Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (4): 530-545.DOI: 10.17521/cjpe.2021.0398
• Research Articles • Previous Articles Next Articles
LIN Shao-Ying1, ZENG Yu2, YANG Wen-Wen3, CHEN Bin3, RUAN Min-Min3, YIN Xiao-Lei1, YANG Xiang1, WANG Wei-Qi1,*()
Received:
2021-11-05
Accepted:
2022-04-22
Online:
2023-04-20
Published:
2022-04-22
Contact:
*(wangweiqi15@163.com)
Supported by:
LIN Shao-Ying, ZENG Yu, YANG Wen-Wen, CHEN Bin, RUAN Min-Min, YIN Xiao-Lei, YANG Xiang, WANG Wei-Qi. Effects of straw and biochar addition on carbon, nitrogen and phosphorus ecological stoichiometry in Jasminum sambac plant and soil[J]. Chin J Plant Ecol, 2023, 47(4): 530-545.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0398
添加物 Addition material | 碳 Carbon | 氮 Nitrogen | 磷 Phosphorus | 钙 Calcium | 铁 Iron | 钾 Potassium | 镁 Magnesium | 硫 Sulfur |
---|---|---|---|---|---|---|---|---|
秸秆 Straw | 359.63 | 20.10 | 0.31 | 6.59 | 3.82 | 10.07 | 3.90 | 1.90 |
生物炭 Biochar | 422.53 | 10.49 | 1.56 | 19.09 | 4.82 | 18.01 | 8.52 | 1.68 |
Table 1 Content of major nutrient elements in the straw and biochar (g·kg-1)
添加物 Addition material | 碳 Carbon | 氮 Nitrogen | 磷 Phosphorus | 钙 Calcium | 铁 Iron | 钾 Potassium | 镁 Magnesium | 硫 Sulfur |
---|---|---|---|---|---|---|---|---|
秸秆 Straw | 359.63 | 20.10 | 0.31 | 6.59 | 3.82 | 10.07 | 3.90 | 1.90 |
生物炭 Biochar | 422.53 | 10.49 | 1.56 | 19.09 | 4.82 | 18.01 | 8.52 | 1.68 |
添加处理 Addition treatment | 株高 Plant height (cm) | 根长 Root length (cm) | 叶面积 Leaf area (cm2) | 生物量 Biomass (g·m-2) | ||
---|---|---|---|---|---|---|
叶 Leaf | 茎 Stem | 根 Root | ||||
对照 Control | 67.40 ± 6.37b | 17.06 ± 1.16a | 26.99 ± 2.66b | 196.71 ± 37.12c | 854.57 ± 62.17b | 251.71 ± 31.81a |
秸秆 Straw | 69.80 ± 6.37ab | 17.76 ± 1.56a | 32.29 ± 2.56ab | 340.97 ± 42.67b | 654.74 ± 52.61c | 226.34 ± 69.51a |
生物炭 Biochar | 85.00 ± 6.37a | 20.52 ± 1.59a | 34.93 ± 1.83a | 668.00 ± 37.48a | 1 675.29 ± 75.92a | 219.43 ± 33.92a |
Table 2 Growth characteristic parameters of Jasminum sambac under different treatments (mean ± SE)
添加处理 Addition treatment | 株高 Plant height (cm) | 根长 Root length (cm) | 叶面积 Leaf area (cm2) | 生物量 Biomass (g·m-2) | ||
---|---|---|---|---|---|---|
叶 Leaf | 茎 Stem | 根 Root | ||||
对照 Control | 67.40 ± 6.37b | 17.06 ± 1.16a | 26.99 ± 2.66b | 196.71 ± 37.12c | 854.57 ± 62.17b | 251.71 ± 31.81a |
秸秆 Straw | 69.80 ± 6.37ab | 17.76 ± 1.56a | 32.29 ± 2.56ab | 340.97 ± 42.67b | 654.74 ± 52.61c | 226.34 ± 69.51a |
生物炭 Biochar | 85.00 ± 6.37a | 20.52 ± 1.59a | 34.93 ± 1.83a | 668.00 ± 37.48a | 1 675.29 ± 75.92a | 219.43 ± 33.92a |
添加处理 Addition treatment | pH | 盐度 Salinity (mS·cm-1) | 密度 Density (g·cm-3) | 含水量 Water content (%) | 土壤温度 Soil temperature (℃) |
---|---|---|---|---|---|
对照 Control | 5.42 ± 0.25b | 0.27 ± 0.03a | 1.20 ± 0.05a | 21.65 ± 1.40ab | 26.86 ± 0.15a |
秸秆 Straw | 5.27 ± 0.16b | 0.17 ± 0.01b | 1.15 ± 0.04a | 19.54 ± 0.49b | 26.48 ± 0.13b |
生物炭 Biochar | 6.10 ± 0.24a | 0.30 ± 0.04a | 0.98 ± 0.05b | 23.54 ± 1.30a | 26.38 ± 0.03b |
Table 3 Soil physical and chemical characteristics of a Jasminum sambac plantation under different treatments (mean ± SE)
添加处理 Addition treatment | pH | 盐度 Salinity (mS·cm-1) | 密度 Density (g·cm-3) | 含水量 Water content (%) | 土壤温度 Soil temperature (℃) |
---|---|---|---|---|---|
对照 Control | 5.42 ± 0.25b | 0.27 ± 0.03a | 1.20 ± 0.05a | 21.65 ± 1.40ab | 26.86 ± 0.15a |
秸秆 Straw | 5.27 ± 0.16b | 0.17 ± 0.01b | 1.15 ± 0.04a | 19.54 ± 0.49b | 26.48 ± 0.13b |
生物炭 Biochar | 6.10 ± 0.24a | 0.30 ± 0.04a | 0.98 ± 0.05b | 23.54 ± 1.30a | 26.38 ± 0.03b |
Fig. 1 Effects of straw and biochar addition on carbon (C), nitrogen (N), phosphorus (P) contents and stoichiometric ratio (mean ± SD) of C, N, P of jasmine (Jasminum sambac) plant and soil. Different lowercase letters indicate significant difference among addition treatments (p < 0.05), and different uppercase letters indicate significant differences between the plant organs and soil (p < 0.05).
Fig. 2 Principal component (PC) analysis on carbon (C), nitrogen (N), phosphorus (P) contents (A) and stoichiometric ratio (B) of jasmine (Jasminum sambac) plant and soil under different addition treatments. SD, soil density; ST, soil temperature; WC, soil water content.
Fig. 3 Pearson’s correlation coefficient between environmental factors and carbon (C), nitrogen (N), phosphorus (P) contents (A) and their stoichiometric ratios (B) in jasmine (Jasminum sambac) plant and soil. *, p < 0.05; **, p < 0.01. L, leaf; R, root; S, stem. SD, soil density; ST, soil temperature; WC, soil water content.
Fig. 4 Linear fitting of jasmine (Jasminum sambac) carbon (C), nitrogen (N), phosphorus (P) contents and their stoichiometric ratios in different plant organs and soils.
Fig. 5 Stoichiometric homeostasis index between different organs of jasmine (Jasminum sambac) (A) and different addition treatments (B) to soil. L, leaf; P, plant; R, root; S, stem. Bi, biochar addition; CK, control; St, straw addition. H, homeostasis. C, carbon; N, nitrogen; P, phosphorus.
[1] |
Agegnehu G, Bass AM, Nelson PN, Bird MI (2016). Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543, 295-306.
DOI URL |
[2] |
Ali I, Ullah S, He L, Zhao Q, Iqbal A, Wei SQ, Shah T, Ali N, Bo Y, Adnan M, Amanullah, Jiang LG (2020). Combined application of biochar and nitrogen fertilizer improves rice yield, microbial activity and N-metabolism in a pot experiment. PeerJ, 8, e10311. DOI: 10.7717/peerj.10311.
DOI |
[3] |
An Z, Niu DC, Wen HY, Yang Y, Zhang HR, Fu H (2011). Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric characteristics in Stipa bungeana of steppe grasslands in the Loess Plateau, China. Chinese Journal of Plant Ecology, 35, 801-807.
DOI URL |
[安卓, 牛得草, 文海燕, 杨益, 张洪荣, 傅华 (2011). 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响. 植物生态学报, 35, 801-807.]
DOI |
|
[4] |
Bengough AG, McKenzie BM, Hallett PD, Valentine TA (2011). Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 62, 59-68.
DOI PMID |
[5] |
Biederman LA, Harpole WS (2013). Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. Global Change Biology Bioenergy, 5, 202-214.
DOI URL |
[6] |
Brennan A, Jiménez EM, Puschenreiter M, Alburquerque JA, Switzer C (2014). Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant and Soil, 379, 351-360.
DOI URL |
[7] |
Chen C, Zhang SJ, Li LD, Liu ZD, Chen JL, Gu X, Wang LF, Fang X (2019). Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China. Chinese Journal of Plant Ecology, 43, 658-671.
DOI |
[陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰 (2019). 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征. 植物生态学报, 43, 658-671.]
DOI |
|
[8] | Chen HX, Liu XR, Sun TY, Wang RL, Zhang SX (2021). Variation in leaf C:N:P stoichiometry of Quercus species along the altitudinal gradient in Taibai Mountain, China. Acta Ecologica Sinica, 41, 4503-4512. |
[陈昊轩, 刘欣蕊, 孙天雨, 王瑞丽, 张硕新 (2021). 太白山栎属树种叶片生态化学计量特征沿海拔梯度的变化规律. 生态学报, 41, 4503-4512.] | |
[9] |
Chen Y, Chen W, Lin YC, Cheng JZ, Pan WJ (2015). Effects of biochar on the micro-ecology of tobacco-planting soil and physiology of flue-cured tobacco. Chinese Journal of Applied Ecology, 26, 3781-3787.
PMID |
[陈懿, 陈伟, 林叶春, 程建中, 潘文杰 (2015). 生物炭对植烟土壤微生态和烤烟生理的影响. 应用生态学报, 26, 3781-3787.]
PMID |
|
[10] |
Cui HJ, Wang MK, Fu ML, Ci E (2011). Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. Journal of Soils and Sediments, 11, 1135-1141.
DOI URL |
[11] |
Cui L, Noerpel MR, Scheckel KG, Ippolito JA (2019). Wheat straw biochar reduces environmental cadmium bioavailability. Environment International, 126, 69-75.
DOI PMID |
[12] |
Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, LeCain DR, Follett RF, Williams DG (2012). Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 196, 807-815.
DOI PMID |
[13] |
El-Naggar A, Lee SS, Rinklebe J, Farooq M, Song H, Sarmah AK, Zimmerman AR, Ahmad M, Shaheen SM, Ok YS (2019). Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma, 337, 536-554.
DOI |
[14] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI PMID |
[15] |
Fu CW, Wang ZF, Song JQ, Hou XW, Qin X, Dai X, Yuan MZ, Yao W (2021). Effects of biological carbon and water regulation on photosynthetic characteristics of flue-cured tobacco. Journal of Agriculture, 11(10), 69-74.
DOI |
[符昌武, 王祖富, 宋家庆, 侯翔文, 覃潇, 戴曦, 袁谋智, 姚旺 (2021). 生物炭与水分调控对烤烟光合特性的影响. 农学学报, 11(10), 69-74.]
DOI |
|
[16] |
Graber ER, Tsechansky L, Gerstl Z, Lew B (2012). High surface area biochar negatively impacts herbicide efficacy. Plant and Soil, 353, 95-106.
DOI URL |
[17] |
Guo ZW, Chen SL, Yang QP, Li YC (2012). Responses of N and P stoichiometry on mulching management in the stand of Phyllostachys praecox. Acta Ecologica Sinica, 32, 6361-6368.
DOI URL |
[郭子武, 陈双林, 杨清平, 李迎春 (2012). 雷竹林土壤和叶片N、P化学计量特征对林地覆盖的响应. 生态学报, 32, 6361-6368.] | |
[18] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI PMID |
[19] |
Han LF, Sun K, Yang Y, Xia XH, Li FB, Yang ZF, Xing BS (2020). Biochar’s stability and effect on the content, composition and turnover of soil organic carbon. Geoderma, 364, 114184. DOI: 10.1016/j.geoderma.2020.114184.
DOI |
[20] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI PMID |
[21] | He JS, Han XG (2010). Ecological stoichiometry: searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6. |
[贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.]
DOI |
|
[22] | Herbert DA, Williams M, Rastetter EB (2003). A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry, 65, 121-150. |
[23] |
Huang XF, Li SQ, Li SY, Ye GY, Lu LJ, Zhang L, Yang LY, Qian X, Liu J (2019). The effects of biochar and dredged sediments on soil structure and fertility promote the growth, photosynthetic and rhizosphere microbial diversity of Phragmites communis (Cav.) Trin. ex Steud. Science of the Total Environment, 697, 134073. DOI: 10.1016/j. scitotenv.2019.134073.
DOI |
[24] | Jiang J, Wang HW, Liu GL, Feng Y, Wu ZX, Wang JJ, Liu HL, Bu YF, Li FH (2015). Effect of biochar on root characteristics and yield in maiz. Journal of Maize Sciences, 23(4), 62-66. |
[蒋健, 王宏伟, 刘国玲, 冯阳, 吴振兴, 王晶晶, 刘红亮, 步蕴法, 李凤海 (2015). 生物炭对玉米根系特性及产量的影响. 玉米科学, 23(4), 62-66.] | |
[25] |
Jin Q, Liu HT, Wang C, Wang XT, Min QW, Wang WQ, Sardans J, Liu XH, Song X, Huang XT, Peñuelas J (2020). Greenhouse gas emissions in a subtropical jasmine plantation managed with straw combined with industrial and agricultural wastes. Experimental Agriculture, 56, 280-292.
DOI URL |
[26] |
Li CJ, Lei JQ, Xu XW, Tang QL, Gao P, Wang YD (2013). The stoichiometric characteristics of C, N, P for artificial plants and soil in the hinterland of Taklimakan Desert. Acta Ecologica Sinica, 33, 5760-5767.
DOI URL |
[李从娟, 雷加强, 徐新文, 唐清亮, 高培, 王永东 (2013). 塔克拉玛干沙漠腹地人工植被及土壤CNP的化学计量特征. 生态学报, 33, 5760-5767.] | |
[27] |
Liang B, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luizão FJ (2010). Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry, 41, 206-213.
DOI URL |
[28] | Lin SY, Lai QZ, Liu XY, Jin Q, Yang X, Yin XL, Zeng Y, Wang WQ (2021). Effects of straw and biochar on soil carbon, nitrogen, phosphorus and iron contents and ecological stoichiometric characteristics of jasmine garden in Fuzhou. Acta Scientiae Circumstantiae, 41, 3777-3791. |
[林少颖, 赖清志, 刘旭阳, 金强, 阳祥, 尹晓雷, 曾瑜, 王维奇 (2021). 秸秆及配施生物炭对福州茉莉园土壤碳、氮、磷、铁含量及其生态化学计量学特征影响. 环境科学学报, 41, 3777-3791.] | |
[29] |
Liu J, Schulz H, Brandl S, Miehtke H, Huwe B, Glaser B (2012). Short-term effect of biochar and compost on soil fertility and water status of a dystric cambisol in NE Germany under field conditions. Journal of Plant Nutrition and Soil Science, 175, 698-707.
DOI URL |
[30] | Liu MH, Xie TT, Li R, Li LJ, Li CX (2020a). Carbon, nitrogen, and phosphorus ecological stoichiometric characteristics between Taxodium ascendens and soil in the water-level fluctuation zone of the Three Gorges Reservoir region. Acta Ecologica Sinica, 40, 3072-3084. |
[刘明辉, 谢婷婷, 李瑞, 李丽娟, 李昌晓 (2020a). 三峡库区消落带池杉-土壤碳氮磷生态化学计量特征. 生态学报, 40, 3072-3084.] | |
[31] |
Liu MH, Xie TT, Yuan ZX, Li LJ, Li CX (2020b). Carbon, nitrogen, and phosphorus ecological stoichiometric characteristics in leaves and fine roots of Taxodium distichum in the water-level fluctuation zone of the Three Gorges Reservoir region. Journal of Lake Sciences, 32, 1806-1816.
DOI URL |
[刘明辉, 谢婷婷, 袁中勋, 李丽娟, 李昌晓 (2020b). 三峡水库消落带适生树种落羽杉(Taxodium distichum)叶片-细根碳/氮/磷生态化学计量特征. 湖泊科学, 32, 1806-1816.] | |
[32] | Liu XZ, Zhou GY, Zhang DQ, Liu SZ, Chu GW, Yan JH (2010). N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology, 34, 64-71. |
[刘兴诏, 周国逸, 张德强, 刘世忠, 褚国伟, 闫俊华 (2010). 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 34, 64-71.]
DOI |
|
[33] | Liu Y, He JW, Li SY, Yu H, Wu JZ, Cui Y, Lin YM, Wang DJ, Li J (2020). Root structure and element (C, N, P) content characteristics of dominant shrub species in a dry-hot valley. Chinese Journal of Applied and Environmental Biology, 26, 31-39. |
[刘颖, 贺静雯, 李松阳, 余杭, 吴建召, 崔羽, 林勇明, 王道杰, 李键 (2020). 干热河谷优势灌木种类的根系结构及碳氮磷元素含量特征. 应用与环境生物学报, 26, 31-39.] | |
[34] |
Liu Y, Li ZH, Zou B, Sun SY, Guo JZ, Sun CX (2017). Research progress in effects of biochar application on crop growth and synergistic mechanism of biochar with fertilizer. Chinese Journal of Applied Ecology, 28, 1030-1038.
DOI |
[刘悦, 黎子涵, 邹博, 孙圣仪, 郭鉴增, 孙彩霞 (2017). 生物炭影响作物生长及其与化肥混施的增效机制研究进展. 应用生态学报, 28, 1030-1038.]
DOI |
|
[35] |
Liu YX, Lu HH, Yang SM, Wang YF (2016). Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crops Research, 191, 161-167.
DOI URL |
[36] | Lu RK (2000). Soil and Agrochemistry Analysis. China Agricultural Science and Technology Press, Beijing. |
[鲁如坤 (2000). 土壤化学农业分析方法. 中国农业科技出版社, 北京.] | |
[37] |
Makino W, Cotner JB, Sterner RW, Elser JJ (2003). Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Functional Ecology, 17, 121-130.
DOI URL |
[38] |
Matzek V, Vitousek PM (2009). N:P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecology Letters, 12, 765-771.
DOI URL |
[39] | Niklas KJ, Cobb ED (2006). Biomass partitioning and leaf N, P-stoichiometry: comparisons between tree and herbaceous current-year shoots. Plant, Cell & Environment, 29, 2030-2042. |
[40] |
Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen/ phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 8, 636-642.
DOI URL |
[41] |
Ning ZY, Li YL, Yang HL, Sun DC, Bi JD (2017). Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land. Chinese Journal of Plant Ecology, 41, 1069-1080.
DOI URL |
[宁志英, 李玉霖, 杨红玲, 孙殿超, 毕京东 (2017). 科尔沁沙地主要植物细根和叶片碳、氮、磷化学计量特征. 植物生态学报, 41, 1069-1080.]
DOI |
|
[42] |
Ning ZY, Li YL, Yang HL, Zhang ZQ (2019). Nitrogen and phosphorus stoichiometric homoeostasis in leaves of dominant sand-fixing shrubs in Horqin Sandy Land, China. Chinese Journal of Plant Ecology, 43, 46-54.
DOI URL |
[宁志英, 李玉霖, 杨红玲, 张子谦 (2019). 科尔沁沙地优势固沙灌木叶片氮磷化学计量内稳性. 植物生态学报, 43, 46-54.]
DOI |
|
[43] |
Parvage MM, Ulén B, Eriksson J, Strock J, Kirchmann H (2013). Phosphorus availability in soils amended with wheat residue char. Biology and Fertility of Soils, 49, 245-250.
DOI URL |
[44] | Peng YM, Wu J, Cai LQ, Qi P, Zhang RZ, Luo ZZ (2021). Effects of no-tillage and straw mulching on carbon, nitrogen, and phosphorus ecological stoichiometry in spring wheat and soil. Chinese Journal of Ecology, 40, 1062-1072. |
[彭亚敏, 武均, 蔡立群, 齐鹏, 张仁陟, 罗珠珠 (2021). 免耕及秸秆覆盖对春小麦-土壤碳氮磷生态化学计量特征的影响. 生态学杂志, 40, 1062-1072.] | |
[45] |
Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010). To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 119, 741-751.
DOI URL |
[46] |
Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48, 271-284.
DOI URL |
[47] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI PMID |
[48] |
Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2012). Biochar: a synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality, 41, 973-989.
DOI PMID |
[49] |
Steiner C, Glaser B, Geraldes Teixeira W, Lehmann J, Blum WEH, Zech W (2008). Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science, 171, 893-899.
DOI URL |
[50] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[51] | Tao W, Wu JW, Liu CF, Fang L, Liu Y, Yuan JH, Li J (2017). Response of stoichiometric homeostasis and allometric scaling in halophyte Suaeda heteroptera Kitag. to simulated nitrogen and phosphorus deposition. Journal of Hydroecology, 38, 18-26. |
[陶韦, 武嘉文, 刘长发, 方蕾, 刘远, 苑静涵, 李晋 (2017). 翅碱蓬生态化学计量内稳性对模拟氮磷沉降的响应. 水生态学杂志, 38, 18-26.] | |
[52] |
Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534.
DOI URL |
[53] |
Tian H, Chen G, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 98, 139-151.
DOI URL |
[54] |
Ullah S, Zhao Q, Wu K, Ali I, Liang H, Iqbal A, Wei S, Cheng F, Ahmad S, Jiang L, Gillani SW, Amanullah, Anwar S, Khan Z (2021). Biochar application to rice with 15N- labelled fertilizers, enhanced leaf nitrogen concentration and assimilation by improving morpho-physiological traits and soil quality. Saudi Journal of Biological Sciences, 28, 3399-3413.
DOI PMID |
[55] |
Wang J, Xiong Z, Kuzyakov Y (2016a). Biochar stability in soil: meta-analysis of decomposition and priming effects. Global Change Biology Bioenergy, 8, 512-523.
DOI URL |
[56] | Wang PA, Gong YQ, Wang QW, Ren XM, Bo FJ, Zhang YX, Guo JP (2020). Carbon, nitrogen and phosphorus stoichiometry characteristics of needle leaf-leaf litter-soil from Larix principis-rupprechtii plantations with different stand ages. Journal of Northwest Forestry University, 35(6), 1-9. |
[王平安, 宫渊奇, 王琪武, 任旭明, 薄夫京, 张芸香, 郭晋平 (2020). 不同林龄华北落叶松人工林针叶-凋落叶-土壤碳氮磷生态化学计量特征. 西北林学院学报, 35(6), 1-9.] | |
[57] |
Wang S, Zheng J, Wang Y, Yang Q, Chen T, Chen Y, Chi D, Xia G, Siddique KHM, Wang T (2021). Photosynthesis, chlorophyll fluorescence, and yield of peanut in response to biochar application. Frontiers in Plant Science, 12, 650432. DOI: 10.3389/fpls.2021.650432.
DOI |
[58] |
Wang W, Min Q, Sardans J, Wang C, Asensio D, Bartrons M, Peñuelas J (2016b). Organic cultivation of jasmine and tea increases carbon sequestration by changing plant and soil stoichiometry. Agronomy Journal, 108, 1636-1648.
DOI URL |
[59] | Wang YF, Li QY, Yue FX, Qiao XX, Jiao NY, Yin F, Fu GZ, Liu L (2021). Effects of biochar amendment on ear leaf photosynthetic physiological characteristics after anthesis and yields of rainfed maize in west Henan. Journal of Northwest A&F University (Natural Science Edition), 49, 125-133. |
[王艳芳, 李乾云, 悦飞雪, 乔鑫鑫, 焦念元, 尹飞, 付国占, 刘领 (2021). 生物炭对豫西旱作玉米花后穗位叶光合生理特性及产量的影响. 西北农林科技大学学报(自然科学版), 49, 125-133.] | |
[60] | Wang YL, Zhang YP, Zhu DF, Xiang J, Chen HZ, Zhang YK (2016). Response of rice organ morphology and dry matter accumulation to high temperature at different panicle initiation stages. Chinese Journal of Rice Science, 30, 161-169. |
[王亚梁, 张玉屏, 朱德峰, 向镜, 陈惠哲, 张义凯 (2016). 水稻器官形态和干物质积累对穗分化不同时期高温的响应. 中国水稻科学, 30, 161-169.]
DOI |
|
[61] |
Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, Alonso JM, Ecker JR, Reed JW (2005). NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. The Plant Journal, 43, 118-130.
DOI URL |
[62] |
Wu P, Wang Z, Wang H, Bolan NS, Wang Y, Chen W (2020). Visualizing the emerging trends of biochar research and applications in 2019: a scientometric analysis and review. Biochar, 2, 135-150.
DOI |
[63] | Wu TG, Wu M, Liu L, Xiao JH (2010). Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China. Chinese Journal of Plant Ecology, 34, 23-28. |
[吴统贵, 吴明, 刘丽, 萧江华 (2010). 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化. 植物生态学报, 34, 23-28.]
DOI |
|
[64] |
Xu G, Fan X, Miller AJ (2012). Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 63, 153-182.
DOI PMID |
[65] |
Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89, 1467-1471.
DOI PMID |
[66] | Yin XR, Liang CZ, Wang LX, Wang W, Liu ZL, Liu XP (2010). Ecological stoichiometry of plant nutrients at different restoration succession stages in typical steppe of Inner Mongolia, China. Chinese Journal of Plant Ecology, 34, 39-47. |
[银晓瑞, 梁存柱, 王立新, 王炜, 刘钟龄, 刘小平 (2010). 内蒙古典型草原不同恢复演替阶段植物养分化学计量学. 植物生态学报, 34, 39-47.]
DOI |
|
[67] |
Yu Q, Elser JJ, He N, Wu H, Chen Q, Zhang G, Han X (2011). Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166, 1-10.
DOI PMID |
[68] | Zhang P, Zhang GQ, Zhao YP, Peng SZ, Chen YM, Cao Y (2018). Ecological stoichiometry characteristics of leaf- litter-soil interactions in different forest types in the Loess hilly-gully region of China. Acta Ecologica Sinica, 38, 5087-5098. |
[张萍, 章广琦, 赵一娉, 彭守璋, 陈云明, 曹扬 (2018). 黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征. 生态学报, 38, 5087-5098.] | |
[69] |
Zhang WM, Guan XC, Huang YW, Sun DQ, Meng J, Chen WF (2015). Biological effects of biochar and fertilizer interaction in soybean plant. Acta Agronomica Sinica, 41, 109-122.
DOI URL |
[张伟明, 管学超, 黄玉威, 孙大荃, 孟军, 陈温福 (2015). 生物炭与化学肥料互作的大豆生物学效应. 作物学报, 41, 109-122.]
DOI |
|
[70] |
Zhang WM, Meng J, Wang JY, Fan SX, Chen WF (2013). Effect of biochar on root morphological and physiological characteristics and yield in rice. Acta Agronomica Sinica, 39, 1445-1451.
DOI URL |
[张伟明, 孟军, 王嘉宇, 范淑秀, 陈温福 (2013). 生物炭对水稻根系形态与生理特性及产量的影响. 作物学报, 39, 1445-1451.]
DOI |
|
[71] | Zhao LQ, Wu XN, Fu DG, Xu ZX, Zhu AQ (2021). Eco-stoichiometric characteristics of nutrients in dominant plant leaves and soil in phosphorus mine area of Dianchi Basin. Soils, 53, 383-390. |
[赵洛琪, 吴晓妮, 付登高, 徐子萱, 朱安琪 (2021). 滇池流域磷矿山区优势植物叶片与土壤养分生态化学计量特征. 土壤, 53, 383-390.] | |
[72] | Zheng CH, Zeng CS, Chen ZQ, Lin MC (2006). A study on the changes of landscape pattern of estuary wetlands of the Minjiang River. Wetland Science, 4, 29-35. |
[郑彩红, 曾从盛, 陈志强, 林茂昌 (2006). 闽江河口区湿地景观格局演变研究. 湿地科学, 4, 29-35.] | |
[73] |
Zheng H, Wang Z, Deng X, Herbert S, Xing B (2013). Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 206, 32-39.
DOI URL |
[74] |
Zheng JF, Chen JH, Pan GX, Liu XY, Zhang XH, Li LQ, Bian RJ, Cheng K, Zheng JW (2016). Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Science of the Total Environment, 571, 206-217.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn