 2.778 9a | 102.67 ± 5.248 6a | 15.08 ± 0.190 9a | 1.096 ± 0.034 3a |
锯齿叶 Serrated broad-oval leaf | 88.64 ± 2.234 5a | 94.37 ± 4.122 4a | 13.07 ± 0.185 7a | 1.064 ± 0.020 4a |
条形叶 Lanceolate leaf | 72.21 ± 1.457 8a | 73.36 ± 3.356 9b | 7.34 ± 0.131 4b | 1.016 ± 0.018 2a |
Table 3 Estimates of parameters from CO2 response curves of photosynthesis in the heteromorphic leaves of Populus euphratica (mean ± SE)
叶形 Leaf shape | 最大羧化速率 Maximum carboxylation rate ( Vcmax, μmol·m-2·s-1) | 最大电子传递速率 Maximum electron transport rate (Jmax, μmol·m-2·s-1) | 磷酸丙糖利用率 Triose-phosphate utilization rate (TPU, μmol·m-2·s-1) | Jmax/Vcmax |
---|---|---|---|---|
卵形叶 Oval leaf | 93.72 ± 2.778 9a | 102.67 ± 5.248 6a | 15.08 ± 0.190 9a | 1.096 ± 0.034 3a |
锯齿叶 Serrated broad-oval leaf | 88.64 ± 2.234 5a | 94.37 ± 4.122 4a | 13.07 ± 0.185 7a | 1.064 ± 0.020 4a |
条形叶 Lanceolate leaf | 72.21 ± 1.457 8a | 73.36 ± 3.356 9b | 7.34 ± 0.131 4b | 1.016 ± 0.018 2a |
Fig. 3 The chlorophyll fluorescence response curves in the heteromorphic leaves of Populus euphratica (ΦPSII-PAR). PAR, photosynthetically active radiation; ΦPSII, actual photochemical efficiency of photosystem II.
Fig. 4 Rapid light curves in the heteromorphic leaves of Populus euphratica (ETR-PAR) (modified rectangular hyperbolic model). A, Oval leaf. B, Serrated broad-oval leaf. C, Lanceolate leaf. ETR, electron transport rate; PAR, photosynthetically active radiation.
叶形 Leaf shape | 初始斜率 Initial slope (θ) | 最大电子传递速率 Maximum electron transport rate (ETRmax, μmol·m-2·s-1) | 饱和光强 Saturation light intensity (PARsat, μmol·m-2·s-1) | 决定系数 Determination coefficient (R2) |
---|---|---|---|---|
卵形叶 Oval leaf | 0.211 1 ± 0.016 5A | 131.20 ± 8.36A | 1 123.30 ± 18.43A | 0.978 4 |
锯形叶 Serrated broad-oval leaf | 0.184 6 ± 0.012 6A | 135.11 ± 10.89A | 1 129.99 ± 12.77A | 0.989 3 |
条形叶 Lanceolate leaf | 0.156 1 ± 0.011 5B | 120.53 ± 5.98B | 1 039.32 ± 13.02B | 0.992 7 |
Table 4 Estimates of parameters from rapid light curves in the heteromorphic leaves of Populus euphratica (ETR-PAR) (modified rectangular hyperbolic model) (mean ± SE)
叶形 Leaf shape | 初始斜率 Initial slope (θ) | 最大电子传递速率 Maximum electron transport rate (ETRmax, μmol·m-2·s-1) | 饱和光强 Saturation light intensity (PARsat, μmol·m-2·s-1) | 决定系数 Determination coefficient (R2) |
---|---|---|---|---|
卵形叶 Oval leaf | 0.211 1 ± 0.016 5A | 131.20 ± 8.36A | 1 123.30 ± 18.43A | 0.978 4 |
锯形叶 Serrated broad-oval leaf | 0.184 6 ± 0.012 6A | 135.11 ± 10.89A | 1 129.99 ± 12.77A | 0.989 3 |
条形叶 Lanceolate leaf | 0.156 1 ± 0.011 5B | 120.53 ± 5.98B | 1 039.32 ± 13.02B | 0.992 7 |
[1] |
Albert KR, Mikkelsen TN, Michelsen A, Ro-Poulsen H, van der Linden L (2011). Interactive effects of drought elevated CO2and warming on photosynthetic capacity and photo system performance in temperate heath plants. Journal of Plant Physiology, 168,1550-1561.
DOI URL PMID |
[2] | Bai X, Zhang SJ, Zheng CX, Hao JQ, Li WH, Yang Y (2011). Comparative study on photosynthesis and water physiology of polymorphic leaves of Populus euphratica. Journal of Beijing Forestry University, 33(6),47-52. (in Chinese with English abstract) |
[ 白雪, 张淑静, 郑彩霞, 郝建卿, 李文海, 杨扬 (2011). 胡杨多态叶光合和水分生理的比较. 北京林业大学学报, 33(6),47-52.] | |
[3] |
Brodribb T, Hill RS (1997). Light response characteristics of a morphologically diverse group of southern hemisphere conifers as measured by chlorophyll fluorescence. Oecologia, 110,10-17.
DOI URL PMID |
[4] |
Coste S, Roggy JC, Imbert P, Born C, Bonal D, Dreyer E (2005). Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance. Tree Physiology, 25,1127-1137.
URL PMID |
[5] | Demmig-Adams B, Adama III WW (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 43,599-626. |
[6] | Deng X, Li XM, Zhang XM, Ye WH, Foezki A, Runge M (2003). The studies about the photosynthetic response of the four desert plants. Acta Ecologica Sinica, 23,598-605. |
[7] |
Farquhar GD, von Caemmerer S, Berry JA (1982). A biochemical model of photosynthetic CO2assimilation in leaves of C3species. Planta, 149,78-90.
DOI URL PMID |
[8] |
Forcel L, Critchley C, van Rensen JS (2003). New fluorescence parameters for monitoring photosynthesis in plants. Photosynthesis Research, 78,17-33.
DOI URL PMID |
[9] | Guo LW, Shen YG (1996). Protective mechanisms against photo damage in photosynthetic apparatus of higher plants. Plant Physiology Communications, 32,1-8. (in Chinese with English abstract) |
[ 郭连旺, 沈允钢 (1996). 高等植物光合机构避免强光破坏的保护机制. 植物生理学通讯, 32,1-8.] | |
[10] | Huang HY, Dou XY, Sun BY, Deng B, Wu GJ, Peng CL (2009). Comparison of photosynthetic characteristics in two ecotypes of Jatropha curcas in summer. Acta Ecologica Sinica, 29,2861-2867. (in Chinese with English abstract) |
[ 黄红英, 窦新永, 孙蓓育, 邓斌, 吴国江, 彭长连 (2009). 两种不同生态型麻疯树夏季光合特性的比较. 生态学报, 29,2861-2867.] | |
[11] | Krause GH (1998). Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiologia Plantarum, 74,566-574. |
[12] | Lombardini L, Restrepo-Diaz H, Volder A (2009). Photosynthetic light response and epidermal characteristics of sun and shade pecan leaves. Journal of the American Society for Horticultural Science, 134,372-378. |
[13] | Lu S, Zhang YQ, Wu B, Qin SG, Shen YB (2014). Measurement and simulation of photosynthesis-light response process in Artemisia ordosica under water stress. Journal of Beijing Forestry University, 36(1),55-61. (in Chinese with English abstract) |
[ 鲁肃, 张宇清, 吴斌, 秦树高, 沈应柏 (2014). 水分胁迫下油蒿光合光响应过程及其模拟. 北京林业大学学报, 36(1),55-61.] | |
[14] |
Ma HC, Fung L, Wang SS, Altman A, Hüttermann A (1997). Photosynthetic response of Populus euphratica to salt stress. Forest Ecology and Management, 93,55-61.
DOI URL |
[15] |
Maxwell K, Johnson GN (2000). Chlorophyll fluorescence―a practical guide. Journal of Experimental Botany, 51,659-668.
DOI URL PMID |
[16] | Schreiber U, Gademann R, Ralph PJ (1997). Assessment of photosynthetic performance of prochloron in Lissoclinum patella in Hospite by chlorophyll fluorescence measurements. Plant and Cell Physiology, 38,945-951. |
[17] | Sofo A, Dichio B, Montanaro G, Xiliyannis C (2009). Photosynthetic performance and light response of two olive cultivars under different water and light regimes. Photosynthetica, 47,602-608. |
[18] | Su PX, Zhang LX, Du MW, Bi YR, Zhao AF, Liu XM (2003). Photosynthetic character and water use efficiency of different leaf shapes of Populus euphratica and their response to CO2enrichment. Acta Phytoecologica Sinica, 27,34-40. (in Chinese with English abstract) |
[ 苏培玺, 张立新, 杜明武, 毕玉蓉, 赵爱芬, 刘新民 (2003). 胡杨不同叶形光合特性、水分利用效率及其对加富CO2的响应. 植物生态学报, 27,34-40.] | |
[19] | Sun CX, Qi H, Hao JJ, Miao L, Wang J, Wang Y, Liu M, Chen LJ (2009). Single leaves photosynthetic characteristics of two insect-resistant transgenic cotton (Gossypium hirsutum L.) varieties in response to light. Photosynthctica, 47,399-408. |
[20] | Tartachnyk II, Blanke MM (2004). Effect of delayed fruit har- vest on photosynthesis, transpiration and nutrient remobilization of apple leaves. New Phytologist, 164,441-450. |
[21] |
Tyree MC, Seiler JR, Maier CA, Johnsen KH (2009). Pinus taeda clones and soil nutrient availability: effects of soil organic matter incorporation and fertilization on biomass partitioning and leaf physiology. Tree Physiology, 29,1117-1131.
DOI URL PMID |
[22] | Wang HL, Yang SD, Zhang CL (1997). The photosynthetic characteristics of differently shaped leaves in Populus euphratica Olivier. Photosynthetica, 34,545-553. |
[23] | Wang HZ, Han L, Xu YL, Wang L, Jia WS (2011). Response of chlorophyll fluorescence characteristics of Populus euphratica heteromorphic leaves to high temperature. Acta Ecologica Sinica, 31,2444-2453. (in Chinese with English abstract) |
[ 王海珍, 韩路, 徐雅丽, 王琳, 贾文锁 (2011). 胡杨异形叶叶绿素荧光特性对高温的响应. 生态学报, 31,2444-2453.] | |
[24] | Wang RR, Xia JB, Yang JH, Zhao YY, Liu JT, Sun JK (2013). Comparison of light response models of photosynthesis in leaves of Periploca sepium under drought stress in sand habitat formed from seashells. Chinese Journal of Plant Ecology, 37,111-121. (in Chinese with English abstract) |
[ 王荣荣, 夏江宝, 杨吉华, 赵艳云, 刘京涛, 孙景宽 (2013). 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较. 植物生态学报, 37,111-121.] | |
[25] | Wullschleger SD (1993). Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 species. Journal of Experimental Botany, 44,907-920. |
[26] | Xia JB, Zhang SY, Zhang GC, Xie WJ, Lu ZH (2011). Critical responses of photosynthetic efficiency in Campsis radicans (L.) Seem to soil water and light intensities. African Journal of Biotechnology, 10,17748-17754. |
[27] | Ye ZP (2010). A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 34,727-740. (in Chinese with English abstract) |
[ 叶子飘 (2010). 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 34,727-740.] | |
[28] | Ye ZP, Yu Q, Kang HJ (2012). Evaluation of photosynthetic electron flow using simultaneous measurements of gas exchange and chlorophyll fluorescence under photorespi-ratory conditions. Photosynthetica, 50,472-476. |
[29] | Zhang GC, Xia JB, Shao HB, Zhang SY (2012). Grading woodland soil water productivity and soil bioavailability in the semi-arid Loess Plateau of China. Clean-Soil, Air, Water, 40,148-153. |
[30] | Zhang YM, Zhou GS (2012). Advances in leaf maximum carboxylation rate and its response to environmental factors. Acta Ecologica Sinica, 32,5907-5917. (in Chinese with English abstract) |
[ 张彦敏, 周广胜 (2012). 植物叶片最大羧化速率及其对环境因子响应的研究进展. 生态学报, 32,5907-5917.] |
[1] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[2] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[3] | LIU Hai-Yan, ZANG Sha-Sha, ZHANG Chun-Xia, ZUO Jin-Cheng, RUAN Zuo-Xi, WU Hong-Yan. Photochemical reaction of photosystem II in diatoms under phosphorus starvation and its response to high light intensity [J]. Chin J Plant Ecol, 2023, 47(12): 1718-1727. |
[4] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[5] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[6] | JIN Chuan, LI Xin-Hao, JIANG Yan, XU Ming-Ze, TIAN Yun, LIU Peng, JIA Xin, ZHA Tian- Shan. Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2021, 45(8): 870-879. |
[7] | WU Hong-Min, SHUANG Sheng-Pu, ZHANG Jin-Yan, CUN Zhu, MENG Zhen-Gui, LI Long-Gen, SHA Ben-Cai, CHEN Jun-Wen. Photodamage to photosystem in a typically shade-tolerant species Panax notoginseng exposed to a sudden increase in light intensity [J]. Chin J Plant Ecol, 2021, 45(4): 404-419. |
[8] | YE Zi-Piao, YU Feng, AN Ting, WANG Fu-Biao, KANG Hua-Jing. Investigation on CO2-response model of stomatal conductance for plants [J]. Chin J Plant Ecol, 2021, 45(4): 420-428. |
[9] | LI Hao, MA Ru-Yu, QIANG Bo, HE Cong, HAN Lu, WANG Hai-Zhen. Effect of current-year twig stem configuration on the leaf display efficiency of Populus euphratica [J]. Chin J Plant Ecol, 2021, 45(11): 1251-1262. |
[10] | LI Jing, WANG Xin, WANG Zhen-Hua, WANG Bin, WANG Cheng-Zhang, DENG Mei-Feng, LIU Ling-Li. Effects of ozone and aerosol pollution on photosynthesis of poplar leaves [J]. Chin J Plant Ecol, 2020, 44(8): 854-863. |
[11] | LI Xu, WU Ting, CHENG Yan, TAN Na-Dan, JIANG Fen, LIU Shi-Zhong, CHU Guo-Wei, MENG Ze, LIU Ju-Xiu. Ecophysiological adaptability of four tree species in the southern subtropical evergreen broad-leaved forest to warming [J]. Chin J Plant Ecol, 2020, 44(12): 1203-1214. |
[12] | LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207. |
[13] | LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898. |
[14] | CHENG Han-Ting, LI Qin-Fen, LIU Jing-Kun, YAN Ting-Liang, ZHANG Qiao-Yan, WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plant Ecol, 2018, 42(5): 585-594. |
[15] | ZHANG Na, ZHU Yang-Chun, LI Zhi-Qiang, LU Xin, FAN Ru-Qin, LIU Li-ZhuTONG , Fei, CHEN Jing, MU Chun-Sheng, ZHANG Zhen-Hua. Effect of Pb pollution on the growth, biomass allocation and photosynthesis of Phragmites australis in flood and drought environment [J]. Chin J Plant Ecol, 2018, 42(2): 229-239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn