Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (1): 46-54.doi: 10.17521/cjpe.2018.0100

• Research Articles • Previous Articles     Next Articles

Nitrogen and phosphorus stoichiometric homoeostasis in leaves of dominant sand-fixing shrubs in Horqin Sandy Land, China

NING Zhi-Ying1,2,LI Yu-Lin1,*(),YANG Hong-Ling1,2,ZHANG Zi-Qian1,2   

  1. 1 Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resource, Chinese Academy of Sciences, Lanzhou 730000, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-05-04 Accepted:2018-12-24 Online:2019-04-23 Published:2019-01-20
  • Contact: LI Yu-Lin
  • Supported by:
    Supported by the National Natural Science Foundation of China(31270501);the National Key R&D Program of China(2016YFC0500907)


Aims Sand-fixing shrubs play an irreplaceable role in ecological restoration and eco-environmental protection in arid and semiarid regions of northern China. Determination of the stoichiometric homoeostasis of dominant sand-fixing shrubs along soil nutrient gradients could provide insights into ecological adaptability and pattern of changes of sand-fixing vegetation in Horqin Sandy Land.
Methods We measured N and P concentrations in leaves of two dominant sand-fixing shrubs Caragana microphylla and Artemisia halodendron, and the total and available N and P concentrations in soils beneath the canopy of each shrub. The differences between the two shrubs in N and P concentrations and N:P of leaves and soils as well as in stoichiometric homoeostasis were examined.
Important findings Caragana microphylla had higher leaf N concentration and lower leaf P concentration, thereby higher leaf N:P, than A. halodendron. Soils beneath the shrub canopies, regardless of the species, had higher total and available N and P concentrations relative to soils outside the canopy cover. Moreover, the total and available N and P concentrations in soils beneath the C. microphylla canopy were higher than that beneath the A. halodendron canopy. The stoichiometric homoeostasis indexes (H) were ranked in the order of HP > HN:P > HN in A. halodendron and HN:P > HN > HP in C. microphylla, respectively, suggesting N limitation in A. halodendron and P limitation in C. microphylla. Therefore, Caragana microphylla could be used as nursing plants in degraded N-limiting soil because of high HN. However, due to excessive uptake of N, Caragana microphylla might suffer from P limitation, and adequate P supply should be considered during the restoration process in sandy land.

Key words: Horqin Sandy Land, shrub, leaf, soil, stoichiometric homoeostasis

Table 1

Nitrogen (N) and phosphorus (P) concentrations and their ratios in leaves of Artemisia halodendron and Caragana microphylla in Horqin Sandy Land (mean ± SE)"

Arithmetic average
Coefficient of variation(%)
Minimum value
Maximum value
A. halodendron
N (g·kg-1) 23.24 ± 0.49 24.50 27.00 18.71 15.00 31.40
P (g·kg-1) 3.80 ± 0.05 3.82 3.67 11.05 2.86 4.53
N:P 6.10 ± 0.10 6.17 5.59 14.43 4.02 7.82
C. microphylla
N (g·kg-1) 30.44 ± 0.46 31.00 30.40 13.24 18.20 37.90
P (g·kg-1) 1.96 ± 0.04 1.97 1.97 17.86 1.24 2.69
N:P 15.86 ± 0.29 15.71 11.28 15.82 11.28 24.33

Fig. 1

Comparisons of leaf nitrogen (N) and phosphorus (P) stoichiometry between Artemisia halodendron and Caragana microphylla in Horqin Sandy Land. Differences between Artemisia halodendron and Caragana microphylla are significant at p < 0.001. Vertical bars represent standard errors. Ar, Artemisia halodendron; Ca, Caragana microphylla."

Table 2

Nitrogen (N) and phosphorus (P) stoichiometry in soils beneath Artemisia halodendron and Caragana microphylla in Horqin Sandy Land (mean ± SE)"

Arithmetic average
Coefficient of variation(%)
Minimum value
Maximum value
A. halodendron
N (g·kg-1) 0.15 ± 0.01 0.14 0.17* 57.14 0.01 0.38
P (g·kg-1) 0.05 ± 0.00 0.05 0.03* 60.00 0.00 0.11
N:P 3.10 ± 0.26 2.38 0.43 73.22 0.43 12.10
速效 N Available N (mg·kg-1) 15.77 ± 1.00 16.20 21.60 56.04 1.17 38.00
速效 P Available P (mg·kg-1) 7.82 ± 0.57 6.80 9.80 64.32 1.28 20.06
速效 N:P Available N:P 2.27 ± 0.12 2.20 3.60 46.70 0.59 5.77
C. microphylla
N (g·kg-1) 0.23 ± 0.02 0.21 0.02 69.56 0.02 0.65
P (g·kg-1) 0.08 ± 0.01 0.07 0.03 62.50 0.01 0.19
N:P 3.08 ± 0.21 2.87 0.76 61.04 0.76 11.99
速效 N Available N (mg·kg-1) 19.38 ± 1.08 16.88 9.43* 48.81 7.39 44.86
速效 P Available P (mg·kg-1) 9.74 ± 0.55 8.60 6.10* 49.90 2.93 24.80
速效 N:P Available N:P 2.11 ± 0.07 2.11 0.35* 27.49 0.35 3.91

Fig. 2

Comparisons of soil nitrogen (N) and phosphorus (P) stoichiometry between Artemisia halodendron and Caragana microphylla in Horqin Sandy Land. Differences between Artemisia halodendron and Caragana microphylla are significant at p < 0.001. Vertical bars represent standard errors. Ar, Artemisia halodendron; Ca, Caragana microphylla."

Fig. 3

Relationships of leaf N, P, and N:P with soil N, P, and N:P in two dominant shrubs in Horqin Sandy Land. H, stoichiometric homoeostasis indexes."

[1] Aerts R, Chapin FS ( 2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67.
[2] Andersen T, Elser JJ, Hessen DO ( 2004). Stoichiometry and population dynamics. Ecology Letters, 7, 884-900.
doi: 10.1111/ele.2004.7.issue-9
[3] Bin ZJ, Wang JJ, Zhang WP, Xu DH, Cheng XH, Li KJ, Cao DH ( 2014). Effects of N addition on ecological stoichiometric characteristics in six dominant plant speciesof alpine meadow on the Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 38, 231-237.
[ 宾振钧, 王静静, 张文鹏, 徐当会, 程雪寒, 李柯杰, 曹德昊 ( 2014). 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响. 植物生态学报, 38, 231-237.]
[4] Chen GS, Zeng DH, Chen FS, Fan ZP, Geng HD ( 2003). A research review on “ fertile islands” of soils under shrub canopy in arid and semi-arid regions. Chinese Journal of Applied Ecology, 14, 2295-2300.
[ 陈广生, 曾德慧, 陈伏生, 范志平, 耿海东 ( 2003). 干旱和半干旱地区灌木下土壤“肥岛”研究进展. 应用生态学报, 14, 2295-2300.]
[5] Chen ZQ, Chen ZB, Yan XY, Bai LY ( 2016). Stoichiometric mechanisms of Dicranopteris dichotoma, growth and resistance to nutrient limitation in the Zhuxi watershed in the red soil hilly region of China. Plant & Soil, 398, 367-379.
[6] Daufresne T, Loreau M ( 2001). Ecological stoichiometry, primary producer-decomposer interactions, and ecosystem persistence. Ecology, 82, 3069-3082.
[7] Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE ( 2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
doi: 10.1111/ele.2007.10.issue-12
[8] Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ ( 2010). Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytologist, 186, 593-608.
doi: 10.1111/j.1469-8137.2010.03214.x
[9] Fan XY ( 2012). Spatial Variation in Nutrient of Dominate Plant and Ecological Stoichiometry from Laohu Gou of Qilian Mountin. Master degree dissertation, Lanzhou Univirsity, Lanzhou.
[ 樊晓勇 ( 2012). 祁连山老虎沟优势植物的养分空间变化与生态化学计量学研究. 硕士学位论文, 兰州大学, 兰州.]
[10] Fisher RF ( 1995). Amelioration of degraded rain forest soils by plantations of native trees. Soil Science Society of America Journal, 59, 544-549.
doi: 10.2136/sssaj1995.03615995005900020039x
[11] Frost PC, Elser JJ ( 2002). Growth responses of littoral mayflies to the phosphorus content of their food. Ecology Letters, 5, 232-240.
doi: 10.1046/j.1461-0248.2002.00307.x
[12] Garnier E ( 1998). Interspecific Variation in Plasticity of Grasses in Response to Nitrogen Supply. Cambridge University Press, Cambridge, UK. 155-181.
[13] Guo YP, Yang X, Schob C, Jiang YX, Tang ZY ( 2017). Legume shrubs are more nitrogen-homeostatic than non-legume shrubs. Frontiers in Plant Science, 8, 1662.
doi: 10.3389/fpls.2017.01662
[14] Han WX, Fang JY, Guo DL, Zhang Y ( 2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
doi: 10.1111/j.1469-8137.2005.01530.x
[15] He J, Hu YF, Shu XY, Wang Q, Jia AD, Yan X ( 2018). Effect of Salix cupularis plantations on soil stoichiometry and stocks in the alpine-cold desert of northwestern Sichuan. Acta Prataculturae Sinica, 27, 27-33.
[ 何佳, 胡玉福, 舒向阳, 王琴, 贾安都, 严星 ( 2018). 川西北高寒沙地不同年限高山柳土壤生态化学计量及储量变化特征. 草业学报, 27, 27-33.]
[16] Hessen DO, Agren GI, Anderson TR, Elser JJ, De Ruiter PC ( 2004). Carbon, sequestration in ecosystems: The role of stoichiometry. Ecology, 85, 1179-1192.
doi: 10.1890/02-0251
[17] Hobbie SE, Vitousek PM ( 2000). Nutrient limitation of decomposition in hawaiian forests. Ecology, 81, 1867-1877.
doi: 10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2
[18] Institute of Soil Science, Chinese Academy of Sciences ( 1978). Physical and Chemical AnalysisMethods of Soil. Shanghai Science and Technology Press, Shanghai.
[ 中国科学院南京土壤研究所 ( 1978). 土壤理化分析. 上海科学技术出版社, 上海.]
[19] Jeyasingh PD, Weider LJ, Sterner RW ( 2009). Genetically- based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore. Ecology Letters, 12, 1229-1237.
doi: 10.1111/ele.2009.12.issue-11
[20] Jiang LL, Zeng CS, Shao JJ, Zhou XH ( 2017). Plant nutrient dynamics and stoichiometric homeostasis of invasive species Spartina alternifloraand native Cyperus malaccensis var. brevifolius in the Minjiang River estuarine wetlands. Chinese Journal of Plant Ecology, 41, 450-460.
[ 蒋利玲, 曾从盛, 邵钧炯, 周旭辉 ( 2017). 闽江河口入侵种互花米草和本地种短叶茳芏的养分动态及植物化学计量内稳性特征. 植物生态学报, 41, 450-460.]
[21] Koerselman W, Meuleman AF ( 1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
doi: 10.2307/2404783
[22] Koojiman SALM ( 1995). The stoichiometry of animal energetics. Journal of Theoretical Biology, 177, 139-149.
doi: 10.1006/jtbi.1995.0232
[23] Li Y, Li Q, Guo D, Liang S, Wang Y ( 2016). Ecological stoichiometry homeostasis of Leymus chinensis, in degraded grassland in western Jilin Province, NE China. Ecological Engineering, 90, 387-391.
[24] Li YL, Cui JH, Su YZ ( 2005). Specific leaf area and leaf dry matter content of some plants in different dune habitats. Acta Ecologica Sinica, 25, 304-311.
[ 李玉霖, 崔建垣, 苏永中 ( 2005). 不同沙丘生境主要植物比叶面积和叶干物质含量的比较. 生态学报, 25, 304-311.]
[25] Ning ZY, Li YL, Yang HL, Sun DC, Bi JD ( 2017). Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land. Chinese Journal of Plant Ecology, 41, 1069-1080.
[ 宁志英, 李玉霖, 杨红玲, 孙殿超, 毕京东 ( 2017). 科尔沁沙地主要植物细根和叶片碳、氮、磷化学计量特征. 植物生态学报, 41, 1069-1080.]
[26] Persson J, Kato S ( 2010). To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 119, 741-751.
doi: 10.1111/j.1600-0706.2009.18545.x
[27] Qu WL, Yang XP, Zhang CT, Wei B ( 2015). Shrub-mediated “fertile island” effects in arid and semi-arid grassland. Acta Prataculturae Sinica, 24, 201-207.
[ 瞿王龙, 杨小鹏, 张存涛, 魏冰 ( 2015). 干旱、半干旱地区天然草原灌木及其肥岛效应研究进展. 草业学报, 24, 201-207.]
[28] Reich PB, Oleksyn J ( 2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
doi: 10.1073/pnas.0403588101
[29] Reiners WA ( 1986). Complementary models for ecosystems. The American Naturalist, 127, 59-73.
doi: 10.1086/284467
[30] Schlesinger WH, Raikes JA, Hartley AE, Cross AF ( 1996). On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 77, 364-374.
[31] Sterner RW, Elser JJ ( 2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.
[32] Su YZ, Zhao HL, Zhang TH ( 2002). Influencing mechanism of several shrubs and subshrubs on soil fertility in Keerqin sandy land. Chinese Journalof Applied Ecology, 13, 802-806.
[ 苏永中, 赵哈林, 张铜会 ( 2002). 几种灌木、半灌木对沙地土壤肥力影响机制的研究. 应用生态学报, 13, 802-806.]
[33] Su YZ, Zhao HL, Zhang TH, Li YL ( 2004). Characteristics of plant community and soil properties in the plantation chronosequence of Caragana microphylla in Horqin Sandy Land. Acta Phytoecologica Sinica, 28, 93-100.
[ 苏永中, 赵哈林, 张铜会, 李玉霖 ( 2004). 科尔沁沙地不同年代小叶锦鸡儿人工林植物群落特征及其土壤特性. 植物生态学报, 28, 93-100.]
[34] Sundareshwar PV, Morris JT, Koepfler EK, Fornwalt B ( 2003). Phosphorus limitation of coastal ecosystem processes. Science, 299, 563.
doi: 10.1126/science.1079100
[35] Tian H, Chen G, Zhang C, Melillo JM, Hall CAS ( 2010). Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 98, 139-151.
doi: 10.1007/s10533-009-9382-0
[36] Vitousek PM ( 1999). Nutrient limitation to nitrogen fixation in young volcanic sites. Ecosystems, 2, 505-510.
doi: 10.1007/s100219900098
[37] Wang T, Yang YH, Ma WH ( 2008). Storage, patterns and environmental controls of soil phosphorus in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 44, 945-952.
[ 汪涛, 杨元合, 马文红 ( 2008). 中国土壤磷库的大小、分布及其影响因素. 北京大学学报(自然科学版), 44, 945-952.]
[38] Westheimer FH ( 1987). Why nature chose phosphates. Science, 235, 1173.
doi: 10.1126/science.2434996
[39] Wezel A, Rajot JL, Herbrig C ( 2000). Influence of shrubs on soil characteristics and their function in Sahelian agro-ecosystems in semi-arid Niger. Journal of Arid Environments, 44, 383-398.
doi: 10.1006/jare.1999.0609
[40] Whitford WG, Anderson J, Rice PM ( 1997). Stemflow contribution to the “fertile island” effect in creosotebush,Larrea tridentata. Journal of Arid Environments, 35, 451-457.
[41] Wu XD, Song NP, Pan J ( 2016). Effect of shrub (Caragana intermedia) encroachment under different sandy habitats on contentand distribution of soil organic carbon in desert grassland. Transactions of the Chinese Society of Agricultural Engineering, 32, 115-121.
[ 吴旭东, 宋乃平, 潘军 ( 2016). 不同沙地生境下柠条灌丛化对草地土壤有机碳含量及分布的影响. 农业工程学报, 32, 115-121.]
[42] Xiong BQ, Zhao LY, Zhang J, Li YQ, Chen HB, Li FR ( 2017). Relationship between the soil andstanding vegetation changes during grassland desertification process. Ecology and Environmental Sciences, 26, 400-407.
[ 熊炳桥, 赵丽娅, 张劲, 李艳蔷, 陈红兵, 李锋瑞 ( 2017). 草地沙漠化过程中土壤与地上植被的变化及其相互关系. 生态环境学报, 26, 400-407.]
[43] Yan JH, Li K, Peng XJ, Huang ZL, Liu SZ, Zhang QM ( 2015). The mechanism for exclusion of Pinus massoniana during the succession in subtropical forest ecosystems: Light competition or stoichiometric homoeostasis? Scientific Reports, 5, 10994. DOI: 10.1038/srep10994.
doi: 10.1038/srep10994
[44] Yu Q ( 2009). Ecological Stoichiometric Study on VascularPlants in the Inner Mongolia Steppe. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing.
[ 庾强 ( 2009). 内蒙古草原植物化学计量生态学研究. 博士学位论文, 中国科学院植物研究所, 北京.]
[45] Yu Q, Chen QS, Elser JJ, Cease A, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG ( 2010). Linking stoichiometric homeostasis with ecosystem structure, functioning, and stability. Ecology Letters, 13, 1390.
doi: 10.1111/j.1461-0248.2010.01532.x
[46] Zhu JT, Li XY, Zhang XM, Lin LS, Yang SG ( 2010). Nitrogen allocation and partitioning within a leguminous and two non-leguminous plant species growing at the southern fringe of China’s Taklamakan Desert. Chinese Journal of Plant Ecology, 34, 1025-1032.
[ 朱军涛, 李向义, 张希明, 林丽莎, 杨尚功 ( 2010). 塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配. 植物生态学报, 34, 1025-1032.]
[1] Yibo Tan, Wenhui Shen, Zi Fu, Wei Zheng, Zhiyang Ou, Zhangqiang Tan, Yuhua Peng, Shilong Pang, Qinfei He, Xiaorong Huang, Feng He. Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests [J]. Biodiv Sci, 2019, 27(9): 970-983.
[2] TANG Li-Li,YANG Tong,LIU Hong-Yan,KANG Mu-Yi,WANG Ren-Qing,ZHANG Feng,GAO Xian-Ming,YUE Ming,ZHANG Mei,ZHENG Pu-Fan,SHI Fu-Chen. Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China [J]. Chin J Plant Ecol, 2019, 43(9): 825-833.
[3] CHAI Yong-Fu,XU Jin-Shi,LIU Hong-Yan,LIU Quan-Ru,ZHENG Cheng-Yang,KANG Mu-Yi,LIANG Cun-Zhu,WANG Ren-Qing,GAO Xian-Ming,ZHANG Feng,SHI Fu-Chen,LIU Xiao,YUE Ming. Species composition and phylogenetic structure of major shrublands in North China [J]. Chin J Plant Ecol, 2019, 43(9): 793-805.
[4] Jun Liu, Ning Wang, Daizong Cui, Lei Lu, Min Zhao. Community structure and diversity of soil bacteria in different habitats of Da Liangzihe National Forest Park in the Lesser Khinggan Mountains [J]. Biodiv Sci, 2019, 27(8): 911-918.
[5] LI Qun, ZHAO Cheng-Zhang, WANG Ji-Wei, WEN Jun, LI Zi-Qin, MA Jun-Yi. Morphological and photosynthetic physiological characteristics of Saussurea salsa in response to flooding in salt marshes of Xiao Sugan Lake, Gansu, China [J]. Chin J Plant Ecol, 2019, 43(8): 685-696.
[6] CHEN Xu, LIU Hong-Kai, ZHAO Chun-Zhou, WANG Qiang, WANG Yan-Ping. Responses of foliar anatomical traits to soil conditions in 11 tree species on coastal saline-alkali sites of Shandong, China [J]. Chin J Plant Ecol, 2019, 43(8): 697-708.
[7] LI Na, ZHANG Yi-He, HAN Xiao-Zeng, YOU Meng-Yang, HAO Xiang-Xiang. Effects of long-term vegetation cover changes on the organic carbon fractions in soil aggregates of mollisols [J]. Chin J Plant Ecol, 2019, 43(7): 624-634.
[8] LI Pin, Muledeer TUERHANBAI, TIAN Di, FENG Zhao-Zhong. Seasonal dynamics of soil microbial biomass carbon, nitrogen and phosphorus stoichiometry across global forest ecosystems [J]. Chin J Plant Ecol, 2019, 43(6): 532-542.
[9] ZHANG Yi-Ping, HAI Xu-Ying, XU Jun-Liang, WU Wen-Xia, CAO Peng-He, AN Wen-Jing. Seasonal dynamics of non-structural carbohydrate content in branch of Quercus variabilis growing in east Qinling Mountain range [J]. Chin J Plant Ecol, 2019, 43(6): 521-531.
[10] Zhang Zhe, Wang Shaojun, Chen Minkun, Cao Run, Li Shaohui. Effect of ant colonization on spatiotemporal dynamics of readily oxidizable soil carbon across different restoration stages of tropical forests [J]. Biodiv Sci, 2019, 27(6): 658-666.
[11] Li Weitao, He Min, Chen Xuewei. Discovery of ZmFBL41 Chang7-2 as A Key Weapon against Banded Leaf and Sheath Blight Resistance in Maize [J]. Chin Bull Bot, 2019, 54(5): 547-549.
[12] LIU Cheng-Zhu, JIA Juan, DAI Guo-Hua, MA Tian, FENG Xiao-Juan. Origin and distribution of neutral sugars in soils [J]. Chin J Plant Ecol, 2019, 43(4): 284-295.
[13] ZHOU Hui-Min, LI Pin, FENG Zhao-Zhong, ZHANG Yin-Bo. Short-term effects of combined elevated ozone and limited irrigation on accumulation and allocation of non-structural carbohydrates in leaves and roots of poplar sapling [J]. Chin J Plant Ecol, 2019, 43(4): 296-304.
[14] YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(4): 352-364.
[15] XUE Jing-Yue, WANG Li-Hua, XIE Yu, GAO Jing, HE Jun-Dong, WU Yan. Effect of shrub coverage on grassland ecosystem carbon pool in southwestern China [J]. Chin J Plant Ecol, 2019, 43(4): 365-373.
Full text



[1] Hongjuan Jia Junwen Zhang. Quantitative Analysis of Pollen Morphology with MATLAB[J]. Chin Bull Bot, 2007, 24(04): 511 -515 .
[2] Sun Kun and Wang Qing-rui. Cytological Studies on Species of Viola from Northwest China[J]. Chin Bull Bot, 1996, 13(01): 46 -47 .
[3] Pan Rui-chi. Plant growth regulators and rooting[J]. Chin Bull Bot, 1995, 12(专辑3): 8 -14 .
[4] Shumei Ma, Rui Zhang, Yan Sun, Dongjun Liu, Yifan Guo, Wenlin Liu, Fengying Song, Shuping Yang, Jumei Zhang, Guangzu Sun, Hongji Zhang. Genetic Diversity of Wheat Germplasm Resources from Far East Russia and Heilongjiang Province[J]. Chin Bull Bot, 2014, 49(2): 150 -160 .
[5] Cao Kun-fang. An Overview of Plant Reproductive Ecology[J]. Chin Bull Bot, 1993, 10(02): 15 -23 .
[6] WANG Qin YANG Jian WANG Yu-Fei. Pinacecous Cones in the Miocene Shanwang Flora[J]. Chin Bull Bot, 2000, 17(专辑): 262 -263 .
[7] LIU Zhao-Hua Jason Hilton LI Cheng-Sen. Review on the Origin, Evolution and Phylogeny of Marattiles[J]. Chin Bull Bot, 2000, 17(专辑): 39 -52 .
[8] Zheng Zhong-hua. A Method of Preparing Pollen Section for Transmission Electron Microscopy[J]. Chin Bull Bot, 1988, 5(03): 182 -184 .
[9] LIANG Ming-Shan ZENG Yu ZHOU Xiang HOU Liu-Ji LI Xia. Genetic Markers and Their Applications in Identifying Crop Cultivars[J]. Chin Bull Bot, 2001, 18(03): 257 -265 .
[10] Zhang Feng and Shangguan Tie-liang. On the Biomass of Larix principis-rupprechtii Forest in Guandi Mountain , Shanxi Province[J]. Chin Bull Bot, 1992, 9(04): 51 -52 .