Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (2): 229-239.DOI: 10.17521/cjpe.2017.0218
• Research Articles • Previous Articles Next Articles
ZHANG Na1,2,3,ZHU Yang-Chun1,LI Zhi-Qiang5,LU Xin1,FAN Ru-Qin1,LIU Li-Zhu1,TONG Fei1,CHEN Jing3,MU Chun-Sheng4,*(),ZHANG Zhen-Hua1,*(
)
Online:
2018-02-20
Published:
2018-04-16
Contact:
Chun-Sheng MU,Zhen-Hua ZHANG
Supported by:
ZHANG Na, ZHU Yang-Chun, LI Zhi-Qiang, LU Xin, FAN Ru-Qin, LIU Li-ZhuTONG , Fei, CHEN Jing, MU Chun-Sheng, ZHANG Zhen-Hua. Effect of Pb pollution on the growth, biomass allocation and photosynthesis of Phragmites australis in flood and drought environment[J]. Chin J Plant Ecol, 2018, 42(2): 229-239.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0218
重复测量分析 Repeated measure (p) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | 时间 Time | 时间 × 铅 Time × Pb | 时间 × 水 Time × Water | 时间 × 铅 × 水 Time × Pb × Water | ||||||
母株生长 Growth of parent shoot | ||||||||||||
茎长 Stem length | < 0.001 | < 0.001 | < 0.01 | < 0.001 | < 0.01 | < 0.001 | < 0.001 | |||||
叶片死亡数 No. of dead leaves | 0.366 | < 0.001 | < 0.05 | < 0.001 | < 0.001 | < 0.001 | < 0.05 | |||||
子株生长 Growth of offspring shoot | ||||||||||||
茎长 Stem length | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | |||||
叶片死亡数 No. of dead leaves | 0.168 | < 0.001 | 0.913 | < 0.001 | < 0.05 | < 0.001 | 0.742 | |||||
生长指标 Growth parameters | 双因素方差分析 Two-way AVONA | |||||||||||
铅 Pb | 水 Water | 铅×水 Pb × water | ||||||||||
F | p | F | p | F | p | |||||||
母株叶片死亡率 Leaf mortality in parent shoots | 2.496 | 0.054 | 2.461 | 0.127 | 0.932 | 0.459 | ||||||
子株叶片死亡率 Leaf mortality in offspring shoots | 7.086 | < 0.001 | 2.185 | 0.150 | 4.353 | < 0.01 |
Table 1 Results of Repeated-measures and two-way ANOVA of the effect of Pb and water stress on growth of mother and daughter shoots of Phragmites australis
重复测量分析 Repeated measure (p) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | 时间 Time | 时间 × 铅 Time × Pb | 时间 × 水 Time × Water | 时间 × 铅 × 水 Time × Pb × Water | ||||||
母株生长 Growth of parent shoot | ||||||||||||
茎长 Stem length | < 0.001 | < 0.001 | < 0.01 | < 0.001 | < 0.01 | < 0.001 | < 0.001 | |||||
叶片死亡数 No. of dead leaves | 0.366 | < 0.001 | < 0.05 | < 0.001 | < 0.001 | < 0.001 | < 0.05 | |||||
子株生长 Growth of offspring shoot | ||||||||||||
茎长 Stem length | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | |||||
叶片死亡数 No. of dead leaves | 0.168 | < 0.001 | 0.913 | < 0.001 | < 0.05 | < 0.001 | 0.742 | |||||
生长指标 Growth parameters | 双因素方差分析 Two-way AVONA | |||||||||||
铅 Pb | 水 Water | 铅×水 Pb × water | ||||||||||
F | p | F | p | F | p | |||||||
母株叶片死亡率 Leaf mortality in parent shoots | 2.496 | 0.054 | 2.461 | 0.127 | 0.932 | 0.459 | ||||||
子株叶片死亡率 Leaf mortality in offspring shoots | 7.086 | < 0.001 | 2.185 | 0.150 | 4.353 | < 0.01 |
水分 Water level | 处理时间 Treatment time (d) | 指标 Parameter | 铅处理浓度 Pb concentration of treatments (mg·kg-1) | ||||
---|---|---|---|---|---|---|---|
对照 Control | 500 | 1 500 | 3 000 | 4 500 | |||
淹水 Flood | 30 | PSL (cm) | 18.13 ± 0.81a | 16.64 ± 0.75ab | 15.54 ± 0.40b | 13.10 ± 0.52c | 13.24 ± 0.29c |
PDLN (No.) | 1.28 ± 0.05b | 1.54 ± 0.12ab | 1.73 ± 0.11a | 1.90 ± 0.06a | 1.84 ± 0.13a | ||
PGR (cm·d-1) | 0.44 ± 0.03a | 0.39 ± 0.02ab | 0.35 ± 0.01b | 0.27 ± 0.02c | 0.28 ± 0.01c | ||
60 | PSL (cm) | 23.86 ± 0.83a | 22.34 ± 1.52ab | 22.71 ± 0.72ab | 19.22 ± 1.04b | 18.17 ± 0.54b | |
PDLN (No.) | 3.57 ± 0.15b | 3.65 ± 0.22b | 4.38 ± 0.14a | 4.50 ± 0.24a | 4.56 ± 0.08a | ||
PGR (cm·d-1) | 0.19 ± 0.02a | 0.19 ± 0.03a | 0.24 ± 0.01a | 0.21 ± 0.04a | 0.16 ± 0.02a | ||
90 | PSL (cm) | 26.00 ± 0.96a | 24.03 ± 1.84a | 24.21 ± 0.97a | 22.80 ± 0.57a | 21.68 ± 1.20a | |
PDLN (No.) | 7.02 ± 0.06a | 6.59 ± 0.43a | 6.61 ± 0.22a | 6.80 ± 0.16a | 6.43 ± 0.15a | ||
PGR (cm·d-1) | 0.07 ± 0.03a | 0.06 ± 0.01a | 0.05 ± 0.01a | 0.12 ± 0.04a | 0.12 ± 0.03a | ||
干旱 Drought | 30 | PSL (cm) | 12.17 ± 0.88a* | 11.90 ± 0.73a* | 9.30 ± 0.37b* | 7.87 ± 0.36b* | 7.72 ± 0.42b* |
PDLN (No.) | 1.64 ± 0.06c* | 2.08 ± 0.15b* | 2.13 ± 0.05ab* | 2.18 ± 0.10ab* | 2.42 ± 0.17a* | ||
PGR (cm·d-1) | 0.24 ± 0.03a* | 0.23 ± 0.02a* | 0.15 ± 0.01b* | 0.10 ± 0.01b* | 0.09 ± 0.01b* | ||
60 | PSL (cm) | 17.30 ± 0.54a* | 15.06 ± 0.89b* | 11.15 ± 0.57c* | 9.09 ± 0.42d* | 7.58 ± 0.61d* | |
PDLN (No.) | 2.60 ± 0.04b | 3.19 ± 0.27a* | 3.33 ± 0.12a* | 3.51 ± 0.17a* | 3.65 ± 0.15a* | ||
PGR (cm·d-) | 0.17 ± 0.03a | 0.11 ± 0.01b* | 0.06 ± 0.01bc* | 0.04 ± 0.00c* | 0.02 ± 0.01c* | ||
90 | PSL (cm) | 20.29 ± 0.94a* | 18.14 ± 0.74a* | 13.61 ± 0.94b* | 9.43 ± 0.10c* | 8.31 ± 0.53c* | |
PDLN (No.) | 7.32 ± 0.16a | 5.46 ± 0.15b* | 4.82 ± 0.13bc* | 4.73 ± 0.34bc* | 4.08 ± 0.36c* | ||
PGR (cm·d-1) | 0.10 ± 0.02a | 0.10 ± 0.03a | 0.08 ± 0.03ab | 0.02 ± 0.01b | 0.03 ± 0.01b* |
Table 2 The effects of Pb on the growth of parent shoots of Phragmites australis grown in flood and dry environment after 30, 60 and 90 days of treatment (mean ± SE, n = 40)
水分 Water level | 处理时间 Treatment time (d) | 指标 Parameter | 铅处理浓度 Pb concentration of treatments (mg·kg-1) | ||||
---|---|---|---|---|---|---|---|
对照 Control | 500 | 1 500 | 3 000 | 4 500 | |||
淹水 Flood | 30 | PSL (cm) | 18.13 ± 0.81a | 16.64 ± 0.75ab | 15.54 ± 0.40b | 13.10 ± 0.52c | 13.24 ± 0.29c |
PDLN (No.) | 1.28 ± 0.05b | 1.54 ± 0.12ab | 1.73 ± 0.11a | 1.90 ± 0.06a | 1.84 ± 0.13a | ||
PGR (cm·d-1) | 0.44 ± 0.03a | 0.39 ± 0.02ab | 0.35 ± 0.01b | 0.27 ± 0.02c | 0.28 ± 0.01c | ||
60 | PSL (cm) | 23.86 ± 0.83a | 22.34 ± 1.52ab | 22.71 ± 0.72ab | 19.22 ± 1.04b | 18.17 ± 0.54b | |
PDLN (No.) | 3.57 ± 0.15b | 3.65 ± 0.22b | 4.38 ± 0.14a | 4.50 ± 0.24a | 4.56 ± 0.08a | ||
PGR (cm·d-1) | 0.19 ± 0.02a | 0.19 ± 0.03a | 0.24 ± 0.01a | 0.21 ± 0.04a | 0.16 ± 0.02a | ||
90 | PSL (cm) | 26.00 ± 0.96a | 24.03 ± 1.84a | 24.21 ± 0.97a | 22.80 ± 0.57a | 21.68 ± 1.20a | |
PDLN (No.) | 7.02 ± 0.06a | 6.59 ± 0.43a | 6.61 ± 0.22a | 6.80 ± 0.16a | 6.43 ± 0.15a | ||
PGR (cm·d-1) | 0.07 ± 0.03a | 0.06 ± 0.01a | 0.05 ± 0.01a | 0.12 ± 0.04a | 0.12 ± 0.03a | ||
干旱 Drought | 30 | PSL (cm) | 12.17 ± 0.88a* | 11.90 ± 0.73a* | 9.30 ± 0.37b* | 7.87 ± 0.36b* | 7.72 ± 0.42b* |
PDLN (No.) | 1.64 ± 0.06c* | 2.08 ± 0.15b* | 2.13 ± 0.05ab* | 2.18 ± 0.10ab* | 2.42 ± 0.17a* | ||
PGR (cm·d-1) | 0.24 ± 0.03a* | 0.23 ± 0.02a* | 0.15 ± 0.01b* | 0.10 ± 0.01b* | 0.09 ± 0.01b* | ||
60 | PSL (cm) | 17.30 ± 0.54a* | 15.06 ± 0.89b* | 11.15 ± 0.57c* | 9.09 ± 0.42d* | 7.58 ± 0.61d* | |
PDLN (No.) | 2.60 ± 0.04b | 3.19 ± 0.27a* | 3.33 ± 0.12a* | 3.51 ± 0.17a* | 3.65 ± 0.15a* | ||
PGR (cm·d-) | 0.17 ± 0.03a | 0.11 ± 0.01b* | 0.06 ± 0.01bc* | 0.04 ± 0.00c* | 0.02 ± 0.01c* | ||
90 | PSL (cm) | 20.29 ± 0.94a* | 18.14 ± 0.74a* | 13.61 ± 0.94b* | 9.43 ± 0.10c* | 8.31 ± 0.53c* | |
PDLN (No.) | 7.32 ± 0.16a | 5.46 ± 0.15b* | 4.82 ± 0.13bc* | 4.73 ± 0.34bc* | 4.08 ± 0.36c* | ||
PGR (cm·d-1) | 0.10 ± 0.02a | 0.10 ± 0.03a | 0.08 ± 0.03ab | 0.02 ± 0.01b | 0.03 ± 0.01b* |
水分 Water level | 处理时间 Treatment time (d) | 指标 Parameter | 铅处理浓度 Pb concentration of treatments (mg·kg-1) | ||||
---|---|---|---|---|---|---|---|
对照 Control | 500 | 1 500 | 3 000 | 4 500 | |||
淹水 Flood | 30 | OSL (cm) | 15.08 ± 0.88a | 13.20 ± 0.99ab | 11.28 ± 0.95b | 8.42 ± 0.26c | 7.92 ± 0.35c |
ODLN (No.) | 0.27 ± 0.09a | 0.28 ± 0.05a | 0.06 ± 0.03b | 0.06 ± 0.03b | 0.00 ± 0.00b | ||
OGR (cm·d-1) | 0.76 ± 0.05a | 0.66 ± 0.05ab | 0.57 ± 0.05b | 0.42 ± 0.01c | 0.40 ± 0.02c | ||
60 | OSL (cm) | 31.06 ± 0.37a | 30.08 ± 0.42a | 28.53 ± 0.77a | 20.12 ± 0.73b | 15.24 ± 0.83c | |
ODLN (No.) | 1.49 ± 0.10a | 1.50 ± 0.17a | 1.74 ± 0.34a | 1.82 ± 0.20a | 1.96 ± 0.22a | ||
OGR (cm·d-1) | 0.53 ± 0.03a | 0.57 ± 0.02a | 0.58 ± 0.02a | 0.39 ± 0.03b | 0.24 ± 0.03c | ||
90 | OSL (cm) | 41.22 ± 1.14a | 40.97 ± 1.19a | 40.65 ± 1.68a | 32.98 ± 1.78b | 22.41 ± 0.74c | |
ODLN (No.) | 3.28 ± 0.15a | 2.99 ± 0.27ab | 2.95 ± 0.22ab | 3.10 ± 0.20ab | 2.53 ± 0.35b | ||
OGR (cm·d-1) | 0.34 ± 0.05ab | 0.36 ± 0.03a | 0.40 ± 0.04a | 0.43 ± 0.04a | 0.24 ± 0.03b | ||
干旱Drought | 30 | OSL (cm) | 4.50 ± 0.65a* | 3.38 ± 0.63a* | 3.38 ± 0.55a* | 3.50 ± 0.29a* | 1.50 ± 0.05b* |
ODLN (No.) | 0.00 ± 0.00a* | 0.00 ± 0.00a* | 0.00 ± 0.00a | 0.00 ± 0.00a | 0.00 ± 0.00a | ||
OGR (cm·d-1) | 0.23 ± 0.03a* | 0.17 ± 0.03a* | 0.17 ± 0.03a* | 0.18 ± 0.01a* | 0.07 ± 0.00b* | ||
60 | OSL (cm) | 19.95 ± 1.08a* | 11.23 ± 0.43b* | 5.55 ± 0.75c* | 4.44 ± 0.87c* | 3.65 ± 0.61c* | |
ODLN (No.) | 0.10 ± 0.04a* | 0.14 ± 0.05a* | 0.15 ± 0.05a* | 0.25 ± 0.16a* | 0.06 ± 0.06a* | ||
OGR (cm·d-1) | 0.52 ± 0.03a | 0.26 ± 0.03b* | 0.07 ± 0.04cd* | 0.03 ± 0.02d* | 0.14 ± 0.04c | ||
90 | OSL (cm) | 28.82 ± 1.16a* | 24.56 ± 0.76b* | 14.46 ± 1.00c* | 8.45 ± 0.25d* | 4.13 ± 0.12e* | |
ODLN (No.) | 2.23 ± 0.28a* | 1.83 ± 0.11ab* | 1.40 ± 0.26ab* | 1.86 ± 0.34ab* | 1.21 ± 0.44b* | ||
OGR (cm·d-1) | 0.30 ± 0.06b | 0.44 ± 0.03a | 0.30 ± 0.05b | 0.13 ± 0.03c* | 0.03 ± 0.02c* |
Table 3 The effects of Pb on the growth of offspring shoots of Phragmites australis grown in flood and dry environment after 30, 60 and 90 days of treatment (means ± SE, n = 40)
水分 Water level | 处理时间 Treatment time (d) | 指标 Parameter | 铅处理浓度 Pb concentration of treatments (mg·kg-1) | ||||
---|---|---|---|---|---|---|---|
对照 Control | 500 | 1 500 | 3 000 | 4 500 | |||
淹水 Flood | 30 | OSL (cm) | 15.08 ± 0.88a | 13.20 ± 0.99ab | 11.28 ± 0.95b | 8.42 ± 0.26c | 7.92 ± 0.35c |
ODLN (No.) | 0.27 ± 0.09a | 0.28 ± 0.05a | 0.06 ± 0.03b | 0.06 ± 0.03b | 0.00 ± 0.00b | ||
OGR (cm·d-1) | 0.76 ± 0.05a | 0.66 ± 0.05ab | 0.57 ± 0.05b | 0.42 ± 0.01c | 0.40 ± 0.02c | ||
60 | OSL (cm) | 31.06 ± 0.37a | 30.08 ± 0.42a | 28.53 ± 0.77a | 20.12 ± 0.73b | 15.24 ± 0.83c | |
ODLN (No.) | 1.49 ± 0.10a | 1.50 ± 0.17a | 1.74 ± 0.34a | 1.82 ± 0.20a | 1.96 ± 0.22a | ||
OGR (cm·d-1) | 0.53 ± 0.03a | 0.57 ± 0.02a | 0.58 ± 0.02a | 0.39 ± 0.03b | 0.24 ± 0.03c | ||
90 | OSL (cm) | 41.22 ± 1.14a | 40.97 ± 1.19a | 40.65 ± 1.68a | 32.98 ± 1.78b | 22.41 ± 0.74c | |
ODLN (No.) | 3.28 ± 0.15a | 2.99 ± 0.27ab | 2.95 ± 0.22ab | 3.10 ± 0.20ab | 2.53 ± 0.35b | ||
OGR (cm·d-1) | 0.34 ± 0.05ab | 0.36 ± 0.03a | 0.40 ± 0.04a | 0.43 ± 0.04a | 0.24 ± 0.03b | ||
干旱Drought | 30 | OSL (cm) | 4.50 ± 0.65a* | 3.38 ± 0.63a* | 3.38 ± 0.55a* | 3.50 ± 0.29a* | 1.50 ± 0.05b* |
ODLN (No.) | 0.00 ± 0.00a* | 0.00 ± 0.00a* | 0.00 ± 0.00a | 0.00 ± 0.00a | 0.00 ± 0.00a | ||
OGR (cm·d-1) | 0.23 ± 0.03a* | 0.17 ± 0.03a* | 0.17 ± 0.03a* | 0.18 ± 0.01a* | 0.07 ± 0.00b* | ||
60 | OSL (cm) | 19.95 ± 1.08a* | 11.23 ± 0.43b* | 5.55 ± 0.75c* | 4.44 ± 0.87c* | 3.65 ± 0.61c* | |
ODLN (No.) | 0.10 ± 0.04a* | 0.14 ± 0.05a* | 0.15 ± 0.05a* | 0.25 ± 0.16a* | 0.06 ± 0.06a* | ||
OGR (cm·d-1) | 0.52 ± 0.03a | 0.26 ± 0.03b* | 0.07 ± 0.04cd* | 0.03 ± 0.02d* | 0.14 ± 0.04c | ||
90 | OSL (cm) | 28.82 ± 1.16a* | 24.56 ± 0.76b* | 14.46 ± 1.00c* | 8.45 ± 0.25d* | 4.13 ± 0.12e* | |
ODLN (No.) | 2.23 ± 0.28a* | 1.83 ± 0.11ab* | 1.40 ± 0.26ab* | 1.86 ± 0.34ab* | 1.21 ± 0.44b* | ||
OGR (cm·d-1) | 0.30 ± 0.06b | 0.44 ± 0.03a | 0.30 ± 0.05b | 0.13 ± 0.03c* | 0.03 ± 0.02c* |
生长指标 Growth parameters | 双因素方差分析 Two-way AVONA | |||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
根长 Root length | 184.571 | < 0.001 | 273.946 | < 0.001 | 4.605 | < 0.01 |
根茎长 Rhizome length | 65.735 | < 0.001 | 126.045 | < 0.002 | 5.271 | < 0.01 |
根茎数 No. of rhizomes | 92.408 | < 0.001 | 207.906 | < 0.003 | 8.108 | < 0.001 |
芽数 No. of buds | 42.807 | < 0.001 | 51.986 | < 0.004 | 6.879 | < 0.001 |
子株数 No. of offspring shoots | 12.658 | < 0.001 | 442.488 | < 0.005 | 4.293 | < 0.01 |
Table 4 Results of two-way ANOVA of the effect of Pb and water stress on rhizome growth, number of buds and offspring shoots of Phragmites australis
生长指标 Growth parameters | 双因素方差分析 Two-way AVONA | |||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
根长 Root length | 184.571 | < 0.001 | 273.946 | < 0.001 | 4.605 | < 0.01 |
根茎长 Rhizome length | 65.735 | < 0.001 | 126.045 | < 0.002 | 5.271 | < 0.01 |
根茎数 No. of rhizomes | 92.408 | < 0.001 | 207.906 | < 0.003 | 8.108 | < 0.001 |
芽数 No. of buds | 42.807 | < 0.001 | 51.986 | < 0.004 | 6.879 | < 0.001 |
子株数 No. of offspring shoots | 12.658 | < 0.001 | 442.488 | < 0.005 | 4.293 | < 0.01 |
Fig. 1 Effects of Pb pollution on growth of below-ground organs and abundance of above-ground offspring shoots of Phragmites australis in flood and dry environment (mean ± SE, n = 40). Different lowercase letters indicate significant differences (p ≤ 0.05) between Pb levels within one water treatment level, and * indicates significant difference (p ≤ 0.05) between water treatment and drought treatment within one Pb level.
双因素方差分析 Two-way AVONA | ||||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
根 Roots | 63.55 | < 0.001 | 124.45 | < 0.001 | 2.56 | 0.06 |
根茎 Rhizomes | 55.76 | < 0.001 | 77.79 | < 0.001 | 4.41 | < 0.01 |
母株 Parent shoots | 7.31 | < 0.001 | 39.32 | < 0.001 | 7.48 | < 0.001 |
子株 Offspring shoots | 42.52 | < 0.001 | 270.30 | < 0.001 | 6.95 | < 0.001 |
Table 5 Results of two-way ANOVA of the effect of Pb and water stress on biomass of Phragmites australis
双因素方差分析 Two-way AVONA | ||||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
根 Roots | 63.55 | < 0.001 | 124.45 | < 0.001 | 2.56 | 0.06 |
根茎 Rhizomes | 55.76 | < 0.001 | 77.79 | < 0.001 | 4.41 | < 0.01 |
母株 Parent shoots | 7.31 | < 0.001 | 39.32 | < 0.001 | 7.48 | < 0.001 |
子株 Offspring shoots | 42.52 | < 0.001 | 270.30 | < 0.001 | 6.95 | < 0.001 |
Fig. 2 The effects of Pb pollution on biomass accumulation of different organs of Phragmites australis in flood and dry environment (mean ± SE, n = 40). Different lowercase letters indicate significant differences (p ≤ 0.05) between Pb levels within one water treatment level, and * indicates significant difference (p ≤ 0.05) between water treatment and drought treatment within one Pb level.
Fig. 3 The percentage of different organ biomass in total biomass of Phragmites australis subjected to Pb concentration in flood and dry environment (mean ± SE, n = 40). Different lowercase letters indicate significant differences (p ≤ 0.05) between Pb levels within one water treatment level, and * indicates significant difference (p ≤ 0.05) between water treatment and drought treatment within one Pb level.
光合参数 Photosynthetic parameters | 双因素方差分析 Two-way AVONA | |||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
净光合速率 Net photosynthetic rate | 12.69 | <0.001 | 20.38 | <0.001 | 6.92 | <0.001 |
气孔导度 Stomatal conductance | 16.90 | <0.001 | 95.36 | <0.001 | 3.80 | <0.01 |
胞间CO2浓度 Intercellular CO2 concentration | 9.80 | <0.001 | 111.35 | <0.001 | 1.54 | 0.23 |
蒸腾速率 Transpiration rate | 6.08 | <0.001 | 88.80 | <0.001 | 1.07 | 0.38 |
Table 6 Results of two-way ANOVA of the effect of Pb and water stress on photosynthesis of Phragmites australis
光合参数 Photosynthetic parameters | 双因素方差分析 Two-way AVONA | |||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅 × 水 Pb × water | ||||
F | p | F | p | F | p | |
净光合速率 Net photosynthetic rate | 12.69 | <0.001 | 20.38 | <0.001 | 6.92 | <0.001 |
气孔导度 Stomatal conductance | 16.90 | <0.001 | 95.36 | <0.001 | 3.80 | <0.01 |
胞间CO2浓度 Intercellular CO2 concentration | 9.80 | <0.001 | 111.35 | <0.001 | 1.54 | 0.23 |
蒸腾速率 Transpiration rate | 6.08 | <0.001 | 88.80 | <0.001 | 1.07 | 0.38 |
Fig. 4 The effects of Pb pollution on photosynthesis of parent and offspring shoots of Phragmites australis in flood and dry environment (mean ± SE, n = 16). Different lowercase letters indicate significant differences (p ≤ 0.05) between Pb levels within one water treatment level, and * indicates significant difference (p ≤ 0.05) between water treatment and drought treatment within one Pb level.
Fig. 5 The Pb concentrations in different parts of Phragmites australis subjected to Pb in flood and dry environment (mean ± SE, n = 4). Different lowercase letters indicate significant differences (p ≤0.05) between Pb levels within one water treatment level, and * indicates significant difference (p ≤ 0.05) between water treatment and drought treatment within one Pb level.
双因素方差分析 Two-way AVONA | ||||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅×水 Pb × water | ||||
F | p | F | p | F | p | |
根 Roots | 472.06 | <0.001 | 1 061.42 | <0.001 | 166.30 | <0.001 |
根茎 Rhizomes | 174.54 | <0.001 | 317.95 | <0.001 | 79.07 | <0.001 |
母株 Parent shoots | 3 304.20 | <0.001 | 369.17 | <0.001 | 434.26 | <0.001 |
子株 Offspring shoots | 2 392.36 | <0.001 | 42.83 | <0.001 | 31.27 | <0.001 |
Table 7 Results of two-way ANOVA of the effect of Pb and water stress on Pb concentrations in organs of Phragmites australis
双因素方差分析 Two-way AVONA | ||||||
---|---|---|---|---|---|---|
铅 Pb | 水 Water | 铅×水 Pb × water | ||||
F | p | F | p | F | p | |
根 Roots | 472.06 | <0.001 | 1 061.42 | <0.001 | 166.30 | <0.001 |
根茎 Rhizomes | 174.54 | <0.001 | 317.95 | <0.001 | 79.07 | <0.001 |
母株 Parent shoots | 3 304.20 | <0.001 | 369.17 | <0.001 | 434.26 | <0.001 |
子株 Offspring shoots | 2 392.36 | <0.001 | 42.83 | <0.001 | 31.27 | <0.001 |
[1] | Ahmad MSA, Hussain M, Ijaz S, Alvi AK (2008). Photosynthetic performance of two mung bean (Vigna radiata) cultivars under lead and copper stress. International Journal of Agriculture and Biology, 10, 167-172. |
[2] | Benson EJ (2001). Effects of Fire on Tallgrass Prairie Plant Population Dynamics. Master degree thesis, Kansas State University, Manhattan. |
[3] |
Benson EJ, Hartnett DC (2006). The role of seed and vegetative reproduction in plant recruitment and demography in tallgrass prairie.Plant Ecology, 187, 163-178.
DOI URL |
[4] |
Brewer JS, Bertness MD (1996). Disturbance and intraspecific variation in the clonal morphology of salt marsh perennials.Oikos, 77, 107-116.
DOI URL |
[5] |
Cao M, Huang PW, Zhang N, Cheng LY, Mu CS (2016). Effects of lead contamination on underground bud and output of aboveground shoots of Phragmites australis (common reed) under different water regimes. Journal of Southwest University for Nationalities (Natural Science Edition), 42(2), 131-138.
DOI URL |
[曹明, 黄蓬万, 张娜, 程露瑶, 穆春生 (2016). 不同水分生境下铅胁迫对芦苇地下芽库及其输出子株能力的影响. 西南民族大学学报(自然科学版), 42(2), 131-138.]
DOI URL |
|
[6] |
Dalgleish HJ, Hartnett DC (2006). Below-ground bud banks increase along a precipitation gradient of the North American Great Plains: A test of the meristem limitation hypothesis.New Phytologist, 171, 81-89.
DOI URL |
[7] | Davies BE (1990). Lead. In: Alloway BJ ed. Heavy Metals in Soils. John Wiley & Sons,New York. 177-196. |
[8] |
Fernandes PM, Vega JA, Jiménez E, Rigolot E (2008). Fire resistance of European pines.Forest Ecology and Management, 256, 246-255.
DOI URL |
[9] | Harper JL (1977). Population Biology of Plants. Academic Press, London. |
[10] | Hartnett DC, Setshogo MP, Dalgleish HJ (2006). Bud banks of perennial savanna grasses in Botswana.African Journal of Ecology, 44, 256-263. |
[11] | Hechmi N, Aissa NB, Abdenaceur HA, Jedidi N (2014). Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-?contaminated soils.Environmental Science and Pollution Research, 21, 1304-1313. |
[12] | Henry C, Amoros C (1996). Are the banks a source of recolonization after disturbance: An experiment on aquatic vegetation in a former channel of the Rh?ne River.Hydrobiologia, 330, 151-162 |
[13] | Hu R, Sun K, Su X, Pan YX, Zhang YF, Wang XP (2012). Physiological responses and tolerance mechanisms to Pb in two xerophils: Salsola passerina Bunge and Chenopodium album L. Journal of Hazardous Materials, 205-206, 131-138. |
[14] | Islam E, Liu D, Li TQ, Yang XE, Jin XF, Mahmood Q, Tian S, Li JY (2008). Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of Hazardous Materials, 154, 914-926. |
[15] |
Li ZL, Zhang YT, Yu DF, Zhang N, Lin JX, Zhang JW, Tang JH, Wang JF, Mu CS (2014). The influence of precipitation regimes and elevated CO2 on photosynthesis and biomass accumulation and partitioning in seedlings of the rhizomatous perennial grassLeymus chinensis. PLOS ONE, 9, e103633. DOI: 10.1371/journal.pone.0103633.
DOI |
[16] | Liu B, Liu ZM, Wang LX, Wang ZN (2014). Responses of rhizomatous grass Phragmites communis to wind erosion: Effects on biomass allocation.Pant and Soil, 380, 389-398. |
[17] | Mony C, Puijalon S, Bornette G (2011). Resprouting response of aquatic clonal plants to cutting may explain their risistance to spate flooding. Flia Geobotanic, 46, 155-164. |
[18] | Nishihiro J, Araki S, Fujiwara N, Washitani I (2004). Germination characteristics of lakeshore plants under an arti?cially stabilizedwater regime.Aquatic Botany, 79, 333-343. |
[19] | Sharma P, Dubey RS (2005). Lead toxicity in plants.Brazilian Journal of Plant Physiology, 17(1), 35-52. |
[20] | Wang JF, Gao S, Lin JX, Mu YG, Mu CS (2010). Summer warming effects on biomass production and clonal growth ofLeymus chinensis. Crop Pasture Science, 61, 670-676. |
[21] | Wang PF, Zhang SH, Wang C, Lu J (2012). Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plantVallisneria natans. Ecotoxicology and Environmental Safety, 78, 28-34. |
[22] | Weis JS, Weis P (2004). Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration.Environment International, 30, 685-700. |
[23] | Windham L, Weis JS, Weis P (2001). Lead uptake, distribution, and effects in two dominant salt marsh macrophytes,Spartina alterniflora (cordgrass) and Phragmites australis 42, 811-816. |
[24] | Ye ZH, Baker AJM, Wong MH, Willis AJ (1997). Zinc, lead and cadmium tolerance, uptake and accumulation by the common reed,phragmites australis(Cav.) Trin. ex Steudel. Annal of Botany, 80, 363-370. |
[25] | Zhang N, Zhang JW, Yang YH, Li XY, Lin JX, Li ZL, Cheng LY, Wang JF, Mu CS, Wang AX (2015). Effects of lead contamination on the clonal propagative ability of Phragmites australis(common reed) grown in wet and dry environments. Plant Biology, 17, 893-903. |
[26] | Zhu TC (2004). The Bio-ecology of Leymus chinensis.Jilin Science and Technology Press, Changchun. 85-89. |
[祝廷成 (2004). 羊草生物生态学. 吉林科学技术出版社, 长春. 85-89.] |
[1] | 小宁 赵 晓楠 田 Li Xin Guang-De LI 有正 郭 Li-Ming JIA JIE DUAN Ben-Ye XI. Analysis of the applicability of Granier’s original equation for calculating the stem sap flux density — take Populus tomentosa as an example [J]. Chin J Plant Ecol, 2023, 47(预发表): 0-0. |
[2] | Wei ZHU ZHOU Ou SUN Yi-Ming Gulimire YILIHAMU WANG Ya-Fei YANG Hong-Qing Li-Ming JIA Ben-Ye XI. Dynamic niche partitioning in root water uptake of Populus tomentosa and Robinia pseudo-acacia in mixed forest [J]. Chin J Plant Ecol, 2023, 47(预发表): 0-0. |
[3] | . A review of stable hydrogen and oxygen isotopic offset in plant water source research [J]. Chin J Plant Ecol, 2023, 47(1): 0-0. |
[4] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[5] | LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085. |
[6] | WU Min, TIAN Yu, FAN Da-Yong, ZHANG Xiang-Xue. Hydraulic regulation of Populus tomentosa and Acer truncatum under drought stress [J]. Chin J Plant Ecol, 2022, 46(9): 1086-1097. |
[7] | ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049. |
[8] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[9] | WANG Jun-Qiang, LIU Bin, CHANG Feng, MA Zi-Jing, FAN Jia-Hui, HE Xiang-Ju, YOU Si-Xue, Aerziguli ABUDUREXITI, YANG Ying-Ke, SHEN Xin-Yan. Plant functional traits and ecological stoichiometric characteristics under water-salt gradient in the lakeshore zone of Bosten Lake [J]. Chin J Plant Ecol, 2022, 46(8): 961-970. |
[10] | FENG Yin-Cheng, WANG Yun-Qi, WANG Yu-Jie, WANG Kai, WANG Song-Nian, WANG Jie-Shuai. Water vapor fluxes and their relationship with environmental factors in a conifer-broadleaf mixed forest ecosystem in Jinyun Mountain, Chongqing, China [J]. Chin J Plant Ecol, 2022, 46(8): 890-903. |
[11] | WEI Long-Xin, GENG Yan, CUI Ke-Da, QIAO Xue-Tao, YUE Qing-Min, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Responses of tree growth to harvesting intensity among forest strata and growth stages in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 642-655. |
[12] | HUANG Dong-Liu, XIANG Wei, LI Zhong-Guo, ZHU Shi-Dan. Hydraulic architecture and safety margin in ten afforestation species in a lower subtropical region [J]. Chin J Plant Ecol, 2022, 46(5): 602-612. |
[13] | LI Si-Yuan, ZHANG Zhao-Xin, RAO Liang-Yi. Responses of non-structural carbohydrates and growth hormone in Morus alba seedlings to flooding stress [J]. Chin J Plant Ecol, 2022, 46(3): 311-320. |
[14] | XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China [J]. Chin J Plant Ecol, 2022, 46(2): 136-147. |
[15] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn