Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (6): 856-866.DOI: 10.17521/cjpe.2022.0183
Special Issue: 全球变化与生态系统
• Research Articles • Previous Articles Next Articles
WU Fan1,2, WU Chen1,2, ZHANG Yu-Hui1,2, YU Heng1,2, WEI Zhi-Hua1,2, ZHENG Wei1,2, LIU Xiao-Fei1,2, CHEN Shi-Dong1,2, YANG Zhi-Jie1,2, XIONG De-Cheng1,2,*()
Received:
2022-05-07
Accepted:
2022-09-28
Online:
2023-06-20
Published:
2022-09-28
Contact:
* (Supported by:
WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons[J]. Chin J Plant Ecol, 2023, 47(6): 856-866.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0183
Fig. 1 Effects of warming on soil temperature and moisture in a mature Cunninghamia lanceolata plantation in year 2021. CT, control treatment; W, warming treatment.
Fig. 2 Effects of warming on growth of fine roots in a mature Cunninghamia lanceolata plantation in rainy (A) and dry (B) season (mean ± SE). CT, control treatment; W, warming treatment. Different uppercase letters indicate significant differences between different treatments of the same diameter class (p < 0.05), and different lowercase letters indicate significant differences between different diameter classes of the same treatment (p < 0.05).
指标 Index | 直径 Diameter (mm) | 因子 Factor | ||
---|---|---|---|---|
S | W | S × W | ||
细根生长量 Fine root growth (g·m-2) | 0-1 | 0.353 | 0.292 | 0.073 |
1-2 | 0.813 | 0.334 | 0.078 | |
0-2 | 0.439 | 0.582 | 0.047 | |
比根长 Specific root length (m·g-1) | 0-1 | 0.048 | 0.390 | 0.509 |
1-2 | 0.134 | 0.207 | 0.194 | |
根比表面积 Specific root surface area (cm-2·g-1) | 0-1 | 0.018 | 0.716 | 0.192 |
1-2 | 0.022 | 0.360 | 0.307 | |
根组织密度 Root tissue density (g·cm-3) | 0-1 | 0.069 | 0.834 | 0.608 |
1-2 | 0.004 | 0.825 | 0.721 | |
比呼吸速率 Specific respiration rate (nmol·g-1·s-1) | 0-1 | 0.606 | 0.003 | 0.932 |
1-2 | 0.093 | 0.384 | 0.587 | |
可溶性糖含量 Soluble sugar content (mg·g-1) | 0-1 | 0.001 | 0.987 | 0.052 |
1-2 | 0.005 | 0.758 | 0.228 | |
淀粉含量 Starch content (mg·g-1) | 0-1 | 0.691 | 0.471 | 0.797 |
1-2 | 0.018 | 0.011 | 0.009 | |
非结构性碳水化合物含量 Non-structural carbohydrates content (mg·g-1) | 0-1 | 0.008 | 0.701 | 0.336 |
1-2 | <0.001 | 0.077 | 0.017 |
Table 1 p values of repeated measures ANOVA on the effects of season and warming on the growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation
指标 Index | 直径 Diameter (mm) | 因子 Factor | ||
---|---|---|---|---|
S | W | S × W | ||
细根生长量 Fine root growth (g·m-2) | 0-1 | 0.353 | 0.292 | 0.073 |
1-2 | 0.813 | 0.334 | 0.078 | |
0-2 | 0.439 | 0.582 | 0.047 | |
比根长 Specific root length (m·g-1) | 0-1 | 0.048 | 0.390 | 0.509 |
1-2 | 0.134 | 0.207 | 0.194 | |
根比表面积 Specific root surface area (cm-2·g-1) | 0-1 | 0.018 | 0.716 | 0.192 |
1-2 | 0.022 | 0.360 | 0.307 | |
根组织密度 Root tissue density (g·cm-3) | 0-1 | 0.069 | 0.834 | 0.608 |
1-2 | 0.004 | 0.825 | 0.721 | |
比呼吸速率 Specific respiration rate (nmol·g-1·s-1) | 0-1 | 0.606 | 0.003 | 0.932 |
1-2 | 0.093 | 0.384 | 0.587 | |
可溶性糖含量 Soluble sugar content (mg·g-1) | 0-1 | 0.001 | 0.987 | 0.052 |
1-2 | 0.005 | 0.758 | 0.228 | |
淀粉含量 Starch content (mg·g-1) | 0-1 | 0.691 | 0.471 | 0.797 |
1-2 | 0.018 | 0.011 | 0.009 | |
非结构性碳水化合物含量 Non-structural carbohydrates content (mg·g-1) | 0-1 | 0.008 | 0.701 | 0.336 |
1-2 | <0.001 | 0.077 | 0.017 |
指标 Index | 因子 Factor | p | |
---|---|---|---|
雨季 Rainy season | 旱季 Dry season | ||
细根生长量 Fine root growth (g·m-2) | W | 0.003 | 0.297 |
D | 0.002 | 0.195 | |
W × D | 0.040 | 0.655 | |
比根长 Specific root length (m·g-1) | W | 0.026 | 0.429 |
D | <0.001 | <0.001 | |
W × D | 0.091 | 0.607 | |
根比表面积 Specific root surface area (cm-2·g-1) | W | 0.178 | 0.641 |
D | <0.001 | 0.001 | |
W × D | 0.350 | 0.331 | |
根组织密度 Root tissue density (g·cm-3) | W | 0.940 | 0.915 |
D | 0.002 | 0.916 | |
W × D | 0.577 | 0.860 | |
比呼吸速率 Specific respiration rate (nmol·g-1·s-1) | W | 0.004 | 0.061 |
D | 0.001 | 0.024 | |
W × D | 0.003 | 0.018 | |
可溶性糖浓度 Soluble sugar concentration (mg·g-1) | W | 0.023 | 0.172 |
D | 0.240 | 0.129 | |
W × D | 0.926 | 0.809 | |
淀粉浓度 Starch concentration (mg·g-1) | W | 0.003 | 0.030 |
D | 0.101 | 0.250 | |
W × D | 0.054 | 0.056 | |
非结构性碳水化合物浓度 Non-structural carbohydrates concentration (mg·g-1) | W | 0.112 | 0.027 |
D | 0.435 | 0.069 | |
W × D | 0.734 | 0.185 |
Table 2 p values of ANOVA on the effects of warming and diameter class on the growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons
指标 Index | 因子 Factor | p | |
---|---|---|---|
雨季 Rainy season | 旱季 Dry season | ||
细根生长量 Fine root growth (g·m-2) | W | 0.003 | 0.297 |
D | 0.002 | 0.195 | |
W × D | 0.040 | 0.655 | |
比根长 Specific root length (m·g-1) | W | 0.026 | 0.429 |
D | <0.001 | <0.001 | |
W × D | 0.091 | 0.607 | |
根比表面积 Specific root surface area (cm-2·g-1) | W | 0.178 | 0.641 |
D | <0.001 | 0.001 | |
W × D | 0.350 | 0.331 | |
根组织密度 Root tissue density (g·cm-3) | W | 0.940 | 0.915 |
D | 0.002 | 0.916 | |
W × D | 0.577 | 0.860 | |
比呼吸速率 Specific respiration rate (nmol·g-1·s-1) | W | 0.004 | 0.061 |
D | 0.001 | 0.024 | |
W × D | 0.003 | 0.018 | |
可溶性糖浓度 Soluble sugar concentration (mg·g-1) | W | 0.023 | 0.172 |
D | 0.240 | 0.129 | |
W × D | 0.926 | 0.809 | |
淀粉浓度 Starch concentration (mg·g-1) | W | 0.003 | 0.030 |
D | 0.101 | 0.250 | |
W × D | 0.054 | 0.056 | |
非结构性碳水化合物浓度 Non-structural carbohydrates concentration (mg·g-1) | W | 0.112 | 0.027 |
D | 0.435 | 0.069 | |
W × D | 0.734 | 0.185 |
Fig. 3 Effects of warming on morphological characteristics of fine roots in a mature Cunninghamia lanceolata plantation in rainy (A) and dry (B) season (mean ± SE). CT, control treatment; W, warming treatment. Different uppercase letters indicate significant differences between different treatments of the same diameter class (p < 0.05), and different lowercase letters indicate significant differences between different diameter classes of the same treatment (p < 0.05).
Fig. 4 Effects of warming on physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in rainy (A) and dry (B) season (mean ± SE). CT, control treatment; W, warming treatment. Different uppercase letters indicate significant differences between different treatments of the same diameter class (p < 0.05), and different lowercase letters indicate significant differences between different diameter classes of the same treatment (p < 0.05).
[1] |
Addo-Danso SD, Prescott CE, Adu-Bredu S, Duah-Gyamfi A, Moore S, Guy RD, Forrester DI, Owusu-Afriyie K, Marshall PL, Malhi Y (2018). Fine-root exploitation strategies differ in tropical old growth and logged-over forests in Ghana. Biotropica, 50, 606-615.
DOI URL |
[2] |
Allen LH, Vu JCV (2009). Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment. Agricultural and Forest Meteorology, 149, 820-830.
DOI URL |
[3] |
Bardgett RD, Mommer L, de Vries FT (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29, 692-699.
DOI URL |
[4] |
Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015). How tree roots respond to drought. Frontiers in Plant Science, 6, 547. DOI: 10.3389/fpls.2015.00547.
DOI |
[5] |
Calleja-Cabrera J, Boter M, Oñate-Sánchez L, Pernas M (2020). Root growth adaptation to climate change in crops. Frontiers in Plant Science, 11, 544. DOI: 10.3389/fpls.2020.00544.
DOI |
[6] |
Chen GS, Yang ZJ, Gao R, Xie JS, Guo JF, Huang ZQ, Yang YS (2013). Carbon storage in a chronosequence of Chinese fir plantations in Southern China. Forest Ecology and Management, 300, 68-76.
DOI URL |
[7] | Chen WY, Xiong DC, Shi SZ, Song TT, Cai YY, Guo RQ, Chen TT, Zheng X, Chen GS (2018). Effects of soil warming on fine root growth and morphology of Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecologica Sinica, 38, 5305-5314. |
[陈望远, 熊德成, 史顺增, 宋涛涛, 蔡瑛莹, 郭润泉, 陈廷廷, 郑欣, 陈光水 (2018). 土壤增温对杉木幼苗细根生长量及形态特征的影响. 生态学报, 38, 5305-5314.] | |
[8] |
Comas LH, Eissenstat DM (2004). Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Functional Ecology, 18, 388-397.
DOI URL |
[9] |
di Iorio A, Giacomuzzi V, Chiatante D (2016). Acclimation of fine root respiration to soil warming involves starch deposition in very fine and fine roots: a case study in Fagus sylvatica saplings. Physiologia Plantarum, 156, 294-310.
DOI URL |
[10] |
Fang C, Moncrieff JB (2001). The dependence of soil CO2 efflux on temperature. Soil Biology & Biochemistry, 33, 155-165.
DOI URL |
[11] |
Feng JX, Xiong DC, Shi SZ, Xu CS, Zhong BY, Deng F, Chen YY, Chen GS, Yang YS (2017). Effects of soil warming on the ecophysiological properties of the fine roots of Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecologica Sinica, 37, 35-43.
DOI URL |
[冯建新, 熊德成, 史顺增, 许辰森, 钟波元, 邓飞, 陈云玉, 陈光水, 杨玉盛 (2017). 土壤增温对杉木幼苗细根生理生态性质的影响. 生态学报, 37, 35-43.] | |
[12] |
Fischer S, Hanf S, Frosch T, Gleixner G, Popp J, Trumbore S, Hartmann H (2015). Pinus sylvestris switches respiration substrates under shading but not during drought. New Phytologist, 207, 542-550.
DOI PMID |
[13] |
Fort F, Freschet GT (2020). Plant ecological indicator values as predictors of fine-root trait variations. Journal of Ecology, 108, 1565-1577.
DOI URL |
[14] | Freschet GT, Roumet C, Comas LH, Weemstra M, Bengough AG, Rewald B, Bardgett RD, de Deyn GB, Johnson D, Klimešová J, Lukac M, McCormack ML, Meier IC, Pagès L, Poorter H, et al. (2021). Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist, 232, 1123-1158. |
[15] |
Fu G, Shen ZX, Sun W, Zhong ZM, Zhang XZ, Zhou YT (2015). A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau. Journal of Plant Growth Regulation, 34, 57-65.
DOI URL |
[16] |
Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31.
DOI URL |
[17] |
Hartmann H, Trumbore S (2016). Understanding the roles of nonstructural carbohydrates in forest trees—From what we can measure to what we want to know. New Phytologist, 211, 386-403.
DOI PMID |
[18] |
Hasibeder R, Fuchslueger L, Richter A, Bahn M (2015). Summer drought alters carbon allocation to roots and root respiration in mountain grassland. New Phytologist, 205, 1117-1127.
DOI PMID |
[19] |
Huang XM, Lakso AN, Eissenstat DM (2005). Interactive effects of soil temperature and moisture on Concord grape root respiration. Journal of Experimental Botany, 56, 2651-2660.
PMID |
[20] | IPCC (2021). Climate Change 2021: the Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[21] | Jarvi MP, Burton AJ (2018). Adenylate control contributes to thermal acclimation of sugar maple fine-root respiration in experimentally warmed soil. Plant, Cell & Environment, 41, 504-516. |
[22] |
Jarvi MP, Burton AJ (2020). Root respiration and biomass responses to experimental soil warming vary with root diameter and soil depth. Plant and Soil, 451, 435-446.
DOI |
[23] |
Jia SX, Wang ZQ, Li XP, Zhang XP, McLaughlin NB (2011). Effect of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in Larix gmelinii and Fraxinus mandshurica. Tree Physiology, 31, 718-726.
DOI URL |
[24] |
Joslin JD, Wolfe MH, Hanson PJ (2001). Factors controlling the timing of root elongation intensity in a mature upland oak stand. Plant and Soil, 228, 201-212.
DOI URL |
[25] |
Li DD, Nan HW, Zhao CZ, Yin CY, Liu Q (2020). Effects of warming and fertilization interacting with intraspecific competition on fine root traits of Picea asperata. Journal of Plant Ecology, 14, 147-159.
DOI URL |
[26] |
Liese R, Leuschner C, Meier IC (2019). The effect of drought and season on root life span in temperate arbuscular mycorrhizal and ectomycorrhizal tree species. Journal of Ecology, 107, 2226-2239.
DOI URL |
[27] |
Loomis SE, Russell JM, Verschuren D, Morrill C, de Cort G, Sinninghe Damsté JS, Olago D, Eggermont H, Street- Perrott FA, Kelly MA (2017). The tropical lapse rate steepened during the Last Glacial Maximum. Science Advances, 3, e1600815. DOI: 10.1126/sciadv.1600815.
DOI |
[28] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, et al. (2015). Redefining fine roots improves understanding of below- ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
DOI PMID |
[29] |
McCormack ML, Guo DL, Iversen CM, Chen WL, Eissenstat DM, Fernandez CW, Li L, Ma CG, Ma ZQ, Poorter H, Reich PB, Zadworny M, Zanne A (2017). Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes. New Phytologist, 215, 27-37.
DOI PMID |
[30] |
Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou YM, Tang J (2011). Soil warming, carbon- nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences of the United States of America, 108, 9508-9512.
DOI PMID |
[31] | Metcalfe DB, Meir P (2008). The effects of water availability on root growth and morphology in an Amazon rainforest. Plant and Soil, 311, 189-199. |
[32] |
Milchunas DG, Mosier AR, Morgan JA, LeCain DR, King JY, Nelson JA (2005). Root production and tissue quality in a shortgrass steppe exposed to elevated CO2: using a new ingrowth method. Plant and Soil, 268, 111-122.
DOI URL |
[33] |
Noh NJ, Crous KY, Li JQ, Choury Z, Barton CVM, Arndt SK, Reich PB, Tjoelker MG, Pendall E (2020). Does root respiration in Australian rainforest tree seedlings acclimate to experimental warming? Tree Physiology, 40, 1192-1204.
DOI PMID |
[34] |
Nottingham AT, Meir P, Velasquez E, Turner BL (2020). Soil carbon loss by experimental warming in a tropical forest. Nature, 584, 234-237.
DOI |
[35] |
Ostonen I, Helmisaari HS, Borken W, Tedersoo L, Kukumägi M, Bahram M, Lindroos AJ, Nöjd P, Uri V, Merilä P, Asi E, Lõhmus K (2011). Fine root foraging strategies in Norway spruce forests across a European climate gradient. Global Change Biology, 17, 3620-3632.
DOI URL |
[36] |
Parts K, Tedersoo L, Schindlbacher A, Sigurdsson BD, Leblans NIW, Oddsdóttir ES, Borken W, Ostonen I (2019). Acclimation of fine root systems to soil warming: comparison of an experimental setup and a natural soil temperature gradient. Ecosystems, 22, 457-472.
DOI |
[37] |
Poorter H, Ryser P (2015). The limits to leaf and root plasticity: What is so special about specific root length? New Phytologist, 206, 1188-1190.
DOI PMID |
[38] | Rastetter EB (2011). Modeling coupled biogeochemical cycles. Frontiers in Ecology and the Environment, 9, 68-73. |
[39] | Song TT, Chen GS, Shi SZ, Guo RQ, Zheng X, Xiong DC, Chen WY, Chen TT (2018). Effects of soil warming on specific respiration rate and non-structural carbohydrate concentration in fine roots of Chinese fir seedlings. Chinese Journal of Applied Ecology, 29, 705-712. |
[宋涛涛, 陈光水, 史顺增, 郭润泉, 郑欣, 熊德成, 陈望远, 陈廷廷 (2018). 土壤增温对杉木幼苗细根呼吸和非结构性碳的影响. 应用生态学报, 29, 705-712.]
DOI |
|
[40] |
Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167, 493-508.
PMID |
[41] |
Wan SQ, Norby RJ, Pregitzer KS, Ledford J, O’Neill EG (2004). CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytologist, 162, 437-446.
DOI URL |
[42] |
Wang JS, Defrenne C, McCormack ML, Yang L, Tian DS, Luo YQ, Hou EQ, Yan T, Li ZL, Bu WS, Chen Y, Niu SL (2021). Fine-root functional trait responses to experimental warming: a global meta-analysis. New Phytologist, 230, 1856-1867.
DOI PMID |
[43] |
Wei CX, Yang L, Wang JS, Yang JM, Shi JW, Tian DS, Zhou QP, Niu SL (2021). Effects of experimental warming on root biomass in terrestrial ecosystems. Chinese Journal of Plant Ecology, 45, 1203-1212.
DOI URL |
[魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽 (2021). 实验增温对陆地生态系统根系生物量的影响. 植物生态学报, 45, 1203-1212.]
DOI |
|
[44] |
Withington JM, Goebel M, Bulaj B, Oleksyn J, Reich PB, Eissenstat DM (2020). Remarkable similarity in timing of absorptive fine-root production across 11 diverse temperate tree species in a common garden. Frontiers in Plant Science, 11, 623722. DOI: 10.3389/fpls.2020.623722.
DOI |
[45] |
Xiong DC, Yang ZJ, Chen GS, Liu XF, Lin WS, Huang JX, Bowles FP, Lin CF, Xie JS, Li YQ, Yang YS (2018). Interactive effects of warming and nitrogen addition on fine root dynamics of a young subtropical plantation. Soil Biology & Biochemistry, 123, 180-189.
DOI URL |
[46] | Xu Y, Xu K, Wang WJ, Yu SQ, Ruan HH, Ge ZW, Wang GB, Han QQ (2014). The response of carbohydrates compositions in fine root of poplar at different ages to nitrogen depositions. Journal of Nanjing Forestry University (Natural Sciences Edition), 38(3), 13-18. |
[徐钰, 许凯, 王文娟, 于水强, 阮宏华, 葛之葳, 王国兵, 韩强强 (2014). 不同林龄杨树细根糖化学组分对氮沉降的响应. 南京林业大学学报(自然科学版), 38(3), 13-18.] | |
[47] | Yan ZW, Ding YH, Zhai PM, Song LC, Cao LJ, Li Z (2020). Re-assessing climatic warming in China since the last century. Acta Meteorologica Sinica, 78, 370-378. |
[严中伟, 丁一汇, 翟盘茂, 宋连春, 曹丽娟, 李珍 (2020). 近百年中国气候变暖趋势之再评估. 气象学报, 78, 370-378.] | |
[48] |
Yang QP, Liu LL, Zhang WD, Xu M, Wang SL (2015). Different responses of stem and soil CO2 efflux to pruning in a Chinese fir (Cunninghamia lanceolata) plantation. Trees, 29, 1207-1218.
DOI URL |
[49] | Zhong BY, Xiong DC, Shi SZ, Feng JX, Xu CS, Deng F, Chen YY, Chen GS (2016). Effects of precipitation exclusion on fine-root biomass and functional traits of Cunninghamia lanceolata seedlings. Chinese Journal of Applied Ecology, 27, 2807-2814. |
[钟波元, 熊德成, 史顺增, 冯建新, 许辰森, 邓飞, 陈云玉, 陈光水 (2016). 隔离降水对杉木幼苗细根生物量和功能特征的影响. 应用生态学报, 27, 2807-2814.]
DOI |
|
[50] |
Zhou YM, Tang JW, Melillo JM, Butler S, Mohan JE (2011). Root standing crop and chemistry after six years of soil warming in a temperate forest. Tree Physiology, 31, 707-717.
DOI PMID |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | YANG Shang-Jin, FAN Yun-Xiang, ZHANG Yu-Wen, HAN Qiao-Ling, ZHAO Yue, DUAN Jie, DI Nan, XI Ben-Ye. Comparison of methods for dividing nighttime sap flow components in Populus tomentosa trees [J]. Chin J Plant Ecol, 2024, 48(4): 496-507. |
[3] | QU Ze-Kun, ZHU Li-Qin, JIANG Qi, WANG Xiao-Hong, YAO Xiao-Dong, CAI Shi-Feng, LUO Su-Zhen, sCHEN Guang-Shui. Nutrient foraging strategies of arbuscular mycorrhizal tree species in a subtropical evergreen broadleaf forest and their relationship with fine root morphology [J]. Chin J Plant Ecol, 2024, 48(4): 416-427. |
[4] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[5] | YU Ji-Mei, WU Fu-Zhong, YUAN Ji, JIN Xia, WEI Shu-Yuan, YUAN Chao-Xiang, PENG Yan, NI Xiang-Yin, YUE Kai. Global patterns and influencing factors of initial concentrations of phenols in plant litter [J]. Chin J Plant Ecol, 2023, 47(5): 608-617. |
[6] | LIN Shao-Ying, ZENG Yu, YANG Wen-Wen, CHEN Bin, RUAN Min-Min, YIN Xiao-Lei, YANG Xiang, WANG Wei-Qi. Effects of straw and biochar addition on carbon, nitrogen and phosphorus ecological stoichiometry in Jasminum sambac plant and soil [J]. Chin J Plant Ecol, 2023, 47(4): 530-545. |
[7] | FAN Yun-Xiang, DI Nan, LIU Yang, ZHANG Yu-Wen, DUAN Jie, LI Xin, WANG Hai-Hong, XI Ben-Ye. Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors [J]. Chin J Plant Ecol, 2023, 47(2): 262-274. |
[8] | YU Yu-Rong, WU Hao, GAO Ya-Fei, ZHAO Yuan-Bo, LI Xiao-Ling, BU Gui-Jun, XUE Dan, LIU Zheng-Xiang, WU Hai-Wen, WU Lin. Effects of simulated nitrogen deposition on physiological and morphological characteristics of Sphagnum in wetland, southwestern Hubei Province, China [J]. Chin J Plant Ecol, 2023, 47(11): 1493-1506. |
[9] | YE Jie-Hong, YU Cheng-Long, ZHUO Shao-Fei, CHEN Xin-Lan, YANG Ke-Ming, WEN Yin, LIU Hui. Correlations of photosynthetic heat tolerance with leaf morphology and temperature niche in Magnoliaceae [J]. Chin J Plant Ecol, 2023, 47(10): 1432-1440. |
[10] | WAN Chun-Yan, YU Jun-Rui, ZHU Shi-Dan. Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species [J]. Chin J Plant Ecol, 2023, 47(10): 1386-1397. |
[11] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[12] | LI Wan-Nian, LUO Yi-Min, HUANG Ze-Yue, YANG Mei. Effects of mixed young plantations of Parashorea chinensis on soil microbial functional diversity and carbon source utilization [J]. Chin J Plant Ecol, 2022, 46(9): 1109-1124. |
[13] | LIU Pei-Rong, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, ZHANG Jing-Ru, YU Pei-Yang, ZHOU Yu. Effect of diffuse radiation on gross primary productivity of typical planted forests in eastern China [J]. Chin J Plant Ecol, 2022, 46(8): 904-918. |
[14] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
[15] | HUANG Dong-Liu, XIANG Wei, LI Zhong-Guo, ZHU Shi-Dan. Hydraulic architecture and safety margin in ten afforestation species in a lower subtropical region [J]. Chin J Plant Ecol, 2022, 46(5): 602-612. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn