Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (4): 483-495.DOI: 10.17521/cjpe.2023.0033
Special Issue: 红树林及红树植物
• Research Articles • Previous Articles Next Articles
PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing*()
Received:
2023-02-06
Accepted:
2023-07-12
Online:
2024-04-20
Published:
2024-05-11
Contact:
* (fanhq666@126.com)
Supported by:
PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas[J]. Chin J Plant Ecol, 2024, 48(4): 483-495.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0033
Fig. 1 Distribution of mangrove research literature in coastal areas of China. FJ, Fujian plots; GD, Guangdong plots; GX, Gangxi plots; HN, Hainan plots; lack of data in Zhejiang, Hong Kong, Macau, Taiwan of China.
Fig. 2 Comparison of tree height of mangroves in coast of Guangxi and Southeast China (mean ± SD). FJ, Fujian; GD, Guangdong; GX, Guangxi; HN, Hainan; GX1, research data in literature of Guangxi; GX2, survey data of 270 mangrove plots of 10 m × 10 m along the coast of Guangxi in 2017. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 3 Comparison of environmental factors in coast of Guangxi and Southeast China (mean ± SD). MAP, mean annual precipitation; MAT, mean annual air temperature; MTR, mean tidal range; pH, soil pH; SD, soil density; SOM, soil organic matter content; SS, soil salinity; TN, soil total nitrogen content; TP, soil total phosphorus content. FJ, Fujian; GD, Guangdong; GX, Guangxi; HN, Hainan. Different lowercase letters indicate significant differences (p < 0.05).
Fig. 4 Relationship between environmental factors and tree height of mangroves. H, tree height; MAP, mean annual precipitation; MAT, mean annual air temperature; MTR, mean tidal range; pH, soil pH; SD, soil density; SOM, soil organic matter content; SS, soil salinity; TN, soil total nitrogen content; TP, soil total phosphorus content. Grey areas indicate 95% confidence interval.
Fig. 5 Structural equation model for the effect of environmental factors on tree height of mangroves. H, tree height; pH, soil pH; MAP, mean annual precipitation; MAT, mean annual air temperature; MTR, mean tidal range; SD, soil density; SOM, soil organic matter content; SS, soil salinity; TN, soil total nitrogen content; TP, soil total phosphorus content. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Red arrows indicate positive correlation; blue arrows indicate negative correlation, thickness of arrows represent the strength of the correlation.
Fig. 6 Linear mixed-effects model of environmental factors on tree height. FJ, Fujian; GD, Guangdong; GX, Guangxi. HN, Hainan. pH, soil pH; MAP, mean annual precipitation; MAT, mean annual air temperature; MTR, mean tidal range; SD, soil density; SOM, soil organic matter content; SS, soil salinity; TN, soil total nitrogen content; TP, soil total phosphorus content. Green indicate significant negative correlation (p < 0.05), purple indicates significant positive correlation (p < 0.05), black indicates no significant correlation (p > 0.05).
[1] | Alongi DM (2008). Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76, 1-13. |
[2] | Alongi DM (2015). The impact of climate change on mangrove forests. Current Climate Change Reports, 1, 30-39. |
[3] | Andrews TJ, Clough BF, Muller GJ (1984). Photosynthetic gas exchange properties and carbon isotope ratios of some mangroves in North Queensland//Teas HJ. Physiology and Management of Mangroves. Springer, Dordrecht, the Netherlands. 15-23. |
[4] |
Ball MC, Farquhar DG (1984). Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions. Plant Physiology, 74, 1-6.
DOI PMID |
[5] |
Banerjee K, Gatti R C, Mitra A (2017). Climate change- induced salinity variation impacts on a stenoecious mangrove species in the Indian Sundarbans. Ambio, 46, 492-499.
DOI PMID |
[6] |
Blokhina OB, Chirkova TV, Fagerstedt KV (2001). Anoxic stress leads to hydrogen peroxide formation in plant cells. Journal of Experimental Botany, 52, 1179-1190.
PMID |
[7] | Cavender-Bares J, Cortes P, Rambal S, Joffre R, Miles B, Rocheteau A (2010). Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co-occurring Mediterranean oaks that differ in leaf lifespan. New Phytologist, 168, 597-612. |
[8] | Cavender-Bares J, Holbrook NM (2001). Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats. Plant, Cell & Environment, 24, 1243-1256. |
[9] | Chen LZ, Wang WQ, Lin P (2005). Influence of waterlogging time on the growth of Kandelia candel seedlings. Acta Oceanologica Sinica, 27(2), 141-147. |
[陈鹭真, 王文卿, 林鹏 (2005). 潮汐淹水时间对秋茄幼苗生长的影响. 海洋学报, 27(2), 141-147.] | |
[10] | Danielsen F, Sørensen MK, Olwig M F, Selvam V, Parish F, Burgess ND, Hiraishi T, Karunagaran VM, Rasmussen MS, Hansen LB, Quarto A, Suryadiputra N (2005). The Asian tsunami, a protective role for coastal vegetation. Science, 310, 643. DOI: 10.1126/science.1118387. |
[11] | Dalimunthe SA, Putri IAP (2017). Mangrove rehabilitation in Seribu Islands at the crossroad of awareness and tokenism//DasGupta R, Shaw R. Participatory Mangrove Management in a Changing Climate—Perspectives from the Asia-Pacific. Springer, Tokyo, Japan. 229-245. |
[12] |
Duarte B, Santos D, Marques JC, Caçador I (2013). Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti- oxidant feedback—Implications for resilience in climate change. Plant Physiology and Biochemistry, 67, 178-188.
DOI PMID |
[13] |
Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD, Koedam N, Lee SY, Marchand C, Nordhaus I, Dahdouh-Guebas F (2007). A world without mangroves? Science, 317, 41-42.
DOI PMID |
[14] | Ellison JC (2000). How South Pacific mangroves may respond to predicted climate change and sea-level rise. Advances in Global Change Research, 2, 289-300. |
[15] | Ellison JC (2012). Climate Change Vulnerability Assessment and Adaptation Planning for Mangrove Systems. World Wildlife Fund, Washington D.C. |
[16] | Fan HQ, Wang WQ (2017). Some thematic issues for mangrove conservation in China. Journal of Xiamen University (Natural Science), 56(3), 323-330. |
[范航清, 王文卿 (2017). 中国红树林保育的若干重要问题. 厦门大学学报(自然科学版), 56(3), 323-330.] | |
[17] | Fan HQ, Yin Y, Lao LR (1993). Correlation analysis of aboveground biomass of coastal mangrove Avicennia marina in Guangxi. Journal of Guangxi Academy of Sciences, 9(2), 25-30. |
[范航清, 尹毅, 劳丽荣 (1993). 广西海岸白骨壤红树植物地上部生物量的相关分析. 广西科学院学报, 9(2), 25-30.] | |
[18] | Gambrell RP, Delaune RD, Patrick WH (1991). Redox processes in soils following oxygen depletion. Plant Life Under Oxygen Deprivation, 53, 81-86. |
[19] | Geldenhuys C, Cotiyane P, Rajkaran A (2016). Understanding the creek dynamics and environmental characteristics that determine the distribution of mangrove and salt marsh communities at Nahoon Estuary. South African Journal of Botany, 107, 137-147. |
[20] | Gilman EL, Ellison J, Duke NC, Field C (2008). Threats to mangroves from climate change and adaptation options: a review. Aquatic Botany, 89, 237-250. |
[21] | Guan GF, Wang YS Cheng H, Jiang ZY, Fei J (2015). Physiological and biochemical response to drought stress in the leaves of Aegiceras corniculatum and Kandelia obovata. Ecotoxicology, 24, 1668-1676. |
[22] | He BY (2009). Studies on the Eco-physiological Mechanisms for the Key Techniques in Mangrove Afforestation in the Diurnal Tidal Region. PhD dissertation, Xiamen University, Xiamen, Fujian. |
[何斌源 (2009). 全日潮海区红树林造林关键技术的生理生态基础研究. 博士研究论文, 厦门大学, 福建厦门.] | |
[23] | Huang LY, Hu BQ, Fan HQ (2014). Ecological responses of Avicennia marina to key environmental factors: a review. Journal of Guangxi Academy of Sciences, 30(4), 257-262. |
[黄灵玉, 胡宝清, 范航清 (2014). 白骨壤对关键环境因子的生态响应研究进展. 广西科学院学报, 30(4), 257-262.] | |
[24] |
Jagtap TG, Nagle VL (2007). Response and adaptability of mangrove habitats from the Indian subcontinent to changing climate. AMBIO, 36, 328-334.
PMID |
[25] | Jayalath N, Fitzpatrick RW, Mosley L, Marschner P (2016). Type of organic carbon amendment influences pH changes in acid sulfate soils in flooded and dry conditions. Journal of Soils and Sediments, 16, 518-526. |
[26] | Jin C, Wang JW, Zheng J, Chen QX, Li JQ, Lu X (2012). An assessment method of Kandelia obovata population biomass. Acta Ecologica Sinica, 32, 3414-3422. |
[金川, 王金旺, 郑坚, 陈秋夏, 李俊清, 卢翔 (2012). 异速生长法计算秋茄红树林生物量. 生态学报, 32, 3414-3422.] | |
[27] |
Jonsson M, Wardle DA (2010). Structural equation modelling reveals plant-community drivers of carbon storage in boreal forest ecosystems. Biology Letters, 6, 116-119.
DOI PMID |
[28] | Khan MA, Aziz I (2001). Salinity tolerance in some mangrove species from Pakistan. Wetlands Ecology and Management, 9, 229-233. |
[29] | Komiyama A, Ong JE, Poungparn S (2008). Allometry, biomass, and productivity of mangrove forests: a review. Aquatic Botany, 89, 128-137. |
[30] | Ladanai S, Ågren GI, Olsson BA (2010). Relationships between tree and soil properties in Picea abies and Pinus sylvestris forests in Sweden. Ecosystems, 13, 302-316. |
[31] | Li YH (2012). Impact of global climate change on mangrove ecosystem in Quanzhou Bay estuary wetland and its countermeasures. Straits Science, (2), 10-12. |
[李裕红 (2012). 全球气候变化对泉州湾河口湿地红树林生态系统的影响及对策. 海峡科学, (2), 10-12.] | |
[32] | Lin P (1999). Mangrove Ecosystem in China. Science Press, Beijing. |
[林鹏 (1999). 中国红树林生态系统. 科学出版社, 北京.] | |
[33] | Liu CY, Fang WJ, Cai Q, Ma SH, Jiang XX, Ji CJ, Fang JY (2017). Allometric relationship between tree height and diameter of larch forests in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 53, 1081-1088. |
[刘春云, 方文静, 蔡琼, 马素辉, 姜星星, 吉成均, 方精云 (2017). 中国落叶松林胸径-树高相关关系的探讨. 北京大学学报(自然科学版), 53, 1081-1088.] | |
[34] | Liu J, Wang YS (2020). Proline metabolism and molecular cloning of AmP5CS in the mangrove Avicennia marina under heat stress. Ecotoxicology, 29, 698-706. |
[35] | Liu R, Zhang WG, Jiang XL, Zhang J (2010). Study on the characteristics of degradation succession of Elymus nutans community and its correlation to soil properties. Pratacultural Science, 27(10), 96-103. |
[刘蓉, 张卫国, 江小雷, 张军 (2010). 垂穗披碱草群落退化演替的植被特性及其与土壤性状的相关性研究. 草业科学, 27(10), 96-103.] | |
[36] | Macreadie PI, Anton A, Raven JA, Beaumont N, Connolly RM, Friess DA, Kelleway JJ, Kennedy H, Kuwae T, Lavery PS, Lovelock CE, Smale DA, Apostolaki ET, Atwood TB, Baldock J, et al. (2019). The future of Blue Carbon science. Nature Communications, 10, 3988. DOI: 10.1038/s41467-019-11693-w. |
[37] | McKee KL (2011). Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science, 91, 475-483. |
[38] | McKee KL, Cahoon DR, Feller IC (2007). Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography, 16, 545-556. |
[39] | Murray NJ, Phinn SR, DeWitt M, Ferrari R, Johnston R, Lyons MB, Clinton N, Thau D, Fuller RA (2019). The global distribution and trajectory of tidal flats. Nature, 565, 222-225. |
[40] | Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M, Kirton LG, Meynecke JO, Pawlik J, Penrose HM, Sasekumar A, Somerfield PJ (2008). The habitat function of mangroves for terrestrial and marine fauna: a review. Aquatic Botany, 89, 155-185. |
[41] | Naidoo G (1985). Effects of waterlogging and salinity on plant-water relations and on the accumulation of solutes in three mangrove species. Aquatic Botany, 22, 133-143. |
[42] |
Oku H, Baba S, Koga H, Takara K, Iwasaki H (2003). Lipid composition of mangrove and its relevance to salt tolerance. Journal of Plant Research, 116, 37-45.
PMID |
[43] | Oxmann JF, Pham QH, Schwendenmann L, Stellman JM, Lara RJ (2010). Mangrove reforestation in Vietnam: the effect of sediment physicochemical properties on nutrient cycling. Plant and Soil, 326, 225-241. |
[44] | Pan YF, Liang ZH, Li JB, Liang SC, Jiang Y, Wu HP, Wang JJ, Fu RJ, Zhou JM (2021). Community structure and species diversity of evergreen deciduous broad-leaved mixed forest in karst hills of Guilin. Acta Ecologica Sinica, 41, 2451-2459. |
[盘远方, 梁志慧, 李嘉宝, 梁士楚, 姜勇, 吴华萍, 王菁菁, 傅瑞静, 周健梅 (2021). 桂林岩溶石山常绿落叶阔叶混交林群落结构与物种多样性. 生态学报, 41, 2451-2459.] | |
[45] | Rahman MM, Khan MNI, Hoque AKF, Ahmed I (2015). Carbon stock in the Sundarbans mangrove forest, spatial variations in vegetation types and salinity zones. Wetlands Ecology and Management, 23, 269-283. |
[46] | Record S, Charney ND, Zakaria RM, Ellison AM (2013). Projecting global mangrove species and community distributions under climate change. Ecosphere, 4, 1-23. |
[47] |
Satheeshkumar P, Khan AB (2012). Identification of mangrove water quality by multivariate statistical analysis methods in Pondicherry coast, India. Environmental Monitoring and Assessment, 184, 3761-3774.
DOI PMID |
[48] | Schmelter T (2007). Considerations on group-wise identical designs for linear mixed models. Journal of Statistical Planning and Inference, 137, 4003-4010. |
[49] | Sha C, Wang ML, Jiang YL, Lin GH (2018). Interactions between pH and other physicochemical properties of mangrove sediments: a review. Chinese Science Bulletin, 63, 2745-2756. |
[沙聪, 王木兰, 姜玥璐, 林光辉 (2018). 红树林土壤pH和其他土壤理化性质之间的相互作用. 科学通报, 63, 2745-2756.] | |
[50] |
Simard M, Fatoyinbo L, Smetanka C, Rivera-Monroy VH, Castañeda-Moya E, Thomas N, van der Stocken T (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 12, 40-45.
DOI |
[51] | Soares MLG, Schaeffer-Novelli Y (2005). Above-ground biomass of mangrove species. I. Analysis of models. Estuarine, Coastal and Shelf Science, 65, 1-18. |
[52] | Spitale D, Petraglia A, Tomaselli M (2009). Structural equation modelling detects unexpected differences between bryophyte and vascular plant richness along multiple environmental gradients. Journal of Biogeography, 36, 745-755. |
[53] |
Stuart SA, Choat B, Martin KC, Holbrook NM, Ball MC (2007). The role of freezing in setting the latitudinal limits of mangrove forests. New Phytologist, 173, 576-583.
DOI PMID |
[54] | Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z (2000). Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Botany, 68, 15-28. |
[55] | Temmerman S, Meire P, Bouma TJ, Herman PM, Ysebaert T, de Vriend HJ (2013). Ecosystem-based coastal defence in the face of global change. Nature, 504, 79-83. |
[56] | Tian CC, Wang CB, Tian YY, Wu XQ, Xiao BD (2015). Root radial oxygen loss and the effects on rhizosphere microarea of two submerged plants. Polish Journal of Environmental Studies, 24, 1795-1802. |
[57] | Tomlinson PB (1986). The Botany of Mangroves. Cambridge University Press, Cambridge, UK. 1-30. |
[58] | Turner WR, Oppenheimer M, Wilcove DS (2009). A force to fight global warming. Nature, 462, 278-279. |
[59] | Vargas-Larreta B, Castedo-Dorado F, Álvarez-González JG, Barrio-Anta M, Cruz-Cobos F (2009). A generalized height-diameter model with random coefficients for uneven-aged stands in El Salto, Durango (Mexico). Forestry, 82, 445-462. |
[60] | Wang DZ, Zhang DY, Zhang ZD, Huang XR (2016). Height- diameter relationship for conifer mixed forest based on nonlinear mixed-effects model. Scientia Silvae Sinicae, 52(1), 30-36. |
[王冬至, 张冬燕, 张志东, 黄选瑞 (2016). 基于非线性混合模型的针阔混交林树高与胸径关系. 林业科学, 52(1), 30-36.] | |
[61] | Wang WQ, Wang M (2007). The Mangroves of China. Science Press, Beijing. 143-168. |
[王文卿, 王瑁 (2007). 中国红树林. 科学出版社, 北京. 143-168.] | |
[62] |
Wang YS (2021). Impacts, challenges and opportunities of global climate change on mangrove ecosystems. Journal of Tropical Oceanography, 40(3), 1-14.
DOI |
[王友绍 (2021). 全球气候变化对红树林生态系统的影响、挑战与机遇. 热带海洋学报, 40(3), 1-14.]
DOI |
|
[63] |
Wang YT, Qiu Q, Xin GR, Yang ZY, Zheng J, Ye ZH, Li SS (2013). Heavy metal contamination in a vulnerable mangrove swamp in South China. Environmental Monitoring and Assessment, 185, 5775-5787.
DOI PMID |
[64] | Xu D, Li Y, Howard A, Guan Y (2013). Effect of earthworm Eisenia fetida and wetland plants on nitrification and denitrification potentials in vertical flow constructed wetland. Chemosphere, 92, 201-206. |
[65] | Zhang BH, Chen SL, Gu GC (2010). Tidal types and characteristics of the harbors along the Guangxi coast. Journal of Marine Sciences, 28(3), 9-16. |
[张伯虎, 陈沈良, 谷国传 (2010). 广西沿岸重点港湾的潮型与潮汐特征. 海洋学研究, 28(3), 9-16.] | |
[66] | Zhang GH (2009). Analysis of tidal characteristics in Guangxi coastal area. Pearl River, (1), 29-30. |
[张桂宏 (2009). 广西沿海地区潮汐特性分析. 人民珠江, (1), 29-30.] | |
[67] | Zhang XQ, Zhang JG, Duan AG (2014). Compatibility of stand volume model for Chinese fir based on tree-level and stand-level. Scientia Silvae Sinicae, 50(1), 82-87. |
[张雄清, 张建国, 段爱国 (2014). 基于单木水平和林分水平的杉木兼容性林分蓄积量模型. 林业科学, 50(1), 82-87.] | |
[68] | Zhao JQ, Zhang YW, Liu ZF, Zhao YL, Wang M (2019). Seasonal variability of tides in the deep northern South China Sea. Science China Earth Sciences, 49, 717-730. |
[赵玖强, 张艳伟, 刘志飞, 赵玉龙, 王萌 (2019). 南海北部深海潮汐的季节性变化特征. 中国科学: 地球科学, 49, 717-730.] | |
[69] | Zheng DZ, Liao BW, Zheng SF (1993). Studies on the Techniques of Afforestation and Management of Main Mangrove Species. Science Press, Beijing. 248-365. |
[郑德璋, 廖宝文, 郑松发 (1993). 红树林主要树种造林与经营技术研究. 科技出版社, 北京. 248-365.] | |
[70] | Zheng HL, Lin P (1997). Some physiological responses of Avicennia marina to salinity. Journal of Xiamen University (Natural Science), 36, 135-139. |
[郑海雷, 林鹏 (1997). 红树植物白骨壤对盐度的某些生理反应. 厦门大学学报(自然科学版), 36, 135-139.] |
[1] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(6): 701-718. |
[2] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[3] | LI An-Yan, HUANG Xian-Fei, TIAN Yuan-Bin, DONG Ji-Xing, ZHENG Fei-Fei, XIA Pin-Hua. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China [J]. Chin J Plant Ecol, 2023, 47(8): 1171-1181. |
[4] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[5] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[6] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
[7] | ZHENG Ning, LI Su-Ying, WANG Xin-Ting, LÜ Shi-Hai, ZHAO Peng-Cheng, ZANG Chen, XU Yu-Long, HE Jing, QIN Wen-Hao, GAO Heng-Rui. Dominance of different plant life forms in the typical steppe evidenced from impacts of environmental factors on chlorophyll [J]. Chin J Plant Ecol, 2022, 46(8): 951-960. |
[8] | PENG Xin, JIN Guang-Ze. Effects of plant characteristics and environmental factors on the dark diversity in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 656-666. |
[9] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[10] | HUANG Jie, LI Xiao-Ling, WANG Xue-Song, YANG Jin, HUANG Cheng-Ming. Characteristics of Distylium chinense communities and their relationships with soil environmental factors in different water level fluctuation zones of the Three Gorges Reservoir, China [J]. Chin J Plant Ecol, 2021, 45(8): 844-859. |
[11] | LUO Ming-Mo, CHEN Yue, YANG Gang, HU Bin, LI Wei, CHEN Huai. Short-term response of soil prokaryotic community structure to water level restoration in degraded peatland of the Zoigê Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 552-561. |
[12] | WANG Zi-Wei, WAN Song-Ze, JIANG Hong-Mao, HU Yang, MA Shu-Qin, CHEN You-Chao, LU Xu-Yang. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 528-538. |
[13] | ZHAO Wen-Qin, XI Ben-Ye, LIU Jin-Qiang, LIU Yang, ZOU Song-Yan, SONG Wu-Ye, CHEN Li-Xin. Transpiration process and environmental response of poplar plantation under different irrigation conditions [J]. Chin J Plant Ecol, 2021, 45(4): 370-382. |
[14] | LI Yuan-Yuan, ZHANG Yun, KONG Zhao-Chen, YANG Zhen-Jing. Surface sporopollen and modern vegetation in Hongshanzui area, Altai, Xinjiang, China [J]. Chin J Plant Ecol, 2021, 45(2): 174-186. |
[15] | YU Qing-Han, JIN Guang-Ze, LIU Zhi-Li. Plant size, branch age and environment factors co-drive variations of branch traits of Pinus koraiensis [J]. Chin J Plant Ecol, 2020, 44(9): 939-950. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn