Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (5): 585-594.DOI: 10.17521/cjpe.2018.0016
• Research Articles • Previous Articles Next Articles
CHENG Han-Ting,LI Qin-Fen,LIU Jing-Kun,YAN Ting-Liang,ZHANG Qiao-Yan,WANG Jin-Chuang()
Received:
2018-01-12
Revised:
2018-04-08
Online:
2018-05-20
Published:
2018-07-20
Contact:
Jin-Chuang WANG
CHENG Han-Ting, LI Qin-Fen, LIU Jing-Kun, YAN Ting-Liang, ZHANG Qiao-Yan, WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis[J]. Chin J Plant Ecol, 2018, 42(5): 585-594.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0016
Fig. 1 Seasonal changes of air temperature (Ta), photosynthetic active radiation (PAR), precipitation and soil water content (SWC) under the Hevea brasiliensis forest.
Fig. 2 Daily variations of photosynthetic active radiation (PAR), air temperature (Ta), air humidity (RH) under the Hevea brasiliensis forest (mean ± SD).
Fig. 3 Diurnal changes of photosynthetic characteristics of Alpinia oxyphylla in different months (mean ± SD). Ci, intercellular CO2 concentration; Gs, stomatal conductance; Ls, stomatal limitation; Pn, the net photosynthetic rate; Tr, transpiration rate; WUE, water use efficiency.
叶绿素a Chl a (mg·cm-2) | 叶绿素b Chl b (mg·cm-2) | 类胡萝卜素 Car (mg·cm-2) | 总叶绿素 Chl (mg·cm-2) | 叶绿素a/b Chl a/b | 比叶质量 LMA (g·m-2) | 叶片含水量 Leaf water content (%) | |
---|---|---|---|---|---|---|---|
3月 Mar. | 2.60a | 1.64a | 3.15a | 7.39a | 1.59a | 51.26a | 65.17c |
6月 June | 2.60a | 1.28b | 2.67c | 6.55b | 2.02b | 43.06c | 74.31a |
9月 Sept. | 2.62a | 1.33b | 2.60c | 6.55b | 1.97b | 48.82ab | 75.95a |
12月 Dec. | 2.52a | 1.31b | 2.76b | 6.48b | 1.93b | 45.25bc | 68.64b |
Table 1 The photosynthetic pigment content, leaf mass per area (LMA) and leaf water content of Alpinia oxyphylla
叶绿素a Chl a (mg·cm-2) | 叶绿素b Chl b (mg·cm-2) | 类胡萝卜素 Car (mg·cm-2) | 总叶绿素 Chl (mg·cm-2) | 叶绿素a/b Chl a/b | 比叶质量 LMA (g·m-2) | 叶片含水量 Leaf water content (%) | |
---|---|---|---|---|---|---|---|
3月 Mar. | 2.60a | 1.64a | 3.15a | 7.39a | 1.59a | 51.26a | 65.17c |
6月 June | 2.60a | 1.28b | 2.67c | 6.55b | 2.02b | 43.06c | 74.31a |
9月 Sept. | 2.62a | 1.33b | 2.60c | 6.55b | 1.97b | 48.82ab | 75.95a |
12月 Dec. | 2.52a | 1.31b | 2.76b | 6.48b | 1.93b | 45.25bc | 68.64b |
月份 Month | 表观量子效率 AQE | 光补偿点 Ic (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·mol-1) | 最大净光合速率 Pnmax (μmol·m-2·s-1) | 光饱和点 Is (μmol·m-2·s-1) |
---|---|---|---|---|---|
3月 Mar. | 0.068c | 16.144a | 0.865a | 3.213d | 522.968b |
6月 June | 0.100a | 5.813b | 0.550b | 8.006c | 1010.264a |
9月 Sept. | 0.095a | 3.514c | 0.324c | 10.648a | 1021.726a |
12月 Dec. | 0.086b | 3.906c | 0.326c | 8.783b | 964.900a |
Table 2 Parameters of light response curves of Alpinia oxyphylla in different months
月份 Month | 表观量子效率 AQE | 光补偿点 Ic (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·mol-1) | 最大净光合速率 Pnmax (μmol·m-2·s-1) | 光饱和点 Is (μmol·m-2·s-1) |
---|---|---|---|---|---|
3月 Mar. | 0.068c | 16.144a | 0.865a | 3.213d | 522.968b |
6月 June | 0.100a | 5.813b | 0.550b | 8.006c | 1010.264a |
9月 Sept. | 0.095a | 3.514c | 0.324c | 10.648a | 1021.726a |
12月 Dec. | 0.086b | 3.906c | 0.326c | 8.783b | 964.900a |
月份 Month | 生理生态因子 Physio-ecological factors | Pn | Ca | PAR | Ta | RH | Gs | Ci |
---|---|---|---|---|---|---|---|---|
3月 Mar. | Pn | 1.000 | ||||||
Ca | 0.883* | 1.000 | ||||||
PAR | -0.678 | -0.664 | 1.000 | |||||
Ta | -0.947** | -0.889* | 0.735 | 1.000 | ||||
RH | 0.985** | 0.847* | -0.669 | -0.902* | 1.000 | |||
Gs | 0.891* | 0.946** | -0.539 | -0.852* | 0.898* | 1.000 | ||
Ci | -0.464 | -0.234 | 0.554 | 0.488 | -0.372 | -0.044 | 1.000 | |
6月 June | Pn | 1.000 | ||||||
Ca | 0.692 | 1.000 | ||||||
PAR | -0.349 | -0.868* | 1.000 | |||||
Ta | -0.265 | -0.793 | 0.937** | 1.000 | ||||
RH | 0.449 | 0.909* | -0.904* | -0.950** | 1.000 | |||
Gs | 0.921** | 0.507 | -0.108 | -0.099 | 0.279 | 1.000 | ||
Ci | 0.283 | 0.576 | -0.494 | -0.702 | 0.729 | 0.403 | 1.000 | |
9月 Sept. | Pn | 1.000 | ||||||
Ca | -0.416 | 1.000 | ||||||
PAR | 0.908* | -0.472 | 1.000 | |||||
Ta | 0.821* | -0.665 | 0.733 | 1.000 | ||||
RH | -0.716 | 0.837* | -0.678 | -0.960** | 1.000 | |||
Gs | 0.940** | -0.310 | 0.941** | 0.665 | -0.549 | 1.000 | ||
Ci | -0.009 | -0.037 | -0.055 | -0.067 | 0.112 | 0.174 | 1.000 | |
12月 Dec. | Pn | 1.000 | ||||||
Ca | -0.536 | 1.000 | ||||||
PAR | 0.969** | -0.470 | 1.000 | |||||
Ta | 0.579 | -0.878* | 0.507 | 1.000 | ||||
RH | -0.561 | 0.928** | -0.483 | -0.989** | 1.000 | |||
Gs | 0.908* | -0.737 | 0.902* | 0.706 | -0.693 | 1.000 | ||
Ci | -0.232 | 0.350 | -0.133 | -0.389 | 0.459 | -0.022 | 1.000 |
Table 3 The correlation analysis between net photosynthetic rate (Pn) of Alpinia oxyphylla and the main environmental factors in different months
月份 Month | 生理生态因子 Physio-ecological factors | Pn | Ca | PAR | Ta | RH | Gs | Ci |
---|---|---|---|---|---|---|---|---|
3月 Mar. | Pn | 1.000 | ||||||
Ca | 0.883* | 1.000 | ||||||
PAR | -0.678 | -0.664 | 1.000 | |||||
Ta | -0.947** | -0.889* | 0.735 | 1.000 | ||||
RH | 0.985** | 0.847* | -0.669 | -0.902* | 1.000 | |||
Gs | 0.891* | 0.946** | -0.539 | -0.852* | 0.898* | 1.000 | ||
Ci | -0.464 | -0.234 | 0.554 | 0.488 | -0.372 | -0.044 | 1.000 | |
6月 June | Pn | 1.000 | ||||||
Ca | 0.692 | 1.000 | ||||||
PAR | -0.349 | -0.868* | 1.000 | |||||
Ta | -0.265 | -0.793 | 0.937** | 1.000 | ||||
RH | 0.449 | 0.909* | -0.904* | -0.950** | 1.000 | |||
Gs | 0.921** | 0.507 | -0.108 | -0.099 | 0.279 | 1.000 | ||
Ci | 0.283 | 0.576 | -0.494 | -0.702 | 0.729 | 0.403 | 1.000 | |
9月 Sept. | Pn | 1.000 | ||||||
Ca | -0.416 | 1.000 | ||||||
PAR | 0.908* | -0.472 | 1.000 | |||||
Ta | 0.821* | -0.665 | 0.733 | 1.000 | ||||
RH | -0.716 | 0.837* | -0.678 | -0.960** | 1.000 | |||
Gs | 0.940** | -0.310 | 0.941** | 0.665 | -0.549 | 1.000 | ||
Ci | -0.009 | -0.037 | -0.055 | -0.067 | 0.112 | 0.174 | 1.000 | |
12月 Dec. | Pn | 1.000 | ||||||
Ca | -0.536 | 1.000 | ||||||
PAR | 0.969** | -0.470 | 1.000 | |||||
Ta | 0.579 | -0.878* | 0.507 | 1.000 | ||||
RH | -0.561 | 0.928** | -0.483 | -0.989** | 1.000 | |||
Gs | 0.908* | -0.737 | 0.902* | 0.706 | -0.693 | 1.000 | ||
Ci | -0.232 | 0.350 | -0.133 | -0.389 | 0.459 | -0.022 | 1.000 |
[1] |
Araus JL, Serret MD ( 1986). Relationships between photosynthetic capacity and leaf structure in several shade plants. American Journal of Botany, 73, 1760-1770.
DOI URL |
[2] |
Chen XM, Chen HL, Li WG, Liu SJ ( 2016). Remote sensing monitoring of spring phenophase of natural rubber forest in Hainan Province. Chinese Journal of Agrometeorology, 37, 111-116.
DOI URL |
[ 陈小敏, 陈汇林, 李伟光, 刘少军 ( 2016). 海南岛天然橡胶林春季物候期的遥感监测. 中国农业气象, 37, 111-116.]
DOI URL |
|
[3] | Cheng HT, Liu JK, Yan TL, Zhang QY, Wang JC ( 2017). Effects of different picking on seed quality of medicinal plants Alpinia oxyphylla Miq. Chinese Journal of Tropical Crops, 38, 1840-1845. |
[ 程汉亭, 刘景坤, 严廷良, 张俏燕, 王进闯 ( 2017). 不同采收期对药用植物——益智种子质量的影响研究. 热带作物学报, 38, 1840-1845.] | |
[4] | Cheng HT, Wang JC, Hou XW, Li QF, Zou YK, Li GY, Wang DM ( 2015). Development status of the private rubber industry in Changjiang under a situation of rubber price downturn. Chinese Journal of Tropical Agriculture, 35(5), 78-81. |
[ 程汉亭, 王进闯, 侯宪文, 李勤奋, 邹雨坤, 李光义, 王定美 ( 2015). 胶价低迷背景下昌江县民营橡胶产业的发展现状和对策. 热带农业科学, 35(5), 78-81.] | |
[5] |
Crafts-Brandner SJ, Salvucci ME ( 2000). Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the National Academy of Sciences of the United States of America, 97, 13430-13435.
DOI URL PMID |
[6] |
Dossa EL, Fernandes ECM, Reid WS, Ezui K ( 2008). Above- and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agroforestry Systems, 72, 103-115.
DOI URL |
[7] |
Lewis JD, Lucash M, Olszyk D, Tingey DT ( 2002). Seasonal patterns of photosynthesis in Douglas fir seedlings during the third and fourth year of exposure to elevated CO2 and temperature. Plant, Cell & Environment, 25, 1411-1421.
DOI URL |
[8] |
Lewis JD, Olszyk D, Tingey DT ( 1999). Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO2 and temperature. Tree Physiology, 19, 243-252.
DOI URL PMID |
[9] |
Lichtenthaler HK, Wellburn AR ( 1983). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591-592.
DOI URL |
[10] |
Lin M, Wang Z, He L, Xu K, Cheng D, Wang G ( 2015). Plant photosynthesis-irradiance curve responses to pollution show non-competitive inhibited Michaelis kinetics. PLOS ONE, 10, e142712. DOI: 10.1371/journal.pone.0142712.
DOI URL PMID |
[11] |
Mcneely JA, Schroth G ( 2006). Agroforestry and biodiversity conservation-traditional practices, present dynamics, and lessons for the future. Biodiversity & Conservation, 15, 549-554.
DOI URL |
[12] |
Muthuri CW, Ong CK, Craigon J, Mati BM, Ngumi VW, Black CR ( 2009). Gas exchange and water use efficiency of trees and maize in agroforestry systems in semi-arid Kenya. Agriculture Ecosystems & Environment, 129, 497-507.
DOI URL |
[13] |
Nair VD, Graetz DA ( 2004). Agroforestry as an approach to minimizing nutrient loss from heavily fertilized soils: The Florida experience. Agroforestry Systems, 61, 269-279.
DOI URL |
[14] |
Ogren E ( 1993). Convexity of the photosynthetic light-response curve in relation to intensity and direction of light during growth. Plant Physiology, 101, 1013-1019.
DOI URL PMID |
[15] |
Ogwuche P, Umar HY, Esekhade TU, Francis SY ( 2012). Economies of intercropping natural rubber with arable crops: A panacea for poverty alleviation of rubber farmers. Journal of Agriculture & Social Sciences, 8(3), 100-102.
DOI URL |
[16] | Pang JP, Chen MY, Tang JW, Guo XM, Zeng R ( 2009). The dynamics of plant growth and soil moisture and nutrient in the rubber plantation and rubber- Flemingia macrophylla agroforestry. Journal of Mountain Science, 27, 433-441. |
[ 庞家平, 陈明勇, 唐建维, 郭贤明, 曾荣 ( 2009). 橡胶-大叶千斤拔复合生态系统中的植物生长与土壤水分养分动态. 山地学报, 27, 433-441.] | |
[17] | Qi DL, Sun R, Xie GS, Yang C, Chen BQ, Lan GY, Tao ZL, Yang XB, Wu ZX ( 2017). A preliminary study on seasonal changes of soil moisture in rubber plantation of low tapping years and its responses to meteorological factors in Western Hainan Island, China. Ecological Science, 36(6), 44-48. |
[ 祁栋灵, 孙瑞, 谢贵水, 杨川, 陈帮乾, 兰国玉, 陶忠良, 杨小波, 吴志祥 ( 2017). 海南西部低割龄橡胶林土壤水分季节变化特征及其对气象因子响应研究初报. 生态科学, 36(6), 44-48.] | |
[18] |
Richardson AD, Duigan SP, Berlyn GP ( 2002). An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 153, 185-194.
DOI URL |
[19] |
Righi CA, Bernardes MS, Lunz AMP, Pereira CR, Neto DD, Favarin JL ( 2007). Measurement and simulation of solar radiation availability in relation to the growth of coffee plants in an agroforestry system with rubber trees. Revista Árvore, 31, 195-207.
DOI URL |
[20] |
Righi CA, Lunz AMP, Bernardes MS, Pereira CR, Teramoto ER, Favarin JL ( 2008). Coffee water use in agroforestry system with rubber trees. Revista Árvore, 32, 781-792.
DOI URL |
[21] |
Satoh S, Ikeuchi M, Mimuro M, Tanaka A ( 2001). Chlorophyll b expressed in cyanobacteria functions as a light-harvesting antenna in photosystem I through flexibility of the proteins. Journal of Biological Chemistry, 276, 4293-4297.
DOI URL PMID |
[22] |
Shen SG, Zheng Z ( 2008). Photosynthesis characteristics and impact factors of Camellia sinensis leaves in rubber-tea community in Xishuangbanna, China.Chinese Journal of Applied and Environmental Biology, 14, 32-37.
DOI URL |
[ 沈守艮, 郑征 ( 2008). 西双版纳胶-茶群落中茶树的光合特性及其影响因子. 应用与环境生物学报, 14, 32-37.]
DOI URL |
|
[23] | Tuittila ES, Vasander H, Laine J ( 2004). Sensitivity of C sequestration in reintroduced Sphagnum to water-level variation in a cutaway peatland. Restoration Ecology, 12, 483-493. |
[24] | Wang JH, Ren SF, Shi BS, Liu BX, Zhou YL ( 2011). Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Forsythia suspensa. Acta Ecologica Sinica, 31, 1811-1817. |
[ 王建华, 任士福, 史宝胜, 刘炳响, 周玉丽 ( 2011). 遮荫对连翘光合特性和叶绿素荧光参数的影响. 生态学报, 31, 1811-1817.] | |
[25] |
Wright IJ, Westoby M, Reich PB ( 2002). Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology, 90, 534-543.
DOI URL |
[26] |
Wu ZX, Du LY, Xie GS, Lan GY, Chen BQ, Zhou ZD ( 2013). Spatiotemporal distribution of photosynthetically active radiation in rubber plantations in Hainan Island. Journal of Northwest Forestry University, 28(3), 13-21.
DOI URL |
[ 吴志祥, 杜莲英, 谢贵水, 兰国玉, 陈帮乾, 周兆德 ( 2013). 海南岛橡胶林光合有效辐射的时空分布. 西北林学院学报, 28(3), 13-21.]
DOI URL |
|
[27] |
Xia JB, Zhang SY, Zhang GC, Xie WJ, Lu ZH ( 2011). Critical responses of photosynthetic efficiency in Campsis radicans( L.) Seem to soil water and light intensities. African Journal of Biotechnology, 10, 17748-17754.
DOI URL |
[28] | Xu DQ ( 1997). Some problems in stomatal limitation analysis of photosynthesis. Plant Physiology Communications, 33, 241-244. |
[ 许大全 ( 1997). 光合作用气孔限制分析中的一些问题. 植物生理学通讯, 33, 241-244.] | |
[29] |
Xu F, Guo WH, Xu WH, Wang RQ ( 2010). Effects of light intensity on growth and photosynthesis of seedlings of Quercus acutissima and Robinia pseudoacacia. Acta Ecologica Sinica, 30, 3098-3107.
DOI URL |
[ 徐飞, 郭卫华, 徐伟红, 王仁卿 ( 2010). 不同光环境对麻栎和刺槐幼苗生长和光合特征的影响. 生态学报, 30, 3098-3107.]
DOI URL |
|
[30] |
Ye ZP ( 2007). A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45, 637-640.
DOI URL |
[31] | Zhang B, Zhang TL ( 1997). Hydraulic ecological characteristics of alley cropping systems and its productivity in low hilly red soil region. Chinese Journal of Ecology, 16(4), 1-5. |
[ 张斌, 张桃林 ( 1997). 低丘红壤区农林间作系统的水分生态特征及生产力. 生态学杂志, 16(4), 1-5.] | |
[32] | Zheng YX, Zang JY, Lin Y ( 1995). The photosynthetic stomatal and nonstomatal limitation of plant leaves under water stress. Plant Physiology Communications, 31, 293-297. |
[ 郑义新, 藏俊英, 林艳 ( 1995). 水分胁迫下植物叶片光合的气孔和非气孔限制. 植物生理学通讯, 31, 293-297.] | |
[33] | Zhu YS, Fan JJ, Feng H ( 2010). Effects of low light on photosynthetic characteristics of tomato at different growth stages. Chinese Journal of Applied Ecology, 21, 3141-3146. |
[ 朱延姝, 樊金娟, 冯辉 ( 2010). 弱光胁迫对不同生育期番茄光合特性的影响. 应用生态学报, 21, 3141-3146.] | |
[34] | Zuo DY, Kuang SB, Zhang GH, Long GQ, Meng ZG, Chen ZJ, Wei FG, Yang SC, Chen JW ( 2014). Eco-physiological adaptation of Panax notoginseng to different light intensity. Journal of Yunnan Agricultural University, 29, 521-527. |
[ 左端阳, 匡双便, 张广辉, 龙光强, 孟珍贵, 陈中坚, 魏富刚, 杨生超, 陈军文 ( 2014). 三七(Panax notoginseng)对不同光照强度的生理生态适应性研究. 云南农业大学学报(自然科学), 29, 521-527.] |
[1] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[2] | FAN Hong-Kun, ZENG Tao, JIN Guang-Ze, LIU Zhi-Li. Leaf trait variation and trade-offs among growth types of broadleaf plants in Xiao Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 364-376. |
[3] | LI An-Yan, HUANG Xian-Fei, TIAN Yuan-Bin, DONG Ji-Xing, ZHENG Fei-Fei, XIA Pin-Hua. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China [J]. Chin J Plant Ecol, 2023, 47(8): 1171-1181. |
[4] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[5] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[6] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
[7] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[8] | LI Bian-Bian, ZHANG Feng-Hua, ZHAO Ya-Guang, SUN Bing-Nan. Effects of different clipping degrees on non-structural carbohydrate metabolism and biomass of Cyperus esculentus [J]. Chin J Plant Ecol, 2023, 47(1): 101-113. |
[9] | ZHENG Ning, LI Su-Ying, WANG Xin-Ting, LÜ Shi-Hai, ZHAO Peng-Cheng, ZANG Chen, XU Yu-Long, HE Jing, QIN Wen-Hao, GAO Heng-Rui. Dominance of different plant life forms in the typical steppe evidenced from impacts of environmental factors on chlorophyll [J]. Chin J Plant Ecol, 2022, 46(8): 951-960. |
[10] | PENG Xin, JIN Guang-Ze. Effects of plant characteristics and environmental factors on the dark diversity in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 656-666. |
[11] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[12] | HUANG Jie, LI Xiao-Ling, WANG Xue-Song, YANG Jin, HUANG Cheng-Ming. Characteristics of Distylium chinense communities and their relationships with soil environmental factors in different water level fluctuation zones of the Three Gorges Reservoir, China [J]. Chin J Plant Ecol, 2021, 45(8): 844-859. |
[13] | LUO Ming-Mo, CHEN Yue, YANG Gang, HU Bin, LI Wei, CHEN Huai. Short-term response of soil prokaryotic community structure to water level restoration in degraded peatland of the Zoigê Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 552-561. |
[14] | WANG Zi-Wei, WAN Song-Ze, JIANG Hong-Mao, HU Yang, MA Shu-Qin, CHEN You-Chao, LU Xu-Yang. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 528-538. |
[15] | ZHAO Wen-Qin, XI Ben-Ye, LIU Jin-Qiang, LIU Yang, ZOU Song-Yan, SONG Wu-Ye, CHEN Li-Xin. Transpiration process and environmental response of poplar plantation under different irrigation conditions [J]. Chin J Plant Ecol, 2021, 45(4): 370-382. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn