Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (11): 1507-1522.DOI: 10.17521/cjpe.2023.0098
Special Issue: 全球变化与生态系统; 生态系统结构与功能; 生物多样性
• Research Articles • Previous Articles Next Articles
LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai()
Received:
2023-04-10
Accepted:
2023-06-15
Online:
2023-11-20
Published:
2023-12-22
Contact:
ZHAO Xiu-Hai(Supported by:
LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China[J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0098
Fig. 1 Geographic distribution of the 209 forest plots in temperate forests of northeast China. CBS, middle temperate Changbai Mountains; DXA, cold temperate Da Hinggan Mountains.
Fig. 2 Results of principal component (PC) analysis with geography, climate, and tree species diversity for the forest plots in temperate forests of northeast China. CBS, middle temperate Changbai Mountains; DXA, cold temperate Da Hinggan Mountains. bio1, annual mean air temperature; bio13, precipitation of the wettest month; bio16, precipitation of the driest quarter; bio19, precipitation of the coldest quarter; Chao’s richness, tree species diversity.
Fig. 3 Bivariate relationships between biodiversity and ecosystem multifunctionality (EMF) in temperate forests of northeast China.Chao’s richness, tree species diversity; FDq = 0, functional trait diversity;$R_{\text{adj}}^{2}$, the adjusted R2 of the model. The grey area represents the 95% confidence interval of the model. CBS, middle temperate Changbai Mountain; DXA, cold temperate Da Hinggan Mountains.
Fig. 4 Bivariate relationships between forest community trait variables and ecosystem multifunctionality (EMF) in temperate forests of northeast China. A, Community weighted mean trait values (CWM). B, Functional dispersion indices (FDis). Hmax, maximum tree height; LC:LN, leaf carbon nitrogen content ratio; LCC, leaf carbon content; LPC, leaf phosphorus content; multi, multidimensional trait; SLA, specific leaf area. R2adj, the adjusted R2 of the model. Blue solid line represents the trend line in the entire dataset, the grey area represents the 95% confidence interval of the model. CBS, middle temperate Changbai Mountains; DXA, cold temperate Da Hinggan Mountains.
Fig. 5 Bivariate relationships between forest community trait variables and ecosystem multifunctionality (EMF) in temperate forests of northeast China. CBS, Changbai Mountains; DXA, Da Hinggan Mountains. CWM, community weighted mean trait values; FDis, functional dispersion indices; FDq = 0, functional trait diversity; Hmax, maximum tree height; LC:LN, leaf carbon nitrogen content ratio; LCC, leaf carbon content; LPC, leaf phosphorus content; multi, multidimensional trait; SLA, specific leaf area. The dots and dashes represent the estimated values of standardized regression coefficients and the 95% confidence interval, respectively.
Fig. 6 Optimal predictors of ecosystem multifunctionality (EMF) in temperate forests of northeast China. CBS, Changbai Mountains. DXA, Da Hinggan Mountains. bio1, annual mean air temperature; bio13, precipitation of the wettest month; bio16, precipitation of the driest quarter; bio19, precipitation of the coldest quarter; CWMHmax, maximum tree height community weighted mean trait value; CWMSLA, specific leaf area community weighted mean trait value; FDisHmax, maximum tree height functional dispersion index; FDisLC:LN, leaf carbon nitrogen content ratio functional dispersion index; FDisSLA, specific leaf area functional dispersion index; FDisLCC, leaf carbon content functional dispersion index; FDisLPC, leaf phosphorus content functional dispersion index; FDismulti, multidimensional trait functional dispersion index; FDq = 0, functional trait diversity; Lat, latitude; Lon, longitude. R2adj, the adjusted R2 of the model. The dots and dashes represent the estimated values of standardized regression coefficients and the 95% confidence interval, respectively.
Fig. 7 Structural equation model about the impact of biotic and abiotic factors on ecosystem multifunctionality (EMF) in northeast temperate forests. CBS, Changbai Mountains. DXA, Da Hinggan Mountains. Chao’s richness, tree species diversity; CWMHmax, community weighted mean maximum tree height value; GoF, model goodness-of-fit value; rho, Dillon-Goldstein’s rho value. Solid black, red, and dashed lines represent positive, negative, and non-significant paths, respectively. Standardized path coefficients (β) are indicated near the arrow lines, and response variables’ R2 are provided. *, p < 0.05; ***, p < 0.001.
Fig. 8 Direct and indirect effects of biotic and abiotic factors on ecosystem multifunctionality (EMF) in temperate forests of northeast China. CBS, the Changbai Mountain; DXA, the Da Hinggan Mountains. Chao’s richness, tree species diversity; Climate, climate factor (latent variable); CWMHmax, community weighted mean maximum tree height value; Geography, geography factor (latent variable); Trait differences, trait differences (latent variable). The dark and transparent bars represent direct and indirect effects, respectively.
[1] |
Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Emmett Duffy J (2014). Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution, 5, 111-124.
DOI URL |
[2] |
Cadotte MW (2017). Functional traits explain ecosystem function through opposing mechanisms. Ecology Letters, 20, 989-996.
DOI PMID |
[3] | Chao A, Chiu CH, Villéger S, Sun IF, Thorn S, Lin YC, Chiang JM, Sherwin WB (2019). An attribute-diversity approach to functional diversity, functional beta diversity, and related (dis)similarity measures. Ecological Monographs, 89, e01343. DOI: 10.1002/ecm.1343. |
[4] |
Chao A, Henderson PA, Chiu CH, Moyes F, Hu KH, Dornelas M, Magurran AE (2021). Measuring temporal change in alpha diversity: a framework integrating taxonomic, phylogenetic and functional diversity and the iNEXT.3D standardization. Methods in Ecology and Evolution, 12, 1926-1940.
DOI URL |
[5] |
Crous KY, O’Sullivan OS, Zaragoza-Castells J, Bloomfield KJ, Negrini ACA, Meir P, Turnbull MH, Griffin KL, Atkin OK (2017). Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study. New Phytologist, 215, 992-1008.
DOI PMID |
[6] |
Da RH, Fan CY, Zhang CY, Zhao XH, von Gadow K (2023). Are absorptive root traits good predictors of ecosystem functioning? A test in a natural temperate forest. New Phytologist, 239, 75-86.
DOI URL |
[7] |
Fang JY, Guo ZD, Hu HF, Kato T, Muraoka H, Son Y (2014). Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Global Change Biology, 20, 2019-2030.
DOI PMID |
[8] |
Fick SE, Hijmans RJ (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315.
DOI URL |
[9] |
Fox JW (2005). Interpreting the “selection effect” of biodiversity on ecosystem function. Ecology Letters, 8, 846-856.
DOI URL |
[10] |
Gamfeldt L, Hillebrand H, Jonsson PR (2008). Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology, 89, 1223-1231.
DOI PMID |
[11] | Gamfeldt L, Roger F (2017). Revisiting the biodiversity- ecosystem multifunctionality relationship. Nature Ecology & Evolution, 1, 168. DOI: 10.1038/s41559-017-0168. |
[12] | Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, et al. (2013). Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, 1340. DOI: 10.1038/ncomms2328. |
[13] |
Godlee JL, Ryan CM, Bauman D, Bowers SJ, Carreiras JMB, Chisingui AV, Cromsigt JPGM, Druce DJ, Finckh M, Gonçalves FM, Holdo RM, Makungwa S, McNicol IM, Mitchard ETA, Muchawona A, et al. (2021). Structural diversity and tree density drive variation in the biodiversity-ecosystem function relationship of woodlands and savannas. New Phytologist, 232, 579-594.
DOI PMID |
[14] |
Grman E, Zirbel CR, Bassett T, Brudvig LA (2018). Ecosystem multifunctionality increases with beta diversity in restored prairies. Oecologia, 188, 837-848.
DOI PMID |
[15] | Gross N, Le Bagousse-Pinguet Y, Liancourt P, Berdugo M, Gotelli NJ, Maestre FT (2017). Functional trait diversity maximizes ecosystem multifunctionality. Nature Ecology & Evolution, 1, 132. DOI: 10.1038/s41559-017-0132. |
[16] |
Guo C, Yan ER, Cornelissen JHC (2022). Size matters for linking traits to ecosystem multifunctionality. Trends in Ecology & Evolution, 37, 803-813.
DOI URL |
[17] |
Hagan JG, Vanschoenwinkel B, Gamfeldt L (2021). We should not necessarily expect positive relationships between biodiversity and ecosystem functioning in observational field data. Ecology Letters, 24, 2537-2548.
DOI URL |
[18] |
Hao MH, Messier C, Geng Y, Zhang CY, Zhao XH, von Gadow K (2020). Functional traits influence biomass and productivity through multiple mechanisms in a temperate secondary forest. European Journal of Forest Research, 139, 959-968.
DOI |
[19] | Hautier Y, Isbell F, Borer ET, Seabloom EW, Stanley H W, Lind EM, MacDougall AS, Stevens CJ, Adler PB, Alberti J, Bakker JD, Brudvig LA, Buckley YM, Cadotte M, Caldeira MC, et al. (2018). Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution, 2, 50-56. |
[20] | Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng XY, Bauer-Marschallinger B, Guevara MA, Vargas R, MacMillan RA, Batjes NH, Leenaars JGB, et al. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12, e0169748. DOI: 10.1371/journal.pone.0169748. |
[21] | Hu WG, Ran JZ, Dong LW, Du QJ, Ji MF, Yao SR, Sun Y, Gong CM, Hou QQ, Gong HY, Chen RF, Lu JL, Xie SB, Wang ZQ, Huang H, et al. (2021). Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nature Communications, 12, 5350. DOI: 10.1038/s41467-021- 25641-0. |
[22] | Hu Y, Li XY, Guo AX, Yue P, Guo XX, Lv P, Zhao SL, Zuo XA (2022). Species diversity is a strong predictor of ecosystem multifunctionality under altered precipitation in desert steppes. Ecological Indicators, 137, 108762. DOI: 10.1016/j.ecolind.2022.108762. |
[23] | Huang XB, Su JR, Li SF, Liu WD, Lang XD (2019). Functional diversity drives ecosystem multifunctionality in a Pinus yunnanensis natural secondary forest. Scientific Reports, 9, 6979. DOI: 10.1038/s41598-019-43475-1. |
[24] |
Huang YY, Chen YX, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W, von Oheimb G, Yang XF, Liu XJ, Pei KQ, Both S, Yang B, Eichenberg D, et al. (2018). Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 362, 80-83.
DOI PMID |
[25] |
Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer TM, Bonin C, Bruelheide H, de Luca E, Ebeling A, Griffin JN, Guo QF, Hautier Y, Hector A, et al. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526, 574-577.
DOI |
[26] |
Isbell FI, Polley HW, Wilsey BJ (2009). Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecology Letters, 12, 443-451.
DOI PMID |
[27] | Jing X, Sanders NJ, Shi Y, Chu HY, Classen AT, Zhao K, Chen LT, Shi Y, Jiang YX, He JS (2015). The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 6, 8159. DOI: 10.1038/ncomms9159. |
[28] | Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, et al. (2011). TRY—A global database of plant traits. Global Change Biology, 17, 2905-2935. |
[29] |
Kraft NJB, Godoy O, Levine JM (2015). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 112, 797-802.
DOI PMID |
[30] |
Laliberté E, Legendre P (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305.
PMID |
[31] |
Lasky JR, Uriarte M, Boukili VK, Erickson DL, Kress WJ, Chazdon RL (2014). The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecology Letters, 17, 1158-1167.
DOI PMID |
[32] |
Li JL, Chen XP, Niklas KJ, Sun J, Wang ZY, Zhong QL, Hu DD, Cheng DL (2022). A whole-plant economics spectrum including bark functional traits for 59 subtropical woody plant species. Journal of Ecology, 110, 248-261.
DOI URL |
[33] | Li SF, Huang XB, Lang XD, Shen JY, Xu FD, Su JR (2020). Cumulative effects of multiple biodiversity attributes and abiotic factors on ecosystem multifunctionality in the Jinsha River valley of southwestern China. Forest Ecology and Management, 472, 118281. DOI: 10.1016/j.foreco.2020.118281. |
[34] | Li SF, Liu WD, Lang XD, Huang XB, Su JR (2021). Species richness, not abundance, drives ecosystem multifunctionality in a subtropical coniferous forest. Ecological Indicators, 120, 106911. DOI: 10.1016/j.ecolind.2020.106911. |
[35] |
Loreau M, de Mazancourt C (2013). Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecology Letters, 16, 106-115.
DOI URL |
[36] |
Loreau M, Hector A (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76.
DOI URL |
[37] |
Mensah S, du Toit B, Seifert T (2018). Diversity-biomass relationship across forest layers: implications for niche complementarity and selection effects. Oecologia, 187, 783-795.
DOI PMID |
[38] | Moi DA, Antoniazi Evangelista HB, Mormul RP, Evangelista LR, Thomaz SM (2021). Ecosystem multifunctionality and stability are enhanced by macrophyte richness in mesocosms. Aquatic Sciences, 83, 53. DOI: 10.1007/s00027-021-00808-5. |
[39] | Moi DA, Lansac-Tôha FM, Romero GQ, Sobral-Souza T, Cardinale BJ, Kratina P, Perkins DM, Teixeira de Mello F, Jeppesen E, Heino J, Lansac-Tôha FA, Velho LFM, Mormul RP (2022). Human pressure drives biodiversity- multifunctionality relationships in large Neotropical wetlands. Nature Ecology & Evolution, 6, 1279-1289. |
[40] |
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
DOI URL |
[41] |
Qiao XT, Lamy T, Wang SP, Hautier Y, Geng Y, White HJ, Zhang NL, Zhang ZH, Zhang CY, Zhao XH, von Gadow K (2023). Latitudinal patterns of forest ecosystem stability across spatial scales as affected by biodiversity and environmental heterogeneity. Global Change Biology, 29, 2242-2255.
DOI URL |
[42] |
Ratcliffe S, Liebergesell M, Ruiz-Benito P, Madrigal González J, Muñoz Castañeda JM, Kändler G, Lehtonen A, Dahlgren J, Kattge J, Peñuelas J, Zavala MA, Wirth C (2016). Modes of functional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25, 251-262.
DOI URL |
[43] | Roscher C, Schumacher J, Gubsch M, Lipowsky A, Weigelt A, Buchmann N, Schmid B, Schulze ED (2012). Using plant functional traits to explain diversity-productivity relationships. PLoS ONE, 7, e36760. DOI: 10.1371/journal.pone.0036760. |
[44] |
Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze ED (2003). The role of plant diversity and composition for nitrate leaching in grasslands. Ecology, 84, 1539-1552.
DOI URL |
[45] |
Shi XZ, Wang JQ, Lucas-Borja ME, Wang ZY, Li X, Huang ZQ (2021). Microbial diversity regulates ecosystem multifunctionality during natural secondary succession. Journal of Applied Ecology, 58, 2833-2842.
DOI URL |
[46] |
Stone R (2006). A threatened nature reserve breaks down Asian borders. Science, 313, 1379-1380.
DOI URL |
[47] | Tenenhaus M, Vinzi VE, Chatelin YM, Lauro C (2005). PLS path modeling. Computational Statistics & Data Analysis, 48, 159-205. |
[48] |
Tobner CM, Paquette A, Gravel D, Reich PB, Williams LJ, Messier C (2016). Functional identity is the main driver of diversity effects in young tree communities. Ecology Letters, 19, 638-647.
DOI PMID |
[49] |
Valencia E, Maestre FT, Le Bagousse-Pinguet Y, Quero JL, Tamme R, Börger L, García-Gómez M, Gross N (2015). Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytologist, 206, 660-671.
DOI PMID |
[50] |
van der Plas F (2019). Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews, 94, 1220-1245.
DOI URL |
[51] | van der Plas F, Manning P, Allan E, Scherer-Lorenzen M, Verheyen K, Wirth C, Zavala MA, Hector A, Ampoorter E, Baeten L, Barbaro L, Bauhus J, Benavides R, Benneter A, Berthold F, et al. (2016a). Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests. Nature Communications, 7, 11109. DOI: 10.1038/ncomms11109. |
[52] | van der Plas F, Manning P, Soliveres S, Allan E, Scherer-Lorenzen M, Verheyen K, Wirth C, Zavala MA, Ampoorter E, Baeten L, Barbaro L, Bauhus J, Benavides R, Benneter A, Bonal D, et al. (2016b). Biotic homogenization can decrease landscape-scale forest multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 113, 3557-3562. |
[53] |
van der Plas F, Ratcliffe S, Ruiz-Benito P, Scherer-Lorenzen M, Verheyen K, Wirth C, Zavala MA, Ampoorter E, Baeten L, Barbaro L, Bastias CC, Bauhus J, Benavides R, Benneter A, Bonal D, et al. (2018). Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecology Letters, 21, 31-42.
DOI PMID |
[54] | Wang WY, Hou YT, Pan WH, Vinay N, Mo F, Liao YC, Wen XX (2021). Continuous application of conservation tillage affects in situ N2O emissions and nitrogen cycling gene abundances following nitrogen fertilization. Soil Biology & Biochemistry, 157, 108239. DOI: 10.1016/j.soilbio.2021.108239. |
[55] | Wondimu MT, Nigussie ZA, Yusuf MM (2021). Tree species diversity predicts aboveground carbon storage through functional diversity and functional dominance in the dry evergreen Afromontane forest of Hararghe highland, Southeast Ethiopia. Ecological Processes, 10, 47. DOI: 10.1186/s13717-021-00322-4. |
[56] | Wu ZF, Zhang ZH, Wang J (2019). Estimating the productive potential of five natural forest types in northeastern China. Forest Ecosystems, 6, 42. DOI: 10.1186/s40663-019-0204-0. |
[57] |
Yachi S, Loreau M (1999). Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 96, 1463-1468.
DOI PMID |
[58] | Yan YZ, Zhang Q, Buyantuev A, Liu QF, Niu JM (2020). Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality. Science of the Total Environment, 726, 138529. DOI: 10.1016/j.scitotenv.2020.138529. |
[59] |
Yuan ZQ, Ali A, Loreau M, Ding F, Liu SF, Sanaei A, Zhou WM, Ye J, Lin F, Fang S, Hao ZQ, Wang XG, Le Bagousse-Pinguet Y (2021). Divergent above- and below-ground biodiversity pathways mediate disturbance impacts on temperate forest multifunctionality. Global Change Biology, 27, 2883-2894.
DOI PMID |
[60] |
Yuan ZQ, Ali A, Ruiz-Benito P, Jucker T, Mori AS, Wang SP, Zhang XK, Li H, Hao ZQ, Wang XG, Loreau M (2020). Above-and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient. Journal of Ecology, 108, 2012-2024.
DOI URL |
[61] | Yue QM, Hao MH, Geng Y, Wang XR, von Gadow K, Zhang CY, Zhao XH, Gao LS (2022). Evaluating alternative hypotheses behind biodiversity and multifunctionality relationships in the forests of Northeastern China. Forest Ecosystems, 9, 100027. DOI: 10.1016/j.fecs.2022.100027. |
[62] |
Zhang CY, He FL, Zhang ZH, Zhao XH, von Gadow K (2020). Latitudinal gradients and ecological drivers of β-diversity vary across spatial scales in a temperate forest region. Global Ecology and Biogeography, 29, 1257-1264.
DOI URL |
[63] |
Zirbel CR, Bassett T, Grman E, Brudvig LA (2017). Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. Journal of Applied Ecology, 54, 1070-1079.
DOI URL |
[1] | Yi-Heng Chen Yusupjan Rusul 吾斯曼 阿卜杜热合曼. Analysis of spatial and temporal variation in grassland vegetation cover in the Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[2] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[3] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[4] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[5] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[6] | ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(3): 341-348. |
[7] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[8] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[9] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[10] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[11] | SU Qi-Tao, DU Zhi-Xuan, ZHOU Bing, LIAO Yong-Hui, WANG Cheng-Cheng, XIAO Yi-An. Potential distribution of Impatiens davidii and its pollinator in China [J]. Chin J Plant Ecol, 2022, 46(7): 785-796. |
[12] | HU Xiao-Fei, WEI Lin-Feng, CHENG Qi, WU Xing-Qi, NI Jian. A climate diagram atlas of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(4): 484-492. |
[13] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[14] | CONG Nan, ZHANG Yang-Jian, ZHU Jun-Tao. Temperature sensitivity of vegetation phenology in spring in mid- to high-latitude regions of Northern Hemisphere during the recent three decades [J]. Chin J Plant Ecol, 2022, 46(2): 125-135. |
[15] | GAO De-Cai, BAI E. Influencing factors of soil nitrous oxide emission during freeze-thaw cycles [J]. Chin J Plant Ecol, 2021, 45(9): 1006-1023. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn