Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (4): 370-382.DOI: 10.17521/cjpe.2020.0343
• Research Articles • Previous Articles Next Articles
ZHAO Wen-Qin1, XI Ben-Ye2, LIU Jin-Qiang2, LIU Yang2, ZOU Song-Yan2, SONG Wu-Ye1,*(), CHEN Li-Xin1
Received:
2020-10-20
Accepted:
2021-02-10
Online:
2021-04-20
Published:
2021-04-02
Contact:
SONG Wu-Ye
Supported by:
ZHAO Wen-Qin, XI Ben-Ye, LIU Jin-Qiang, LIU Yang, ZOU Song-Yan, SONG Wu-Ye, CHEN Li-Xin. Transpiration process and environmental response of poplar plantation under different irrigation conditions[J]. Chin J Plant Ecol, 2021, 45(4): 370-382.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0343
处理 Treatment | 样树 Sample tree | 树高 Height (m) | 胸径 Diameter breast height (cm) | 边材厚度 Sapwood thickness (cm) | 边材面积 Sapwood area (cm2) |
---|---|---|---|---|---|
充分灌溉 Full irrigation | 1 | 13.6 | 13.8 | 5.8 | 134.86 |
2 | 10.2 | 14.2 | 5.9 | 142.85 | |
3 | 14.4 | 12.5 | 5.3 | 110.51 | |
4 | 13.6 | 14.0 | 5.8 | 138.82 | |
5 | 10.5 | 14.0 | 5.8 | 138.82 | |
控水灌溉 Water-controlled irrigation | 1 | 10.0 | 11.4 | 4.8 | 91.80 |
2 | 14.2 | 15.1 | 6.2 | 161.66 | |
3 | 12.8 | 13.9 | 5.8 | 136.84 | |
对照 Control | 1 | 10.3 | 10.7 | 4.5 | 80.81 |
2 | 13.4 | 14.3 | 6.0 | 144.88 | |
3 | 11.6 | 11.2 | 4.7 | 87.80 | |
4 | 12.5 | 12.5 | 5.3 | 110.51 |
Table 1 Characteristics of sample tree of Populus tomentosa
处理 Treatment | 样树 Sample tree | 树高 Height (m) | 胸径 Diameter breast height (cm) | 边材厚度 Sapwood thickness (cm) | 边材面积 Sapwood area (cm2) |
---|---|---|---|---|---|
充分灌溉 Full irrigation | 1 | 13.6 | 13.8 | 5.8 | 134.86 |
2 | 10.2 | 14.2 | 5.9 | 142.85 | |
3 | 14.4 | 12.5 | 5.3 | 110.51 | |
4 | 13.6 | 14.0 | 5.8 | 138.82 | |
5 | 10.5 | 14.0 | 5.8 | 138.82 | |
控水灌溉 Water-controlled irrigation | 1 | 10.0 | 11.4 | 4.8 | 91.80 |
2 | 14.2 | 15.1 | 6.2 | 161.66 | |
3 | 12.8 | 13.9 | 5.8 | 136.84 | |
对照 Control | 1 | 10.3 | 10.7 | 4.5 | 80.81 |
2 | 13.4 | 14.3 | 6.0 | 144.88 | |
3 | 11.6 | 11.2 | 4.7 | 87.80 | |
4 | 12.5 | 12.5 | 5.3 | 110.51 |
月份 Month | 处理 Treatment | 启动时刻 Start time | 到达峰值的时刻 Peak time | 峰值 Peak Fd value (mL·m-2·s-1) | 平均液流通量密度 Daily Fd value (mL·m-2·s-1) |
---|---|---|---|---|---|
4 | DF | 8:00 ± 60 min | 13:00 ± 100 min | 32.94 ± 3.47 a | 10.66 ± 2.64 a |
DC | 8:00 ± 70 min | 13:00 ± 90 min | 72.60 ± 4.77 a | 24.65 ± 7.09 b | |
CK | 8:00 ± 100 min | 13:10 ± 100 min | 36.18 ± 3.77 c | 12.28 ± 2.32 c | |
5 | DF | 6:00 ± 40 min | 11:10 ± 60 min | 63.87 ± 3.11 a | 24.59 ± 6.74 a |
DC | 6:00 ± 40 min | 11:10 ± 70 min | 78.83 ± 4.19 b | 31.32 ± 8.25 a | |
CK | 6:00 ± 40 min | 11:30 ± 70 min | 61.61 ± 3.21 c | 24.27 ± 6.06 a | |
6 | DF | 5:50 ± 50 min | 12:00 ± 70 min | 58.00 ± 7.73 a | 25.03 ± 7.39 b |
DC | 5:50 ± 50 min | 12:00 ± 70 min | 69.58 ± 7.43 b | 30.80 ± 7.65 b | |
CK | 5:50 ± 50 min | 12:20 ± 60 min | 55.34 ± 6.18 ac | 24.24 ± 6.15 b | |
7 | DF | 7:00 ± 40 min | 12:00 ± 80 min | 51.55 ± 4.75 a | 19.81 ± 6.31 a |
DC | 7:00 ± 70 min | 12:30 ± 90 min | 61.70 ± 5.73 b | 25.20 ± 5.92 a | |
CK | 7:00 ± 70 min | 12:30 ± 80 min | 49.98 ± 6.48 ac | 19.38 ± 5.37 a | |
8 | DF | 7:20 ± 40 min | 12:30 ± 70 min | 38.16 ± 13.18 a | 17.00 ± 6.51 a |
DC | 7:20 ± 40 min | 13:00 ± 60 min | 47.40 ± 15.02 a | 20.98 ± 4.96 a | |
CK | 7:20 ± 40 min | 13:00 ± 70 min | 41.91 ± 14.63 a | 19.09 ± 5.32 a | |
9 | DF | 7:40 ± 40 min | 12:20 ± 60 min | 35.02 ± 9.22 a | 13.40 ± 4.52 a |
DC | 7:40 ± 40 min | 12:50 ± 60 min | 42.85 ± 9.89 b | 16.73 ± 3.40 a | |
CK | 7:40 ± 40 min | 12:50 ± 50 min | 38.73 ± 9.44 a | 15.53 ± 4.82 a | |
10 | DF | 9:00 ± 70 min | 13:00 ± 100 min | 6.55 ± 8.55 a | 3.37 ± 2.03 c |
DC | 9:00 ± 70 min | 13:30 ± 90 min | 11.27 ± 11.01 a | 4.46 ± 1.54 c | |
CK | 9:00 ± 80 min | 13:30 ± 90 min | 9.67 ± 10.28 c | 3.77 ± 1.57 c |
Table 2 Sap flux density characteristics of Populus tomentosa at different month (mean± SD, n = 1 440)
月份 Month | 处理 Treatment | 启动时刻 Start time | 到达峰值的时刻 Peak time | 峰值 Peak Fd value (mL·m-2·s-1) | 平均液流通量密度 Daily Fd value (mL·m-2·s-1) |
---|---|---|---|---|---|
4 | DF | 8:00 ± 60 min | 13:00 ± 100 min | 32.94 ± 3.47 a | 10.66 ± 2.64 a |
DC | 8:00 ± 70 min | 13:00 ± 90 min | 72.60 ± 4.77 a | 24.65 ± 7.09 b | |
CK | 8:00 ± 100 min | 13:10 ± 100 min | 36.18 ± 3.77 c | 12.28 ± 2.32 c | |
5 | DF | 6:00 ± 40 min | 11:10 ± 60 min | 63.87 ± 3.11 a | 24.59 ± 6.74 a |
DC | 6:00 ± 40 min | 11:10 ± 70 min | 78.83 ± 4.19 b | 31.32 ± 8.25 a | |
CK | 6:00 ± 40 min | 11:30 ± 70 min | 61.61 ± 3.21 c | 24.27 ± 6.06 a | |
6 | DF | 5:50 ± 50 min | 12:00 ± 70 min | 58.00 ± 7.73 a | 25.03 ± 7.39 b |
DC | 5:50 ± 50 min | 12:00 ± 70 min | 69.58 ± 7.43 b | 30.80 ± 7.65 b | |
CK | 5:50 ± 50 min | 12:20 ± 60 min | 55.34 ± 6.18 ac | 24.24 ± 6.15 b | |
7 | DF | 7:00 ± 40 min | 12:00 ± 80 min | 51.55 ± 4.75 a | 19.81 ± 6.31 a |
DC | 7:00 ± 70 min | 12:30 ± 90 min | 61.70 ± 5.73 b | 25.20 ± 5.92 a | |
CK | 7:00 ± 70 min | 12:30 ± 80 min | 49.98 ± 6.48 ac | 19.38 ± 5.37 a | |
8 | DF | 7:20 ± 40 min | 12:30 ± 70 min | 38.16 ± 13.18 a | 17.00 ± 6.51 a |
DC | 7:20 ± 40 min | 13:00 ± 60 min | 47.40 ± 15.02 a | 20.98 ± 4.96 a | |
CK | 7:20 ± 40 min | 13:00 ± 70 min | 41.91 ± 14.63 a | 19.09 ± 5.32 a | |
9 | DF | 7:40 ± 40 min | 12:20 ± 60 min | 35.02 ± 9.22 a | 13.40 ± 4.52 a |
DC | 7:40 ± 40 min | 12:50 ± 60 min | 42.85 ± 9.89 b | 16.73 ± 3.40 a | |
CK | 7:40 ± 40 min | 12:50 ± 50 min | 38.73 ± 9.44 a | 15.53 ± 4.82 a | |
10 | DF | 9:00 ± 70 min | 13:00 ± 100 min | 6.55 ± 8.55 a | 3.37 ± 2.03 c |
DC | 9:00 ± 70 min | 13:30 ± 90 min | 11.27 ± 11.01 a | 4.46 ± 1.54 c | |
CK | 9:00 ± 80 min | 13:30 ± 90 min | 9.67 ± 10.28 c | 3.77 ± 1.57 c |
Fig. 3 Canopy conductance of poplar (A) and the statistic comparison (mean ± SD)(B) under different irrigation treatments. CK, control; DC, water-controlled irrigation; DF, full irrigation. Different lowercase letters indicate the significant difference of canopy conductance under different irrigation in the same month (p< 0.05).
Fig. 6 Change of daily transpiration of poplar under different irrigation treatments in the growing season (A) and each month (mean ± SD)(B). CK, control; DC, water-controlled irrigation; DF, full irrigation. Different lowercase letters represent significant difference of transpiration under different irrigation in the same month (p< 0.05).
Fig. 7 Correlation coefficient of the sap flow rate (Fd) with vapor pressure deficit (VPD) and global radiation (SR) of popular under different soil water content. A, Full irrigation. B, Water-controlled irrigation. C, Control.
Fig. 8 Direct effects of environmental factors on daily transpiration of poplar.SR, solar radiation; SWC, soil water contnet; T,transpiration; VPD, vapor pressure deficit; WS, wind speed. CK, control; DC, water-controlled irrigation; DF, full irrigation. Each arrow represents a causal relationship between two variables. ***, p < 0.0001; **, p < 0.001; *, p < 0.05; ns, p > 0.05.
[1] |
Bernier PY, Bartlett P, Black TA, Barr A, Kljun N, McCaughey JH (2006). Drought constraints on transpiration and canopy conductance in mature aspen and jack pine stands. Agricultural and Forest Meteorology, 140, 64-78.
DOI URL |
[2] | Bi HL, Lan ZP, Sun SW, Fu JP, Peng JJ, Ma X ( 2017). Spatial distribution of fine root in the poplar plantation under drip irrigation. Forest Research, 30, 946-953. |
[ 秘洪雷, 兰再平, 孙尚伟, 傅建平, 彭晶晶, 马鑫 ( 2017). 滴灌栽培杨树人工林细根空间分布特征. 林业科学研究, 30, 946-953.] | |
[3] | Campbell GS, Norman JM (1977). An Introduction to Environmental Biophysics. Springer,New York. |
[4] | Chen SN, Kong Z, Chen LX, Liu QQ, Liu PS, Zhang ZZ ( 2020). The stand transpiration characteristics of Pinus tabulaeformisand its influential factors in a semi-arid urban environment . Acta Ecologica Sinica, 40, 1269-1280. |
[ 陈胜楠, 孔喆, 陈立欣, 刘清泉, 刘平生, 张志强 ( 2020). 半干旱区城市环境下油松林分蒸腾特征及其影响因子. 生态学报, 40, 1269-1280.] | |
[5] |
Chuang YL, Oren R, Bertozzi AL, Phillips N, Katul GG (2006). The porous media model for the hydraulic system of a conifer tree: linking sap flux data to transpiration rate. Ecological Modelling, 191, 447-468.
DOI URL |
[6] |
Coyle DR, Coleman MD (2005). Forest production responses to irrigation and fertilization are not explained by shifts in allocation. Forest Ecology and Management, 208, 137-152.
DOI URL |
[7] | Dang HZ, Yang WB, Li W, Zhang YY, Li CL ( 2014). Radial variation and time lag of sap flow of Populus gansuensis in Minqin Oasis, Northwest China . Chinese Journal of Applied Ecology, 25, 2501-2510. |
[ 党宏忠, 杨文斌, 李卫, 张友焱, 李昌龙 ( 2014). 民勤绿洲二白杨树干液流的径向变化及时滞特征. 应用生态学报, 25, 2501-2510.] | |
[8] |
Daudet FA, Le Roux X, Sinoquet H, Adam B (1999). Wind speed and leaf boundary layer conductance variation within tree crown. Agricultural and Forest Meteorology, 97, 171-185.
DOI URL |
[9] |
Dong WY, Qin J, Li JY, Zhao Y, Nie LS, Zhang ZY (2011). Interactions between soil water content and fertilizer on growth characteristics and biomass yield of Chinese white poplar (Populus tomentosaCarr.) seedlings. Soil Science and Plant Nutrition, 57, 303-312.
DOI URL |
[10] |
Dragoni D, Caylor KK, Schmid HP (2008). Decoupling structural and environmental determinants of sap velocity. Agricultural and Forest Meteorology, 149, 570-581.
DOI URL |
[11] | Du TS, Kang SZ, Zhang BZ, Li SE, Yang XY ( 2008). Stem sap flow of grape under different drip irrigation patterns and its relationships with environmental factors in arid oasis region of Shiyang River basin. Chinese Journal of Applied Ecology, 19, 299-305. |
[ 杜太生, 康绍忠, 张宝忠, 李思恩, 杨秀英 ( 2008). 石羊河流域干旱荒漠绿洲区不同滴灌模式下葡萄茎液流变化及其与环境因子的关系. 应用生态学报, 19, 299-305.] | |
[12] |
Ford CR, Goranson CE, Mitchell RJ, Will RE, Teskey RO (2004). Diurnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees. Tree Physiology, 24, 951-960.
DOI URL |
[13] |
Granier A (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
PMID |
[14] |
Granier A, Biron P, Lemoine D (2000). Water balance, transpiration and canopy conductance in two beech stands. Agricultural and Forest Meteorology, 100, 291-308.
DOI URL |
[15] |
Hogg EH, Hurdle PA (1997). Sap flow in trembling aspen: implications for stomatal responses to vapor pressure deficit. Tree Physiology, 17, 501-509.
PMID |
[16] |
Hutley LB, O’Grady AP, Eamus D (2001). Monsoonal influences on evapotranspiration of savanna vegetation of northern Australia. Oecologia, 126, 434-443.
DOI PMID |
[17] | Jia LM, Xing CS, Li JR, Wei YK ( 2005). Productivity and benefit analysis of fast-growing and high-yield plantations of poplar under subsurface drip irrigation. Journal of Beijing Forestry University, 27(6), 43-49. |
[ 贾黎明, 邢长山, 李景锐, 韦艳葵 ( 2005). 地下滴灌条件下杨树速生丰产林生产力及效益分析. 北京林业大学学报, 27(6), 43-49.] | |
[18] |
Kagotani Y, Nishida K, Kiyomizu T, Sasaki K, Kume A, Hanba YT (2016). Photosynthetic responses to soil water stress in summer in two Japanese urban landscape tree species (Ginkgo biloba and Prunus yedoensis): effects of pruning mulch and irrigation management. Trees, 30, 697-708.
DOI URL |
[19] |
Kumagai T, Saitoh TM, Sato Y, Morooka T, Manfroi OJ, Kuraji K, Suzuki M (2004). Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak, Borneo: dry spell effects. Journal of Hydrology, 287, 237-251.
DOI URL |
[20] |
Kumagai T, Tateishi M, Shimizu T, Otsuki K (2008). Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed. Agricultural and Forest Meteorology, 148, 1444-1455.
DOI URL |
[21] |
Kume T, Komatsu H, Kuraji K, Suzuki M (2008). Less than 20-min time lags between transpiration and stem sap flow in emergent trees in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 148, 1181-1189.
DOI URL |
[22] | Liu DL, Li JY, Ma D ( 2008). Spatial variation pattern of Platycladus orientalis stem sap flow . Chinese Journal of Ecology, 27, 1262-1268. |
[ 刘德良, 李吉跃, 马达 ( 2008). 侧柏树干边材液流空间变化规律. 生态学杂志, 27, 1262-1268.] | |
[23] | Liu WN, Jia JB, Yu XX, Jia GD, Hou GR ( 2017). Characteristics of canopy stomatal conductance ofPlatycladus orientalisand its responses to environmental factors in the mountainous area of North China . Chinese Journal of Applied Ecology, 28, 3217-3226. |
[ 刘文娜, 贾剑波, 余新晓, 贾国栋, 侯贵荣 ( 2017). 华北山区侧柏冠层气孔导度特征及其对环境因子的响应. 应用生态学报, 28, 3217-3226.] | |
[24] | Ma CM, Ma YJ, Cheng YM ( 2017). Characteristics and the driving forces of sap flow in stems of Populus beijingensis in Bashang area of north-west Hebei . Journal of Soil and Water Conservation, 31, 338-344. |
[ 马长明, 马玉洁, 程月明 ( 2017). 冀西北坝上干旱区北京杨树干液流特征及影响因素分析. 水土保持学报, 31, 338-344.] | |
[25] |
McIlroy IC (1984). Terminology and concepts in natural evaporation. Agricultural Water Management, 8, 77-98.
DOI URL |
[26] |
Nicolás E, Barradas VL, Ortuño MF, Navarro A, Torrecillas A, Alarcón JJ (2008). Environmental and stomatal control of transpiration, canopy conductance and decoupling coefficient in young lemon trees under shading net. Environmental and Experimental Botany, 63, 200-206.
DOI URL |
[27] |
O’Neill MK, Shock CC, Lombard KA, Heyduck RF, Feibert EBG, Smeal D, Arnold RN (2010). Hybrid poplar (Populusssp.) selections for arid and semi-arid intermountain regions of the western United States. Agroforestry Systems, 79, 409-418.
DOI URL |
[28] |
Oishi AC, Hawthorne DA, Oren R (2016). Baseliner: an open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX, 5, 139-143.
DOI URL |
[29] |
Oishi AC, Oren R, Stoy PC (2008). Estimating components of forest evapotranspiration: a footprint approach for scaling sap flux measurements. Agricultural and Forest Meteorology, 148, 1719-1732.
DOI URL |
[30] |
Oren R, Pataki DE (2001). Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia, 127, 549-559.
DOI PMID |
[31] | Ou ZY, Pang SL, Tan ZQ, He F, Lu GD, Shen WH ( 2020). Effects of drought stress on photosynthesis and water consumption of main afforestation tree species in the rocky desert area in Southwest Guangxi. Chinese Journal of Ecology, 39, 3237-3246. |
[ 欧芷阳, 庞世龙, 谭长强, 何峰, 陆国导, 申文辉 ( 2020). 干旱胁迫对桂西南石漠化地区主要造林树种光合及耗水特性的影响. 生态学杂志, 39, 3237-3246.] | |
[32] |
Phillips N, Nagchaudhuri A, Oren R, Katul G (1997). Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow. Trees, 11, 412-419.
DOI URL |
[33] | Ren ZX, Nie LS, Zhang Q, Xin Y, Song LJ, Luo PP ( 2011). Stem volume current annual growth rhythm of four Populus tomentosa clones under water-nitrogen coupling and variety selection . Journal of Central South University of Forestry & Technology, 31(8), 187-193. |
[ 任忠秀, 聂立水, 张强, 辛颖, 宋莲君, 罗盼盼 ( 2011). 水氮耦合下毛白杨无性系材积生长规律及品种选择. 中南林业科技大学学报, 31(8), 187-193.] | |
[34] |
Roberts T, Lazarovitch N, Warrick AW, Thompson TL (2009). Modeling salt accumulation with subsurface drip irrigation using HYDRUS-2D. Soil Science Society of America Journal, 73, 233-240.
DOI URL |
[35] |
Roman DT, Novick KA, Brzostek ER, Dragoni D, Rahman F, Phillips RP (2015). The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia, 179, 641-654.
DOI PMID |
[36] |
Samuelson LJ, Stokes TA, Coleman MD (2007). Influence of irrigation and fertilization on transpiration and hydraulic properties ofPopulus deltoides. Tree Physiology, 27, 765-774.
PMID |
[37] | Sang YQ, Guo F, Zhang JS, Meng P, Gao J ( 2009). Variation in transpiration of Populus bolleana and the influence factors in Maowusu sandy area . Scientia Silvae Sinicae, 45(9), 66-71. |
[ 桑玉强, 郭芳, 张劲松, 孟平, 高峻 ( 2009). 毛乌素沙地新疆杨蒸腾变化规律及其影响因素. 林业科学, 45(9), 66-71.] | |
[38] | Schäfer KVR, Oren R, Tenhunen JD (2000). The effect of tree height on crown level stomatal conductance. Plant, Cell & Environment, 23, 365-375. |
[39] | Shi C, Fan WB, Zhu HK, Wang JL ( 2011). Research on water use of Populus bolleana under different irrigation gradients and irrigation systems . China Rural Water and Hydropower, ( 9), 1-4. |
[ 史册, 范文波, 朱红凯, 王久龙 ( 2011). 不同灌水梯度下新疆杨耗水过程与灌溉制度初步研究. 中国农村水利水电, ( 9), 1-4.] | |
[40] |
Sun D, Guan DX, Yuan FH, Wang AZ, Wu JB ( 2010). Time lag effect between poplar sap flow velocity and microclimate factors in agroforestry system in west Liaoning Province. Chinese Journal of Applied Ecology, 21, 2742-2748.
PMID |
[ 孙迪, 关德新, 袁凤辉, 王安志, 吴家兵 ( 2010). 辽西农林复合系统中杨树液流速率与气象因子的时滞效应. 应用生态学报, 21, 2742-2748.]
PMID |
|
[41] | Sun HZ, Zhou XF, Zhao HX ( 2002). A researches on stem sap flow dynamics of Betula platyphylla . Acta Ecologica Sinica, 22, 1387-1391. |
[ 孙慧珍, 周晓峰, 赵惠勋 ( 2002). 白桦树干液流的动态研究. 生态学报, 22, 1387-1391.] | |
[42] | Sun L, Peng ZD, Wang JX, Lin YF ( 2015). Transpiration water consumption and growth of four energy resources plants of shrubs under different soil contents. Journal of Central South University of Forestry & Technology, 35(10), 54-61. |
[ 孙龙, 彭祚登, 王佳茜, 林玉峰 ( 2015). 不同土壤水分对4个灌木能源树种生长和蒸腾耗水的影响. 中南林业科技大学学报, 35(10), 54-61.] | |
[43] | Sun ZD, Nie LS, Xin Y, Luo PP, Ren ZX, Wei D, Li JY, Shen YB, Zhang ZY ( 2012). Coupling effect of water and nitrogen fertilizer on growth of established triploid Populus tomentosa . Chinese Journal of Soil Science, 43, 896-902. |
[ 孙兆地, 聂立水, 辛颖, 罗盼盼, 任忠秀, 韦丹, 李吉跃, 沈应柏, 张志毅 ( 2012). 水氮耦合效应对三倍体毛白杨林木生长状况的影响. 土壤通报, 43, 896-902.] | |
[44] |
Ungar ED, Rotenberg E, Raz-Yaseef N, Cohen S, Yakir D, Schiller G (2013). Transpiration and annual water balance of Aleppo pine in a semiarid region: implications for forest management. Forest Ecology and Management, 298, 39-51.
DOI URL |
[45] |
Urban J, Ingwers MW, McGuire MA, Teskey RO (2017). Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides × nigra. Journal of Experimental Botany, 68, 1757-1767.
DOI URL |
[46] |
Wang H, Ouyang ZY, Zheng H, Wang XK, Ni YM, Ren YF ( 2009). Time lag characteristics of stem sap flow of common tree species during their growth season in Beijing downtown. Chinese Journal of Applied Ecology, 20, 2111-2117.
PMID |
[ 王华, 欧阳志云, 郑华, 王效科, 倪永明, 任玉芬 ( 2009). 北京城区常见树种生长季树干液流的时滞特征. 应用生态学报, 20, 2111-2117.]
PMID |
|
[47] |
Wang H, Zhao P, Cai XA, Ma L, Rao XQ, Zeng XP ( 2008). Time lag effect between stem sap flow and photosynthetically active radiation, vapor pressure deficit of Acacia mangium . Chinese Journal of Applied Ecology, 19, 225-230.
PMID |
[ 王华, 赵平, 蔡锡安, 马玲, 饶兴权, 曾小平 ( 2008). 马占相思树干液流与光合有效辐射和水汽压亏缺间的时滞效应. 应用生态学报, 19, 225-230.]
PMID |
|
[48] | Wang JF ( 2019). Comparative analysis on growth of poplar seedlings under two hard branch cutting methods. Forest Investigation Design, 1, 90-92. |
[ 王剑锋 ( 2019). 两种硬枝扦插方式下的杨树苗生长比较分析. 林业勘查设计, 1, 90-92.] | |
[49] |
Wang S, Fan J, Ge JM, Wang QM, Fu W (2019). Discrepancy in tree transpiration of Salix matsudana, Populus simoniiunder distinct soil, topography conditions in an ecological rehabilitation area on the Northern Loess Plateau. Forest Ecology and Management, 432, 675-685.
DOI URL |
[50] | Wang X, Yu XX, Jia GD, Qiu YX, Shi JM, Zi ED ( 2020). Physiological activities and nitrogen allocation strategies of Platycladus orientalis seedlings under different soil water conditions . Journal of Soil and Water Conservation, 34, 311-317. |
[ 王鑫, 余新晓, 贾国栋, 邱云霄, 史佳美, 孜尔蝶 ( 2020). 不同土壤水分条件下侧柏幼苗的生理活动及氮素分配策略. 水土保持学报, 34, 311-317.] | |
[51] | Xi BY ( 2013). Research on Theories of Irrigation Management and Key Techniques of High Efficient Subsurface Drip Irrigation in Populus tomentosa Plantation . PhD dissertation, Beijing Forestry University,Beijing. |
[ 席本野 ( 2013). 毛白杨人工林灌溉管理理论及高效地下滴灌关键技术研究. 博士学位论文, 北京林业大学, 北京.] | |
[52] |
Xi BY, Bloomberg M, Watt MS, Wang Y, Jia LM (2016). Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain. Agricultural Water Management, 176, 243-254.
DOI URL |
[53] |
Xi BY, Li GD, Bloomberg M, Jia LM (2014). The effects of subsurface irrigation at different soil water potential thresholds on the growth and transpiration of Populus tomentosain the North China Plain. Australian Forestry, 77, 159-167.
DOI URL |
[54] | Xin FM, Yan XL, Zhang CY, Jia LM (2019). Characteristics of stem sap flow of two poplar species and their responses to environmental factors in Lhasa river valley of Tibet. Scientia Silvae Sinicae, 55, 22-32. |
[55] | Yan CZ, Zheng WG, Jia JB, Yan WD, Wang ZC, Jia GD ( 2020). Responses of canopy stomatal conductance of Platycladus orientalis to soil water under water control . Chinese Journal of Applied Ecology, 31, 4017-4026. |
[ 颜成正, 郑文革, 贾剑波, 闫文德, 王忠诚, 贾国栋 ( 2020). 控水条件下侧柏冠层气孔导度对土壤水的响应. 应用生态学报, 31, 4017-4026.] | |
[56] |
Yang J, Lyu JL, He QY, Yan MJ, Li GQ, Du S ( 2019). Time lag of stem sap flow and its relationships with transpiration characteristics in Quercus liaotungensis and Robina pseudoacaciain the loess hilly region, China . Chinese Journal of Applied Ecology, 30, 2607-2613.
DOI PMID |
[ 杨洁, 吕金林, 何秋月, 闫美杰, 李国庆, 杜盛 ( 2019). 黄土丘陵区辽东栎和刺槐树干液流时滞效应与蒸腾特征的关联性. 应用生态学报, 30, 2607-2613.]
PMID |
|
[57] |
Zhang HD, Wei W, Chen LD, Wang LX (2017). Effects of terracing on soil water and canopy transpiration of Pinus tabulaeformis in the Loess Plateau of China. Ecological Engineering, 102, 557-564.
DOI URL |
[58] |
Zhang ZZ, Zhao P, Zhao XH, Zhou J, Zhao PQ, Zeng XM, Hu YT, Ouyang L (2018). The tree height-related spatial variances of tree Sap flux density and its scale-up to stand transpiration in a subtropical evergreen broadleaf forest. Ecohydrology, 11, e1979. DOI: 10.1002/eco.1979.
DOI URL |
[1] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[2] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[3] | LI An-Yan, HUANG Xian-Fei, TIAN Yuan-Bin, DONG Ji-Xing, ZHENG Fei-Fei, XIA Pin-Hua. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China [J]. Chin J Plant Ecol, 2023, 47(8): 1171-1181. |
[4] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[5] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[6] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
[7] | ZHENG Ning, LI Su-Ying, WANG Xin-Ting, LÜ Shi-Hai, ZHAO Peng-Cheng, ZANG Chen, XU Yu-Long, HE Jing, QIN Wen-Hao, GAO Heng-Rui. Dominance of different plant life forms in the typical steppe evidenced from impacts of environmental factors on chlorophyll [J]. Chin J Plant Ecol, 2022, 46(8): 951-960. |
[8] | PENG Xin, JIN Guang-Ze. Effects of plant characteristics and environmental factors on the dark diversity in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 656-666. |
[9] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[10] | HUANG Jie, LI Xiao-Ling, WANG Xue-Song, YANG Jin, HUANG Cheng-Ming. Characteristics of Distylium chinense communities and their relationships with soil environmental factors in different water level fluctuation zones of the Three Gorges Reservoir, China [J]. Chin J Plant Ecol, 2021, 45(8): 844-859. |
[11] | LUO Ming-Mo, CHEN Yue, YANG Gang, HU Bin, LI Wei, CHEN Huai. Short-term response of soil prokaryotic community structure to water level restoration in degraded peatland of the Zoigê Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 552-561. |
[12] | WANG Zi-Wei, WAN Song-Ze, JIANG Hong-Mao, HU Yang, MA Shu-Qin, CHEN You-Chao, LU Xu-Yang. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 528-538. |
[13] | LI Yuan-Yuan, ZHANG Yun, KONG Zhao-Chen, YANG Zhen-Jing. Surface sporopollen and modern vegetation in Hongshanzui area, Altai, Xinjiang, China [J]. Chin J Plant Ecol, 2021, 45(2): 174-186. |
[14] | CHEN Sheng-Nan, CHEN Zuo-Si-Nan, ZHANG Zhi-Qiang. Canopy stomatal conductance characteristics of Pinus tabulaeformis and Acer truncatum and their responses to environmental factors in the mountain area of Beijing [J]. Chin J Plant Ecol, 2021, 45(12): 1329-1340. |
[15] | LIU Ling, FAN Ying-Jie, SONG Xiao-Tong, LI Min, SHAO Xiao-Ming, WANG Xiao-Rui. Bryophyte societies on the fallen logs of Pinus armandii with different decay classes in Sygera Mountains [J]. Chin J Plant Ecol, 2020, 44(8): 842-853. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn