Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (6): 656-666.DOI: 10.17521/cjpe.2022.0041
Special Issue: 生物多样性
• Research Articles • Previous Articles Next Articles
PENG Xin1, JIN Guang-Ze1,2,*()
Received:
2022-01-25
Accepted:
2022-04-21
Online:
2022-06-20
Published:
2022-04-27
Contact:
JIN Guang-Ze
Supported by:
PENG Xin, JIN Guang-Ze. Effects of plant characteristics and environmental factors on the dark diversity in a broadleaved Korean pine forest[J]. Chin J Plant Ecol, 2022, 46(6): 656-666.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0041
[1] |
Addo-Fordjour P, Rahmad ZB (2015). Environmental factors associated with liana community assemblages in a tropical forest reserve, Ghana. Journal of Tropical Ecology, 31, 69-79.
DOI URL |
[2] | Anselin L (1988). Spatial Econometrics: Methods and Models. Kluwer Academic Publisher, Dordrecht, the Netherlands. |
[3] | Beals EW (1984). Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Advances in Ecological Research, 14, 1-55. |
[4] |
Belinchón R, Hemrová L, Münzbergová Z (2020). Functional traits determine why species belong to the dark diversity in a dry grassland fragmented landscape. Oikos, 129, 1468-1480.
DOI URL |
[5] |
Botta-Dukát Z (2012). Co-occurrence-based measure of species' habitat specialization: robust, unbiased estimation in saturated communities. Journal of Vegetation Science, 23, 201-207.
DOI URL |
[6] |
Boussarie G, Bakker J, Wangensteen OS, Mariani S, Bonnin L, Juhel JB, Kiszka JJ, Kulbicki M, Manel S, Robbins WD, Vigliola L, Mouillot D (2018). Environmental DNA illuminates the dark diversity of sharks. Science Advances, 4, eaap9661. DOI: 10.1126/sciadv.aap9661.
DOI URL |
[7] |
Brown JH (1984). On the relationship between abundance and distribution of species. The American Naturalist, 124, 255-279.
DOI URL |
[8] | Burrough PA, McDonnell RA (1998). Principle of Geographic Information Systems. Oxford University Press, New York. |
[9] | Carmona CP, Pärtel M (2020). DarkDiv: Estimating dark diversity and site-specific species pools. [2021-10-18]. https://CRAN.R-project.org/package=DarkDiv. |
[10] |
Curtis JT, McIntosh RP (1951). An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology, 32, 476-496.
DOI URL |
[11] |
Dixon P (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14, 927-930.
DOI URL |
[12] |
Fløjgaard C, Valdez JW, Dalby L, Moeslund JE, Clausen KK, Ejrnæs R, Pärtel M, Brunbjerg AK (2020). Dark diversity reveals importance of biotic resources and competition for plant diversity across habitats. Ecology and Evolution, 10, 6078-6088.
DOI PMID |
[13] |
Jucker T, Bongalov B, Burslem DFRP, Nilus R, Dalponte M, Lewis SL, Phillips OL, Qie L, Coomes DA (2018). Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21, 989-1000.
DOI URL |
[14] |
Käber Y, Meyer P, Stillhard J, de Lombaerde E, Zell J, Stadelmann G, Bugmann H, Bigler C (2021). Tree recruitment is determined by stand structure and shade tolerance with uncertain role of climate and water relations. Ecology and Evolution, 11, 12182-12203.
DOI URL |
[15] |
Körner C (2007). The use of “altitude” in ecological research. Trends in Ecology & Evolution, 22, 569-574.
DOI URL |
[16] |
Lewis RJ, de Bello F, Bennett JA, Fibich P, Finerty GE, Götzenberger L, Hiiesalu I, Kasari L, Lepš J, Májeková M, Mudrák O, Riibak K, Ronk A, Rychtecká T, Vitová A, Pärtel M (2017). Applying the dark diversity concept to nature conservation. Conservation Biology, 31, 40-47.
DOI PMID |
[17] |
Lewis RJ, Szava-Kovats R, Pärtel M (2016). Estimating dark diversity and species pools: an empirical assessment of two methods. Methods in Ecology and Evolution, 7, 104-113.
DOI URL |
[18] |
Mahdavi P, Akhani H, van der Maarel E,(2013). Species diversity and life form patterns in steppe vegetation along a 3000 m altitudinal gradient in the Alborz Mountains, Iran. Folia Geobotanica, 48, 7-22.
DOI URL |
[19] |
Moeslund JE, Arge L, Bøcher PK, Dalgaard T, Svenning JC (2013). Topography as a driver of local terrestrial vascular plant diversity patterns. Nordic Journal of Botany, 31, 129-144.
DOI URL |
[20] |
Moeslund JE, Brunbjerg AK, Clausen KK, Dalby L, Fløjgaard C, Juel A, Lenoir J (2017). Using dark diversity and plant characteristics to guide conservation and restoration. Journal of Applied Ecology, 54, 1730-1741.
DOI URL |
[21] |
Münzbergová Z, Herben T (2004). Identification of suitable unoccupied habitats in metapopulation studies using co-occurrence of species. Oikos, 105, 408-414.
DOI URL |
[22] |
Niinemets Ü, Valladares F (2006). Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecological Monographs, 76, 521-547.
DOI URL |
[23] |
Noreika N, Pärtel M, Öckinger E (2020). Community completeness as a measure of restoration success: multiple-study comparisons across ecosystems and ecological groups. Biodiversity and Conservation, 29, 3807-3827.
DOI URL |
[24] |
Nuñez CI, Raffaele E, Nuñez MA, Cuassolo F (2009). When do nurse plants stop nursing? Temporal changes in water stress levels in Austrocedrus chilensis growing within and outside shrubs. Journal of Vegetation Science, 20, 1064-1071.
DOI URL |
[25] |
Odland A (2009). Interpretation of altitudinal gradients in South Central Norway based on vascular plants as environmental indicators. Ecological Indicators, 9, 409-421.
DOI URL |
[26] |
Pärtel M, Szava-Kovats R, Zobel M (2011). Dark diversity: shedding light on absent species. Trends in Ecology & Evolution, 26, 124-128.
DOI URL |
[27] |
Pärtel M, Szava-Kovats R, Zobel M (2013). Community completeness: linking local and dark diversity within the species pool concept. Folia Geobotanica, 48, 307-317.
DOI URL |
[28] |
Riibak K, Bennett JA, Kook E, Reier Ü, Tamme R, Bueno CG, Pärtel M (2020). Drivers of plant community completeness differ at regional and landscape scales. Agriculture, Ecosystems & Environment, 301, 107004. DOI: 10.1016/j.agee.2020.107004.
DOI URL |
[29] |
Riibak K, Reitalu T, Tamme R, Helm A, Gerhold P, Znamenskiy S, Bengtsson K, Rosén E, Prentice HC, Pärtel M (2015). Dark diversity in dry calcareous grasslands is determined by dispersal ability and stress-tolerance. Ecography, 38, 713-721.
DOI URL |
[30] |
Riibak K, Ronk A, Kattge J, Pärtel M (2017). Dispersal limitation determines large-scale dark diversity in Central and Northern Europe. Journal of Biogeography, 44, 1770-1780.
DOI URL |
[31] |
Ronk A, Szava-Kovats R, Pärtel M (2015). Applying the dark diversity concept to plants at the European scale. Ecography, 38, 1015-1025.
DOI URL |
[32] |
Ronk A, Szava-Kovats R, Zobel M, Pärtel M (2017). Observed and dark diversity of alien plant species in Europe: estimating future invasion risk. Biodiversity and Conservation, 26, 899-916.
DOI URL |
[33] |
Seddon PJ (2010). From reintroduction to assisted colonization: moving along the conservation translocation spectrum. Restoration Ecology, 18, 796-802.
DOI URL |
[34] |
Shi BK, Gao WF, Cai HY, Jin GZ (2016). Spatial variation of soil respiration is linked to the forest structure and soil parameters in an old-growth mixed broadleaved-Korean pine forest in northeastern China. Plant and Soil, 400, 263-274.
DOI URL |
[35] |
Tang LL, Wang RX, He KS, Shi C, Yang T, Huang YP, Zheng PF, Shi FC (2019). Throwing light on dark diversity of vascular plants in China: predicting the distribution of dark and threatened species under global climate change. PeerJ, 7, e6731. DOI: 10.7717/peerj.6731.
DOI URL |
[36] |
Trindade DPF, Carmona CP, Pärtel M (2020). Temporal lags in observed and dark diversity in the Anthropocene. Global Change Biology, 26, 3193-3201.
DOI PMID |
[37] |
Valencia R, Foster RB, Villa G, Condit R, Svenning JC, Hernández C, Romoleroux K, Losos E, Magård E, Balslev H (2004). Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology, 92, 214-229.
DOI URL |
[38] |
Valladares F, Niinemets Ü (2008). Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 39, 237-257.
DOI URL |
[39] |
Veech JA (2013). A probabilistic model for analysing species co-occurrence. Global Ecology and Biogeography, 22, 252-260.
DOI URL |
[40] |
Wang XG, Ye J, Li BH, Zhang J, Lin F, Hao ZQ (2010). Spatial distributions of species in an old-growth temperate forest, northeastern China. Canadian Journal of Forest Research, 40, 1011-1019.
DOI URL |
[41] | Wang YQ (1995). The Mixed Broadleaved-Korean Pine Forest. Northeast Forestry University Press, Harbin. |
[王业蘧 (1995). 阔叶红松林. 东北林业大学出版社, 哈尔滨.] | |
[42] | Wen PY, Jin GZ (2019). Effects of topography on species diversity in a typical mixed broadleaved-Korean pine forest. Acta Ecologica Sinica, 39, 945-956. |
[温佩颖, 金光泽 (2019). 地形对阔叶红松林物种多样性的影响. 生态学报, 39, 945-956.] | |
[43] |
Xu LN, Jin GZ (2012). Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve, Northeast China. Biodiversity Science, 20, 470-481.
DOI |
[徐丽娜, 金光泽 (2012). 小兴安岭凉水典型阔叶红松林动态监测样地: 物种组成与群落结构. 生物多样性, 20, 470-481.]
DOI |
|
[44] | Xie J, Yan QL, Zhang T (2020). Temporal effects of thinning on the composition and growth of regenerated woody plants in Larix kaempferi plantations. Chinese Journal of Applied Ecology, 31, 2481-2490. |
[谢锦, 闫巧玲, 张婷 (2020). 间伐对日本落叶松人工林林下更新木本植物组成和生长影响的时间效应. 应用生态学报, 31, 2481-2490.]
DOI |
|
[45] | Zhou YL, Dong SL, Nie SQ (1986). Ligneous Flora of Heilongjiang. Heilongjiang Science and Technology Press, Harbin. |
[周以良, 董世林, 聂绍荃 (1986). 黑龙江树木志. 黑龙江省科学技术出版社, 哈尔滨.] | |
[46] |
Zhu Y, Cai HY, Jiang F, Jin GZ (2017). Variation of the biotic neighbourhood and topographic effects on tree survival in an old-growth temperate forest. Journal of Vegetation Science, 28, 1166-1177.
DOI URL |
[1] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[2] | NIU Yi-Di, CAI Ti-Jiu. Changes in species diversity and influencing factors in secondary forest succession in northern Da Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 349-363. |
[3] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[4] | LI An-Yan, HUANG Xian-Fei, TIAN Yuan-Bin, DONG Ji-Xing, ZHENG Fei-Fei, XIA Pin-Hua. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China [J]. Chin J Plant Ecol, 2023, 47(8): 1171-1181. |
[5] | YANG Xin, REN Ming-Xun. Species distribution pattern and formation mechanism of mangrove plants around the South China Sea [J]. Chin J Plant Ecol, 2023, 47(8): 1105-1115. |
[6] | YU Xiao, JI Ruo-Xuan, REN Tian-Meng, XIA Xin-Li, YIN Wei-Lun, LIU Chao. Distribution, characteristics and classification of Caryopteris mongholica communities in northern China [J]. Chin J Plant Ecol, 2023, 47(8): 1182-1192. |
[7] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[8] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[9] | ZHU Hua, TAN Yun-Hong. Community characteristics, research states and problems of tropical rain forests in China [J]. Chin J Plant Ecol, 2023, 47(4): 447-468. |
[10] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
[11] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[12] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[13] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[14] | ZHENG Ning, LI Su-Ying, WANG Xin-Ting, LÜ Shi-Hai, ZHAO Peng-Cheng, ZANG Chen, XU Yu-Long, HE Jing, QIN Wen-Hao, GAO Heng-Rui. Dominance of different plant life forms in the typical steppe evidenced from impacts of environmental factors on chlorophyll [J]. Chin J Plant Ecol, 2022, 46(8): 951-960. |
[15] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn