Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (8): 904-918.DOI: 10.17521/cjpe.2021.0416
Special Issue: 全球变化与生态系统; 光合作用; 生态系统碳水能量通量
• Research Articles • Previous Articles Next Articles
LIU Pei-Rong1, TONG Xiao-Juan1,*(), MENG Ping2, ZHANG Jin-Song2, ZHANG Jing-Ru1, YU Pei-Yang1, ZHOU Yu2
Received:
2021-11-16
Accepted:
2022-02-19
Online:
2022-08-20
Published:
2022-04-28
Contact:
TONG Xiao-Juan
Supported by:
LIU Pei-Rong, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, ZHANG Jing-Ru, YU Pei-Yang, ZHOU Yu. Effect of diffuse radiation on gross primary productivity of typical planted forests in eastern China[J]. Chin J Plant Ecol, 2022, 46(8): 904-918.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0416
站点 Site | 位置 Location | 海拔 Elevation (m) | 树种 Species | 冠层高度 Canopy height (m) | 生长季 Growing season (Month) | 土壤类型 Soil type | 开路红外分析仪 Open-path infrared gas analyzer | 三维超声风速仪 3-D sonic anemometer | 仪器高度 Height of instrument (m) |
---|---|---|---|---|---|---|---|---|---|
金寨 Jinzhai | 31.28° N, 115.68° E | 1 100 | 杉木 Cunninghamia lanceolata | 9.0 | 4-10 | 砂壤土 Sandy loam | LI-7500 | CSAT3 | 18 |
民权 Minquan | 34.72° N, 115.08° E | 100 | 杨树 Populus spp. | 17.0 | 4-9 | 砂壤土 Sandy loam | LI-7500 | CSAT3 | 34 |
济源 Jiyuan | 35.02° N, 112.47° E | 410 | 栓皮栎 Quercus variabilis | 12.5 | 4-10 | 棕壤土 Brown loam | LI-7500 | CSAT3 | 25 |
黑水1 Heishui1 | 41.97° N, 119.42° E | 550 | 樟子松 Pinus sylvestris var. mongolica | 10.0 | 6-9 | 灰棕壤 Grey brown earths | LI-7500 | CSAT3 | 20 |
塞罕坝 Saihanba | 42.30° N, 117.42° E | 1 700 | 落叶松 Larix gmelinii | 9.0 | 5-9 | 棕壤土 Brown loam | LI-7500 | CSAT3 | 18 |
黑水2 Heishui2 | 42.10° N, 119.48° E | 650 | 油松 Pinus tabuliformis | 8.0 | 6-9 | 灰棕壤 Grey brown earths | LI-7500 | CSAT3 | 16 |
Table 1 Description of flux sites of six typical planted forests in eastern China
站点 Site | 位置 Location | 海拔 Elevation (m) | 树种 Species | 冠层高度 Canopy height (m) | 生长季 Growing season (Month) | 土壤类型 Soil type | 开路红外分析仪 Open-path infrared gas analyzer | 三维超声风速仪 3-D sonic anemometer | 仪器高度 Height of instrument (m) |
---|---|---|---|---|---|---|---|---|---|
金寨 Jinzhai | 31.28° N, 115.68° E | 1 100 | 杉木 Cunninghamia lanceolata | 9.0 | 4-10 | 砂壤土 Sandy loam | LI-7500 | CSAT3 | 18 |
民权 Minquan | 34.72° N, 115.08° E | 100 | 杨树 Populus spp. | 17.0 | 4-9 | 砂壤土 Sandy loam | LI-7500 | CSAT3 | 34 |
济源 Jiyuan | 35.02° N, 112.47° E | 410 | 栓皮栎 Quercus variabilis | 12.5 | 4-10 | 棕壤土 Brown loam | LI-7500 | CSAT3 | 25 |
黑水1 Heishui1 | 41.97° N, 119.42° E | 550 | 樟子松 Pinus sylvestris var. mongolica | 10.0 | 6-9 | 灰棕壤 Grey brown earths | LI-7500 | CSAT3 | 20 |
塞罕坝 Saihanba | 42.30° N, 117.42° E | 1 700 | 落叶松 Larix gmelinii | 9.0 | 5-9 | 棕壤土 Brown loam | LI-7500 | CSAT3 | 18 |
黑水2 Heishui2 | 42.10° N, 119.48° E | 650 | 油松 Pinus tabuliformis | 8.0 | 6-9 | 灰棕壤 Grey brown earths | LI-7500 | CSAT3 | 16 |
Fig. 1 Monthly variations of photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (Ta), precipitation (P) and normalized difference vegetation index (NDVI) during growing season of typical planted forests in eastern China (mean ± SD). A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
Fig. 2 Relationship between photosynthetically active radiation (PAR), diffuse photosynthetically active radiation (PARdif), direct photosynthetically active radiation (PARdir) and diffuse fraction (DF) at midday period (10:00-15:00) in growing season of typical planted forests in eastern China (mean ± SD). A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
Fig. 3 Frequency distribution of diffuse fraction (DF) in growing season of typical planted forests in eastern China. A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
Fig. 4 Diurnal variation of diffuse fraction (DF) during growing season of typical planted forests in eastern China (mean ± SD). A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
Fig. 5 Relationship between gross primary productivity (GPP) and photosynthetically active radiation (PAR) under different radiation conditions of typical planted forests in eastern China (mean ± SD). GPP is 0.5 h averaged for every 100 μmol·m-2·s-1 of PAR. A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
人工林 Plantation | 辐射条件 Radiation condition | α | Pmax (mg·m2·s-1) | P1000 (mg·m2·s-1) | 决定系数 Coefficient of determination | 样本数 Number of samples |
---|---|---|---|---|---|---|
杉木 Cunninghamia lanceolata | 散射辐射 Diffuse radiation condition | 0.045 | 1.94 | 0.70 | 0.61 | 3 611 |
直接辐射 Direct radiation condition | 0.020 | 1.97 | 0.61 | 0.45 | 891 | |
杨树 Populus spp. | 散射辐射 Diffuse radiation condition | 0.024 | 1.57 | 0.48 | 0.52 | 5 000 |
直接辐射 Direct radiation condition | 0.011 | 0.49 | 0.24 | 0.35 | 649 | |
栓皮栎 Quercus variabilis var. mongolica | 散射辐射 Diffuse radiation condition | 0.020 | 1.44 | 0.42 | 0.44 | 5 042 |
直接辐射 Direct radiation condition | 0.008 | 1.44 | 0.29 | 0.33 | 1 270 | |
樟子松 Pinus sylvestris | 散射辐射 Diffuse radiation condition | 0.026 | 0.78 | 0.32 | 0.42 | 1 636 |
直接辐射 Direct radiation condition | 0.015 | 0.52 | 0.29 | 0.35 | 943 | |
华北落叶松 Larix gmelinii | 散射辐射 Diffuse radiation condition | 0.021 | 2.37 | 0.55 | 0.56 | 1 705 |
直接辐射 Direct radiation condition | 0.013 | 1.65 | 0.43 | 0.59 | 679 | |
油松 Pinus tabuliformis | 散射辐射 Diffuse radiation condition | 0.025 | 1.00 | 0.38 | 0.53 | 1 841 |
直接辐射 Direct radiation condition | 0.017 | 0.73 | 0.37 | 0.39 | 951 |
Table 2 Under different radiation conditions, canopy quantum efficiency (α), maximum canopy photosynthesis (Pmax) and gross primary productivity at high photosynthetically active radiation of 1 000 µmol·m-2·s-1 (P1000) of typical planted forests in eastern China
人工林 Plantation | 辐射条件 Radiation condition | α | Pmax (mg·m2·s-1) | P1000 (mg·m2·s-1) | 决定系数 Coefficient of determination | 样本数 Number of samples |
---|---|---|---|---|---|---|
杉木 Cunninghamia lanceolata | 散射辐射 Diffuse radiation condition | 0.045 | 1.94 | 0.70 | 0.61 | 3 611 |
直接辐射 Direct radiation condition | 0.020 | 1.97 | 0.61 | 0.45 | 891 | |
杨树 Populus spp. | 散射辐射 Diffuse radiation condition | 0.024 | 1.57 | 0.48 | 0.52 | 5 000 |
直接辐射 Direct radiation condition | 0.011 | 0.49 | 0.24 | 0.35 | 649 | |
栓皮栎 Quercus variabilis var. mongolica | 散射辐射 Diffuse radiation condition | 0.020 | 1.44 | 0.42 | 0.44 | 5 042 |
直接辐射 Direct radiation condition | 0.008 | 1.44 | 0.29 | 0.33 | 1 270 | |
樟子松 Pinus sylvestris | 散射辐射 Diffuse radiation condition | 0.026 | 0.78 | 0.32 | 0.42 | 1 636 |
直接辐射 Direct radiation condition | 0.015 | 0.52 | 0.29 | 0.35 | 943 | |
华北落叶松 Larix gmelinii | 散射辐射 Diffuse radiation condition | 0.021 | 2.37 | 0.55 | 0.56 | 1 705 |
直接辐射 Direct radiation condition | 0.013 | 1.65 | 0.43 | 0.59 | 679 | |
油松 Pinus tabuliformis | 散射辐射 Diffuse radiation condition | 0.025 | 1.00 | 0.38 | 0.53 | 1 841 |
直接辐射 Direct radiation condition | 0.017 | 0.73 | 0.37 | 0.39 | 951 |
Fig. 6 Response of gross primary productivity to changes in per photosynthetically effective radiation under different radiation conditions of typical planted forests in eastern China. A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
Fig. 7 Relationship between gross primary productivity at high photosynthetically active radiation of 1 000 µmol·m-2·s-1 (P1000) and normalized difference vegetation index (NDVI) under diffuse sky radiation conditions of typical planted forests in eastern China. A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
Fig. 8 Relationship among average gross primary productivity (GPPa), diffuse radiation fraction (DF) and photosynthetically effective radiation (PAR) of typical planted forests in eastern China. The region with no data in upper right indicates that there cannot be high magnitudes of PAR at high levels of DF because diffuse radiation reduces the magnitude of PAR. A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
Fig. 9 Under diffuse conditions, diurnal variation of gross primary productivity (GPP) explained by diffuse photosynthetically active radiation (PARdif), temperature (Ta) and vapor pressure difference (VPD) of typical planted forests in eastern China. A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
Fig. 10 Under diffuse conditions, effects of temperature (Ta) and vapor pressure difference (VPD) on gross primary productivity at high photosynthetically active radiation of 1 000 µmol·m-2·s-1 (P1000) of typical planted forests in eastern China. A, Cunninghamia lanceolata forest. B, Populus spp. forest. C, Quercus variabilis forest. D, Pinus sylvestris var. mongolica forest. E, Larix gmelinii forest. F, Pinus tabuliformis forest.
[1] |
Alton PB, North PR, Los SO (2007). The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Global Change Biology, 13, 776-787.
DOI URL |
[2] |
Bai YF, Wang J, Zhang BC, Zhang ZH, Liang J (2012). Comparing the impact of cloudiness on carbon dioxide exchange in a grassland and a maize cropland in northwestern China. Ecological Research, 27, 615-623.
DOI URL |
[3] |
Bailek N, Bouchouicha K, Al-Mostafa Z, El-Shimy M, Aoun N, Slimani A, Al-Shehri S (2018). A new empirical model for forecasting the diffuse solar radiation over Sahara in the Algerian Big South. Renewable Energy, 117, 530-537.
DOI URL |
[4] | Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh S, Sherwood S, Stevens B, Zhang X (2013). Clouds and aerosols//IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 571-658. |
[5] | Chapin III FS, Matson PA, Mooney HA (2011). Principles of Terrestrial Ecosystem Ecology. 2nd ed. Springer, New York. |
[6] |
Cheng SJ, Bohrer G, Steiner AL, Hollinger DY, Suyker A, Phillips RP, Nadelhoffer KJ (2015). Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems. Agricultural and Forest Meteorology, 201, 98-110.
DOI URL |
[7] |
Dengel S, Grace J (2010). Carbon dioxide exchange and canopy conductance of two coniferous forests under various sky conditions. Oecologia, 164, 797-808.
DOI PMID |
[8] |
Earles JM, Théroux-Rancourt G, Gilbert ME, McElrone AJ, Brodersen CR (2017). Excess diffuse light absorption in upper mesophyll limits CO2 drawdown and depresses photosynthesis. Plant Physiology, 174, 1082-1096.
DOI PMID |
[9] |
Emmel C, D’Odorico P, Revill A, Hörtnagl L, Ammann C, Buchmann N, Eugster W (2020). Canopy photosynthesis of six major arable crops is enhanced under diffuse light due to canopy architecture. Global Change Biology, 26, 5164-5177.
DOI URL |
[10] |
Farquhar GD, von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
DOI PMID |
[11] | Gao Y, Zhu XJ, Yu GR, He NP, Wang QF, Tian J (2014). Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation. Agricultural and Forest Meteorology, 195-196, 32-37. |
[12] |
Gu LH, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002). Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research: Atmospheres, 107, 4050. DOI: 10.1029/2001JD001242.
DOI |
[13] |
Gu LH, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003). Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science, 299, 2035-2038.
PMID |
[14] |
Gu LH, Fuentes JD, Shugart HH, Staebler RM, Black TA (1999). Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: results from two North American deciduous forests. Journal of Geophysical Research: Atmospheres, 104, 31421-31434.
DOI URL |
[15] |
Gui X, Wang LC, Su X, Yi XP, Chen XX, Yao R, Wang SQ, (2021). Environmental factors modulate the diffuse fertilization effect on gross primary productivity across Chinese ecosystems. Science of the Total Environment, 793, 148443. DOI: 10.1016/j.scitotenv.2021.148443
DOI URL |
[16] |
Guo ZD, Hu HF, Li P, Li NY, Fang JY (2013). Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Science China: Life Science, 56, 661-671.
DOI URL |
[17] |
Han JY, Zhang LM, Li SG, Wen XF, Li QK, Wang HM (2019). Effects of sky conditions on net ecosystem productivity of a subtropical coniferous plantation vary from half-hourly to daily timescales. Science of the Total Environment, 651, 3002-3014.
DOI URL |
[18] | He XZ, Zhou T, Jia GS, Zhang ZY, Li XJ, Zhao C, Feng SH (2011). Simulation of the effect of changes in total photosynthetically active radiation and diffuse fraction on forest GPP. Journal of Natural Resources, 26, 619-634. |
[何学兆, 周涛, 贾根锁, 张自银, 李秀娟, 赵超, 冯胜辉 (2011). 光合有效辐射总量及其散射辐射比例变化对森林GPP影响的模拟. 自然资源学报, 26, 619-634.] | |
[19] |
Hogewoning SW, Wientjes E, Douwstra P, Trouwborst G, van Ieperen W, Croce R, Harbinson J (2012). Photosynthetic quantum yield dynamics: from photosystems to leaves. The Plant Cell, 24, 1921-1935.
DOI PMID |
[20] | Huang MT, Piao SL, Ciais P, Peñuelas J, Wang XH, Keenan TF, Peng SS, Berry JA, Wang K, Mao JF, Alkama R, Cescatti A, Cuntz M, De Deurwaerder H, Gao MD, et al. (2019). Air temperature optima of vegetation productivity across global biomes. Nature Ecology & Evolution, 3, 772-779. |
[21] | Kambezidis HD, Kaskaoutis DG, Kalliampakos GK, Rashki A, Wild M (2016). The solar dimming/brightening effect over the Mediterranean Basin in the period 1979-2012. Journal of Atmospheric and Solar-Terrestrial Physics, 150-151, 31-46. |
[22] | Kanniah KD, Beringer J, Hutley L (2013). Exploring the link between clouds, radiation, and canopy productivity of tropical savannas. Agricultural and Forest Meteorology, 182-183, 304-313. |
[23] |
Kanniah KD, Beringer J, North P, Hutley L (2012). Control of atmospheric particles on diffuse radiation and terrestrial plant productivity. Progress in Physical Geography: Earth and Environment, 36, 209-237.
DOI URL |
[24] |
Knohl A, Baldocchi DD (2008). Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. Journal of Geophysical Research, 113, G02023. DOI: 10.1029/2007JG000663.
DOI |
[25] |
Lee MS, Hollinger DY, Keenan TF, Ouimette AP, Ollinger SV, Richardson AD (2018). Model-based analysis of the impact of diffuse radiation on CO2 exchange in a temperate deciduous forest. Agricultural and Forest Meteorology, 249, 377-389.
DOI URL |
[26] |
Li DQ, Zhou YL, Ju WM, Wang HM, Liu YB, Wu XC (2014). Modelling the effects of changes in solar radiation on gross primary production in subtropical evergreen needle- leaf plantations. Chinese Journal of Plant Ecology, 38, 219-230.
DOI URL |
[李登秋, 周艳莲, 居为民, 王辉民, 柳艺博, 吴小翠 (2014). 太阳辐射变化对亚热带人工常绿针叶林总初级生产力影响的模拟分析. 植物生态学报, 38, 219-230.]
DOI |
|
[27] |
Liu PR, Tong XJ, Zhang JS, Meng P, Li J, Zhang JR (2020). Estimation of half-hourly diffuse solar radiation over a mixed plantation in North China. Renewable Energy, 149, 1360-1369.
DOI URL |
[28] |
Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323.
DOI URL |
[29] |
McMillen RT (1988). An eddy correlation technique with extended applicability to non-simple terrain. Boundary- Layer Meteorology, 43, 231-245.
DOI URL |
[30] |
Melnikova I, Sasai T (2020). Effects of anthropogenic activity on global terrestrial gross primary production. Journal of Geophysical Research: Biogeosciences, 125, e2019JG005403. DOI: 10.1029/2019JG005403.
DOI |
[31] |
Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009). Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 1014-1017.
DOI URL |
[32] | Michaelis L, Menten ML (1913). Die Kinetik der Invertinwirkun. Biochemische Zeitschrift, 49, 333-369. |
[33] | National Forestry and Grassland Administration(2018). Forest Resources of China 2014-2018. China Forestry Publishing House, Beijing. |
[国家林业和草原局 (2018). 中国森林资源报告2014-2018. 中国林业出版社, 北京.] | |
[34] | Niinemets Ü (2007). Photosynthesis and resource distribution through plant canopies. Plant, Cell & Environment, 30, 1052-1071. |
[35] |
Niu SL, Classen AT, Luo YQ (2018). Functional traits along a transect. Functional Ecology, 32, 4-9.
DOI URL |
[36] |
Niyogi D, Chang HI, Saxena VK, Holt T, Alapaty K, Booker F, Chen F, Davis KJ, Holben B, Matsui T, Meyers T, Oechel WC, Pielke Sr RA, Wells R, Wilson K, Xue YK (2004). Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes. Geophysical Research Letters, 31, L20506. DOI: 10.1029/2004GL020915.
DOI URL |
[37] |
Oliphant AJ, Dragoni D, Deng B, Grimmond CSB, Schmid HP, Scott SL (2011). The role of sky conditions on gross primary production in a mixed deciduous forest. Agricultural and Forest Meteorology, 151, 781-791.
DOI URL |
[38] |
Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
DOI URL |
[39] | Park SB, Knohl A, Lucas-Moffat AM, Migliavacca M, Gerbig C, Vesala T, Peltola O, Mammarella I, Kolle O, Lavrič JV, Prokushkin A, Heimann M (2018). Strong radiative effect induced by clouds and smoke on forest net ecosystem productivity in central Siberia. Agricultural and Forest Meteorology, 250-251, 376-387. |
[40] |
Philippon N, Cornu G, Monteil L, Gond V, Moron V, Pergaud J, Sèze G, Bigot S, Camberlin P, Doumenge C, Fayolle A, Ngomanda A (2019). The light-deficient climates of western Central African evergreen forests. Environmental Research Letters, 14, 034007. DOI: 10.1088/1748-9326/aaf5d8.
DOI |
[41] |
Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588.
DOI URL |
[42] |
Reich PB (2012). Key canopy traits drive forest productivity. Proceedings of the Royal Society B: Biological Sciences, 279, 2128-2134.
DOI URL |
[43] |
Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, et al. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424-1439.
DOI URL |
[44] |
Ridley B, Boland J, Lauret P (2010). Modelling of diffuse solar fraction with multiple predictors. Renewable Energy, 35, 478-483.
DOI URL |
[45] | Şen Z (2009). Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy. Choice Reviews Online, 46, 46-2687. |
[46] | Sun JS, Zhou GS (2010). Review of advances in measurements and effects of diffuse radiation on terrestrial ecosystem productivity. Chinese Journal of Plant Ecology, 34, 452-461. |
[孙敬松, 周广胜 (2010). 散射辐射测量及其对陆地生态系统生产力影响的研究进展. 植物生态学报, 34, 452-461.]
DOI |
|
[47] |
Urban O, Janouš D, Acosta M, Czerný R, Marková I, Navrátil M, Pavelka M, Pokorný R, Šprtová M, Zhang R, Špunda V, Grace J, Marek MV (2007). Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Global Change Biology, 13, 157-168.
DOI URL |
[48] |
Urban O, Klem K, Ač A, Havránková K, Holišová P, Navrátil M, Zitová M, Kozlová K, Pokorný R, Šprtová M, Tomášková I, Špunda V, Grace J (2012). Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Functional Ecology, 26, 46-55.
DOI URL |
[49] |
Wang S, Ibrom A, Bauer-Gottwein P, Garcia M (2018). Incorporating diffuse radiation into a light use efficiency and evapotranspiration model: an 11-year study in a high latitude deciduous forest. Agricultural and Forest Meteorology, 248, 479-493.
DOI URL |
[50] |
Webb EK, Pearman GI, Leuning R (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85-100.
DOI URL |
[51] | Wei N, Zhang M, Wang HM, Zhang LM, Wen XF, Liu SD (2017). The impacts of changes radiation on light use efficiency in a subtropical plantation coniferous forest. Acta Ecologica Sinica, 37, 3403-3414. |
[卫楠, 张弥, 王辉民, 张雷明, 温学发, 刘寿东 (2017). 散射辐射对亚热带人工针叶林光能利用率的影响. 生态学报, 37, 3403-3414.] | |
[52] |
Wild M (2012). Enlightening global dimming and brightening. Bulletin of the American Meteorological Society, 93, 27-37.
DOI URL |
[53] |
Williams IN, Riley WJ, Kueppers LM, Biraud SC, Torn MS (2016). Separating the effects of phenology and diffuse radiation on gross primary productivity in winter wheat. Journal of Geophysical Research: Biogeosciences, 121, 1903-1915.
DOI URL |
[54] |
Xu H, Zhang ZQ, Chen JQ, Zhu MX, Kang MC (2017). Cloudiness regulates gross primary productivity of a poplar plantation under different environmental conditions. Canadian Journal of Forest Research, 47, 648-658.
DOI URL |
[55] | Yang HB, Yang DW (2012). Climatic factors influencing changing pan evaporation across China from 1961 to 2001. Journal of Hydrology, 414-415, 184-193. |
[56] |
Yang XY, Li J, Yu Q, Ma YC, Tong XJ, Feng Y, Tong YX (2019). Impacts of diffuse radiation fraction on light use efficiency and gross primary production of winter wheat in the North China Plain. Agricultural and Forest Meteorology, 275, 233-242.
DOI URL |
[57] |
Yue X, Unger N (2018). Fire air pollution reduces global terrestrial productivity. Nature Communications, 9, 5413. DOI: 10.1038/s41467-018-07921-4.
DOI PMID |
[58] | Zhang M, Yu GR, Zhang LM, Sun XM, Wen XF, Han SJ (2009). Effects of solar radiation on net ecosystem exchange of broadleaved-Korean pine mixed forest in Changbai Mountain, China. Chinese Journal of Plant Ecology, 33, 270-282. |
[张弥, 于贵瑞, 张雷明, 孙晓敏, 温学发, 韩士杰 (2009). 太阳辐射对长白山阔叶红松林净生态系统碳交换的影响. 植物生态学报, 33, 270-282.]
DOI |
|
[59] |
Zhang M, Yu GR, Zhuang J, Gentry R, Fu YL, Sun XM, Zhang LM, Wen XF, Wang QF, Han SJ, Yan JH, Zhang YP, Wang YF, Li YN (2011). Effects of cloudiness change on net ecosystem exchange, light use efficiency, and water use efficiency in typical ecosystems of China. Agricultural and Forest Meteorology, 151, 803-816.
DOI URL |
[60] |
Zhang ZY, Liu QZ, Ruan YC, Tan YH (2021). Estimation of aerosol radiative effects on terrestrial gross primary productivity and water use efficiency using process-based model and satellite data. Atmospheric Research, 247, 105245. DOI: 10.1016/j.atmosres.2020.105245.
DOI URL |
[61] |
Zhou H, Yue X, Lei YD, Zhang TY, Tian CG, Ma YM, Cao Y (2021). Responses of gross primary productivity to diffuse radiation at global FLUXNET sites. Atmospheric Environment, 244, 117905. DOI: 10.1016/j.atmosenv.2020.117905.
DOI URL |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | YANG Shang-Jin, FAN Yun-Xiang, ZHANG Yu-Wen, HAN Qiao-Ling, ZHAO Yue, DUAN Jie, DI Nan, XI Ben-Ye. Comparison of methods for dividing nighttime sap flow components in Populus tomentosa trees [J]. Chin J Plant Ecol, 2024, 48(4): 496-507. |
[3] | YANG Yu-Meng, LAI Quan, LIU Xin-Yi. Quantitative analysis of climate change and human activities on vegetation gross primary productivity in Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(3): 306-316. |
[4] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
[5] | LIN Shao-Ying, ZENG Yu, YANG Wen-Wen, CHEN Bin, RUAN Min-Min, YIN Xiao-Lei, YANG Xiang, WANG Wei-Qi. Effects of straw and biochar addition on carbon, nitrogen and phosphorus ecological stoichiometry in Jasminum sambac plant and soil [J]. Chin J Plant Ecol, 2023, 47(4): 530-545. |
[6] | FAN Yun-Xiang, DI Nan, LIU Yang, ZHANG Yu-Wen, DUAN Jie, LI Xin, WANG Hai-Hong, XI Ben-Ye. Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors [J]. Chin J Plant Ecol, 2023, 47(2): 262-274. |
[7] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[8] | LI Wan-Nian, LUO Yi-Min, HUANG Ze-Yue, YANG Mei. Effects of mixed young plantations of Parashorea chinensis on soil microbial functional diversity and carbon source utilization [J]. Chin J Plant Ecol, 2022, 46(9): 1109-1124. |
[9] | LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085. |
[10] | HUANG Dong-Liu, XIANG Wei, LI Zhong-Guo, ZHU Shi-Dan. Hydraulic architecture and safety margin in ten afforestation species in a lower subtropical region [J]. Chin J Plant Ecol, 2022, 46(5): 602-612. |
[11] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[12] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[13] | XUE Jin-Ru, LÜ Xiao-Liang. Assessment of vegetation productivity under the implementation of ecological programs in the Loess Plateau based on solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2022, 46(10): 1289-1304. |
[14] | YIN Xiao-Lei, LIU Xu-Yang, JIN Qiang, LI Xian-De, LIN Shao-Ying, YANG Xiang, WANG Wei-Qi, ZHANG Yong-Xun. Effects of different management methods on carbon, nitrogen, and phosphorus contents and their stoichiometric ratios in tea plants [J]. Chin J Plant Ecol, 2021, 45(7): 749-759. |
[15] | DING Jian-Xi, ZHOU Lei, WANG Yong-Lin, ZHUANG Jie, CHEN Ji-Jing, ZHOU Wen, ZHAO Ning, SONG Jun, CHI Yong-Gang. Application prospects for combining active and passive observations of chlorophyll fluorescence [J]. Chin J Plant Ecol, 2021, 45(2): 105-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn