Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (1): 92-102.DOI: 10.17521/cjpe.2022.0510 cstr: 32100.14.cjpe.2022.0510
Special Issue: 生态化学计量
• Research Articles • Previous Articles Next Articles
HAN Lu1, FENG Yu2, LI Yuan-Kai1, WANG Yu-Qing2, WANG Hai-Zhen3,*()
Received:
2022-12-19
Accepted:
2023-06-06
Online:
2024-01-20
Published:
2023-06-07
Supported by:
HAN Lu, FENG Yu, LI Yuan-Kai, WANG Yu-Qing, WANG Hai-Zhen. Effects of groundwater depth on carbon, nitrogen, phosphorus ecological stoichiometric and homeostasis characteristics of Populus pruinosa leaves and soil in Tarim Basin, Xinjiang, China[J]. Chin J Plant Ecol, 2024, 48(1): 92-102.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0510
样地 Plot | 经纬度 Longitude and Latitude | 地下水埋深 Groundwater depth (m) | 密度 Density (tree·hm-2) | 平均胸径 Average DBH (cm) | 平均树高 Average tree height (m) | 土壤 Soil (1 m) | |
---|---|---|---|---|---|---|---|
电导率 Conductivity (ms·cm-1) | pH | ||||||
U1 | 80.95° E, 40.48° N | 1.5 | 578.3 | 19.74 | 8.85 | 1.16 | 8.68 |
U2 | 80.97° E, 40.50° N | 2.4 | 144.5 | 48.14 | 9.38 | 8.33 | 8.51 |
U3 | 81.15° E, 40.44° N | 3.0 | 241.6 | 29.35 | 8.29 | 5.42 | 8.67 |
U4 | 81.99° E, 40.69° N | 5.4 | 182.2 | 23.53 | 7.17 | 1.83 | 8.45 |
U5 | 80.39° E, 40.33° N | 4.8 | 272.6 | 25.57 | 8.16 | 2.95 | 8.32 |
U6 | 80.40° E, 40.33° N | 6.5 | 180.2 | 19.45 | 5.85 | 5.43 | 8.12 |
U7 | 80.41° E, 40.34° N | 8.5 | 84.4 | 19.92 | 5.27 | 4.83 | 8.24 |
Table 1 Characteristics of Populus pruinosa population and soil in different habitats in Tarim Basin
样地 Plot | 经纬度 Longitude and Latitude | 地下水埋深 Groundwater depth (m) | 密度 Density (tree·hm-2) | 平均胸径 Average DBH (cm) | 平均树高 Average tree height (m) | 土壤 Soil (1 m) | |
---|---|---|---|---|---|---|---|
电导率 Conductivity (ms·cm-1) | pH | ||||||
U1 | 80.95° E, 40.48° N | 1.5 | 578.3 | 19.74 | 8.85 | 1.16 | 8.68 |
U2 | 80.97° E, 40.50° N | 2.4 | 144.5 | 48.14 | 9.38 | 8.33 | 8.51 |
U3 | 81.15° E, 40.44° N | 3.0 | 241.6 | 29.35 | 8.29 | 5.42 | 8.67 |
U4 | 81.99° E, 40.69° N | 5.4 | 182.2 | 23.53 | 7.17 | 1.83 | 8.45 |
U5 | 80.39° E, 40.33° N | 4.8 | 272.6 | 25.57 | 8.16 | 2.95 | 8.32 |
U6 | 80.40° E, 40.33° N | 6.5 | 180.2 | 19.45 | 5.85 | 5.43 | 8.12 |
U7 | 80.41° E, 40.34° N | 8.5 | 84.4 | 19.92 | 5.27 | 4.83 | 8.24 |
指标 Indicator | 最大值 Maximum | 最小值 Minimum | 中位数 Median | 平均值±标准差 Mean ± SD | 变异系数 Variation coefficient (%) |
---|---|---|---|---|---|
土壤有机碳含量 Soil organic carbon (C) content (mg∙g-1) | 17.19 | 5.35 | 7.54 | 9.56 ± 4.26 | 44.55 |
土壤全氮含量 Total nitrogen (N) content of soil (mg∙g-1) | 1.32 | 0.47 | 0.63 | 0.81 ± 0.32 | 39.47 |
土壤全磷含量 Total phosphorus (P) content of soil (mg∙g-1) | 1.41 | 1.11 | 1.21 | 1.21 ± 0.09 | 7.16 |
土壤碳氮比 Soil C:N | 29.76 | 5.16 | 11.35 | 13.07 ± 7.23 | 55.33 |
土壤碳磷比 Soil C:P | 14.81 | 4.77 | 6.26 | 7.80 ± 3.35 | 42.90 |
土壤氮磷比 Soil N:P | 1.07 | 0.38 | 0.52 | 0.66 ± 0.24 | 35.89 |
叶片碳含量 Leaf C content (mg∙g-1) | 424.28 | 353.07 | 373.86 | 387.99 ± 32.29 | 8.32 |
叶片氮含量 Leaf N content (mg∙g-1) | 17.51 | 13.68 | 14.79 | 15.18 ± 1.55 | 10.22 |
叶片磷含量 Leaf P content (mg∙g-1) | 0.86 | 0.55 | 0.81 | 0.76 ± 0.11 | 14.32 |
叶片碳氮比 Leaf C:N | 30.37 | 20.45 | 27.56 | 26.01 ± 4.16 | 15.99 |
叶片碳磷比 Leaf C:P | 787.07 | 419.36 | 530.27 | 563.53 ± 121.26 | 21.52 |
叶片氮磷比 Leaf N:P | 31.05 | 17.99 | 19.74 | 22.03 ± 4.81 | 21.85 |
Table 2 Variations of ecological stoichiometric indicator of soils and Populus pruinosa leaves in the watershed of Tarim River
指标 Indicator | 最大值 Maximum | 最小值 Minimum | 中位数 Median | 平均值±标准差 Mean ± SD | 变异系数 Variation coefficient (%) |
---|---|---|---|---|---|
土壤有机碳含量 Soil organic carbon (C) content (mg∙g-1) | 17.19 | 5.35 | 7.54 | 9.56 ± 4.26 | 44.55 |
土壤全氮含量 Total nitrogen (N) content of soil (mg∙g-1) | 1.32 | 0.47 | 0.63 | 0.81 ± 0.32 | 39.47 |
土壤全磷含量 Total phosphorus (P) content of soil (mg∙g-1) | 1.41 | 1.11 | 1.21 | 1.21 ± 0.09 | 7.16 |
土壤碳氮比 Soil C:N | 29.76 | 5.16 | 11.35 | 13.07 ± 7.23 | 55.33 |
土壤碳磷比 Soil C:P | 14.81 | 4.77 | 6.26 | 7.80 ± 3.35 | 42.90 |
土壤氮磷比 Soil N:P | 1.07 | 0.38 | 0.52 | 0.66 ± 0.24 | 35.89 |
叶片碳含量 Leaf C content (mg∙g-1) | 424.28 | 353.07 | 373.86 | 387.99 ± 32.29 | 8.32 |
叶片氮含量 Leaf N content (mg∙g-1) | 17.51 | 13.68 | 14.79 | 15.18 ± 1.55 | 10.22 |
叶片磷含量 Leaf P content (mg∙g-1) | 0.86 | 0.55 | 0.81 | 0.76 ± 0.11 | 14.32 |
叶片碳氮比 Leaf C:N | 30.37 | 20.45 | 27.56 | 26.01 ± 4.16 | 15.99 |
叶片碳磷比 Leaf C:P | 787.07 | 419.36 | 530.27 | 563.53 ± 121.26 | 21.52 |
叶片氮磷比 Leaf N:P | 31.05 | 17.99 | 19.74 | 22.03 ± 4.81 | 21.85 |
Fig. 1 Stoichiometric characteristics of carbon (C), nitrogen (N) and phosphorus (P) of Populus pruinosa leaves along a gradient of groundwater depth in the main watershed of Tarim River (mean ± SD). W1, W2 and W3 represent shallow, middle, deep groundwater table, respectively. Different lowercase letters indicate significant differences between groundwater depths (p < 0.05).
指标 Indicator | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
C | 1 | 0.205 | 0.470* | 0.728** | 0.981** | 0.096 |
N | -0.710** | 1 | 0.591** | -0.483* | 0.082 | 0.967** |
P | -0.333 | 0.203 | 1 | -0.113 | 0.291 | 0.405 |
C:N | 0.939** | -0.904** | -0.229 | 1 | 0.823** | -0.524* |
C:P | 0.501* | -0.348 | -0.948** | 0.467* | 1 | 0.003 |
N:P | 0.044 | 0.143 | -0.885** | -0.045 | 0.851** | 1 |
Table 3 Pearson’s correlation coefficients between carbon (C), nitrogen (N), phosphorus (P) stoichiometric indicator of Populus pruinosa leaves or soils
指标 Indicator | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
C | 1 | 0.205 | 0.470* | 0.728** | 0.981** | 0.096 |
N | -0.710** | 1 | 0.591** | -0.483* | 0.082 | 0.967** |
P | -0.333 | 0.203 | 1 | -0.113 | 0.291 | 0.405 |
C:N | 0.939** | -0.904** | -0.229 | 1 | 0.823** | -0.524* |
C:P | 0.501* | -0.348 | -0.948** | 0.467* | 1 | 0.003 |
N:P | 0.044 | 0.143 | -0.885** | -0.045 | 0.851** | 1 |
地下水埋深 Groundwater depth | CL | NL | PL | C:NL | C:PL | N:PL | |
---|---|---|---|---|---|---|---|
≤4 m | CS | 0.325 | -0.235 | -0.255 | 0.298 | 0.387 | 0.295 |
NS | 0.175 | -0.500 | 0.091 | 0.515 | -0.238 | -0.388 | |
PS | 0.548 | -0.814** | -0.188 | 0.897** | 0.132 | -0.144 | |
C:NS | 0.004 | 0.250 | -0.159 | -0.237 | 0.318 | 0.386 | |
C:PS | 0.191 | -0.024 | -0.220 | 0.067 | 0.374 | 0.353 | |
N:PS | -0.002 | -0.275 | 0.171 | 0.261 | -0.324 | -0.395 | |
4-6 m | CS | 0.240 | 0.891* | 0.104 | -0.624 | -0.098 | 0.003 |
NS | 0.228 | 0.703 | 0.192 | -0.500 | -0.160 | -0.073 | |
PS | 0.259 | 0.852* | 0.006 | -0.597 | 0.002 | 0.094 | |
C:NS | 0.235 | 0.934** | 0.063 | -0.679 | -0.070 | 0.033 | |
C:PS | 0.235 | 0.901* | 0.138 | -0.654 | -0.133 | -0.030 | |
N:PS | 0.090 | 0.196 | 0.428 | -0.141 | -0.368 | -0.325 | |
≥6 m | CS | 0.448 | 0.085 | 0.969** | 0.294 | -0.803 | -0.988** |
NS | 0.444 | 0.792 | 0.944** | 0.308 | -0.775 | -0.964** | |
PS | 0.220 | 0.187 | 0.826* | 0.076 | -0.764 | -0.845* | |
C:NS | -0.389 | -0.029 | -0.919** | -0.277 | 0.766 | 0.938** | |
C:PS | 0.470 | 0.068 | 0.962** | 0.318 | -0.786 | -0.981** | |
N:PS | 0.453 | 0.037 | 0.937** | 0.319 | -0.764 | -0.957** |
Table 4 Pearson’s correlation coefficients between carbon (C), nitrogen (N), phosphorus (P) stoichiometric characteristics of Populus pruinosa leaves (L) and soils (S) under groundwater depths
地下水埋深 Groundwater depth | CL | NL | PL | C:NL | C:PL | N:PL | |
---|---|---|---|---|---|---|---|
≤4 m | CS | 0.325 | -0.235 | -0.255 | 0.298 | 0.387 | 0.295 |
NS | 0.175 | -0.500 | 0.091 | 0.515 | -0.238 | -0.388 | |
PS | 0.548 | -0.814** | -0.188 | 0.897** | 0.132 | -0.144 | |
C:NS | 0.004 | 0.250 | -0.159 | -0.237 | 0.318 | 0.386 | |
C:PS | 0.191 | -0.024 | -0.220 | 0.067 | 0.374 | 0.353 | |
N:PS | -0.002 | -0.275 | 0.171 | 0.261 | -0.324 | -0.395 | |
4-6 m | CS | 0.240 | 0.891* | 0.104 | -0.624 | -0.098 | 0.003 |
NS | 0.228 | 0.703 | 0.192 | -0.500 | -0.160 | -0.073 | |
PS | 0.259 | 0.852* | 0.006 | -0.597 | 0.002 | 0.094 | |
C:NS | 0.235 | 0.934** | 0.063 | -0.679 | -0.070 | 0.033 | |
C:PS | 0.235 | 0.901* | 0.138 | -0.654 | -0.133 | -0.030 | |
N:PS | 0.090 | 0.196 | 0.428 | -0.141 | -0.368 | -0.325 | |
≥6 m | CS | 0.448 | 0.085 | 0.969** | 0.294 | -0.803 | -0.988** |
NS | 0.444 | 0.792 | 0.944** | 0.308 | -0.775 | -0.964** | |
PS | 0.220 | 0.187 | 0.826* | 0.076 | -0.764 | -0.845* | |
C:NS | -0.389 | -0.029 | -0.919** | -0.277 | 0.766 | 0.938** | |
C:PS | 0.470 | 0.068 | 0.962** | 0.318 | -0.786 | -0.981** | |
N:PS | 0.453 | 0.037 | 0.937** | 0.319 | -0.764 | -0.957** |
地下水埋深 Groundwater depth | 变量 Variable | H | R2 | p | 等级 Grade | |
---|---|---|---|---|---|---|
x | y | |||||
≤4 m | CS | CL | 23.419 2 | 0.132 3 | 0.335 9 | 绝对稳态 Absolute steady-state |
NS | NL | 7.812 5 | 0.247 1 | 0.173 4 | 绝对稳态 Absolute steady-state | |
PS | PL | 2.211 4 | 0.015 8 | 0.747 1 | 绝对稳态 Absolute steady-state | |
C:NS | C:NL | 17.857 1 | 0.001 1 | 0.934 2 | 绝对稳态 Absolute steady-state | |
C:PS | C:PL | 3.561 3 | 0.108 1 | 0.387 6 | 绝对稳态 Absolute steady-state | |
N:PS | N:PL | 3.070 3 | 0.099 7 | 0.407 7 | 绝对稳态 Absolute steady-state | |
4-6 m | CS | CL | 18.553 2 | 0.355 8 | 0.465 5 | 绝对稳态 Absolute steady-state |
NS | NL | 3.340 1 | 0.494 1 | 0.120 3 | 绝对稳态 Absolute steady-state | |
PS | PL | 1.649 2 | 0.000 1 | 0.985 7 | 绝对稳态 Absolute steady-state | |
C:NS | C:NL | 6.451 6 | 0.459 4 | 0.139 1 | 绝对稳态 Absolute steady-state | |
C:PS | C:PL | 3.770 7 | 0.020 1 | 0.788 6 | 绝对稳态 Absolute steady-state | |
N:PS | N:PL | 3.407 2 | 0.139 8 | 0.465 2 | 绝对稳态 Absolute steady-state | |
≥6 m | CS | CL | 9.009 5 | 0.207 3 | 0.364 2 | 绝对稳态 Absolute steady-state |
NS | NL | 1.941 2 | 0.794 3 | 0.017 1 | 弱敏感 Weak sensitivity | |
PS | PL | 0.167 1 | 0.659 6 | 0.049 6 | 敏感 Sensitivity | |
C:NS | C:NL | 13.175 2 | 0.087 2 | 0.567 0 | 绝对稳态 Absolute steady-state | |
C:PS | C:PL | 1.643 9 | 0.659 3 | 0.049 7 | 弱敏感 Weak sensitivity | |
N:PS | N:PL | 0.264 8 | 0.876 9 | 0.005 9 | 敏感 Sensitivity |
Table 5 Homeostatic indexes (H) of leaf nutrients and stoichiometry ratio along groundwater gradient
地下水埋深 Groundwater depth | 变量 Variable | H | R2 | p | 等级 Grade | |
---|---|---|---|---|---|---|
x | y | |||||
≤4 m | CS | CL | 23.419 2 | 0.132 3 | 0.335 9 | 绝对稳态 Absolute steady-state |
NS | NL | 7.812 5 | 0.247 1 | 0.173 4 | 绝对稳态 Absolute steady-state | |
PS | PL | 2.211 4 | 0.015 8 | 0.747 1 | 绝对稳态 Absolute steady-state | |
C:NS | C:NL | 17.857 1 | 0.001 1 | 0.934 2 | 绝对稳态 Absolute steady-state | |
C:PS | C:PL | 3.561 3 | 0.108 1 | 0.387 6 | 绝对稳态 Absolute steady-state | |
N:PS | N:PL | 3.070 3 | 0.099 7 | 0.407 7 | 绝对稳态 Absolute steady-state | |
4-6 m | CS | CL | 18.553 2 | 0.355 8 | 0.465 5 | 绝对稳态 Absolute steady-state |
NS | NL | 3.340 1 | 0.494 1 | 0.120 3 | 绝对稳态 Absolute steady-state | |
PS | PL | 1.649 2 | 0.000 1 | 0.985 7 | 绝对稳态 Absolute steady-state | |
C:NS | C:NL | 6.451 6 | 0.459 4 | 0.139 1 | 绝对稳态 Absolute steady-state | |
C:PS | C:PL | 3.770 7 | 0.020 1 | 0.788 6 | 绝对稳态 Absolute steady-state | |
N:PS | N:PL | 3.407 2 | 0.139 8 | 0.465 2 | 绝对稳态 Absolute steady-state | |
≥6 m | CS | CL | 9.009 5 | 0.207 3 | 0.364 2 | 绝对稳态 Absolute steady-state |
NS | NL | 1.941 2 | 0.794 3 | 0.017 1 | 弱敏感 Weak sensitivity | |
PS | PL | 0.167 1 | 0.659 6 | 0.049 6 | 敏感 Sensitivity | |
C:NS | C:NL | 13.175 2 | 0.087 2 | 0.567 0 | 绝对稳态 Absolute steady-state | |
C:PS | C:PL | 1.643 9 | 0.659 3 | 0.049 7 | 弱敏感 Weak sensitivity | |
N:PS | N:PL | 0.264 8 | 0.876 9 | 0.005 9 | 敏感 Sensitivity |
[1] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. |
[鲍士旦 (2000). 土壤农化分析(第三版). 中国农业出版社, 北京.] | |
[2] | Deng J, Zhang D, Zhang W, Ren CJ, Hao WH, Liu C, Han XH, Yang GH (2019). Carbon, nitrogen, and phosphorus stoichiometry and homeostasis characteristics of leaves, soil, and microbial biomass of Robinia pseudoacacia forests in the Loess Hilly Region of China. Acta Ecologica Sinica, 39, 5527-5535. |
[邓健, 张丹, 张伟, 任成杰, 郝雯晖, 刘冲, 韩新辉, 杨改河 (2019). 黄土丘陵区刺槐叶片-土壤-微生物碳氮磷化学计量学及其稳态性特征. 生态学报, 39, 5527-5535.] | |
[3] |
Drenovsky RE, Richards JH (2006). Low leaf N and P resorption contributes to nutrient limitation in two desert shrubs. Plant Ecology, 183, 305-314.
DOI URL |
[4] |
Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
DOI URL |
[5] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI PMID |
[6] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI PMID |
[7] | Hai XY, Dong LB, Wang XZ, Deng L, Li JW, Liu YL, Li MY, Pan YJ, Lü WW, Shangguan ZP (2020). Effects of carbon, nitrogen, and phosphorus ecological stoichiometry characteristics on plant diversity since returning farmland to grassland on the Loess Plateau. Acta Ecologica Sinica, 40, 8570-8581. |
[海旭莹, 董凌勃, 汪晓珍, 邓蕾, 李继伟, 刘玉林, 李妙宇, 潘英杰, 吕文文, 上官周平 (2020). 黄土高原退耕还草地C、N、P生态化学计量特征对植物多样性的影响. 生态学报, 40, 8570-8581.] | |
[8] | Han L, Wang HZ, Niu JL, Wang JQ, Liu WY (2017). Response of Populus euphratica communities in a desert riparian forest to the groundwater level gradient in the Tarim Basin. Acta Ecologica Sinica, 37, 6836-6846. |
[韩路, 王海珍, 牛建龙, 王家强, 柳维扬 (2017). 荒漠河岸林胡杨群落特征对地下水位梯度的响应. 生态学报, 37, 6836-6846.] | |
[9] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI PMID |
[10] |
Han W, Fang J, Reich PB, Woodward FI, Wang Z (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796.
DOI PMID |
[11] |
He J, Wang L, Flynn DFB, Wang X, Ma W, Fang J (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL |
[12] | Hu YF, Shu XY, He JA, Zhang YL, Xiao HH, Tang XY, Gu YF, Lan T, Xia JG, Ling J, Chen GD, Wang CQ, Deng LJ, Yuan S (2018). Storage of C, N, and P affected by afforestation with Salix cupularis in an alpine semiarid desert ecosystem. Land Degradation & Development, 29, 188-198. |
[13] |
Jiang YF, Guo X (2019). Stoichiometric patterns of soil carbon, nitrogen, and phosphorus in farmland of the Poyang Lake region in Southern China. Journal of Soils and Sediments, 19, 3476-3488.
DOI |
[14] | Li CJ, Xu XW, Sun YQ, Qiu YZ, Li SY, Gao P, Zhong XB, Yan J, Wang GF (2014). Stoichiometric characteristics of C, N, P for three desert plants leaf and soil at different habitats. Arid Land Geography, 37, 996-1004. |
[李从娟, 徐新文, 孙永强, 邱永志, 李生宇, 高培, 钟显彬, 闫健, 王桂芬 (2014). 不同生境下三种荒漠植物叶片及土壤C、N、P的化学计量特征. 干旱区地理, 37, 996-1004.] | |
[15] | Li YL, Mao W, Zhao XY, Zhang TH (2010). Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, north China. Environmental Science, 31, 1717-1725. |
[李玉霖, 毛伟, 赵学勇, 张铜会 (2010). 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究. 环境科学, 31, 1717-1725.] | |
[16] | Liu SS, Xu GQ, Mi XJ, Chen TQ, Li Y (2022). Effects of groundwater depth and seasonal drought on the physiology and growth of Haloxylon ammodendron at the southern edge of Gurbantonggut Desert. Acta Ecologica Sinica, 42, 8881-8891. |
[刘深思, 徐贵青, 米晓军, 陈图强, 李彦 (2022). 地下水埋深和季节性干旱对古尔班通古特沙漠南缘梭梭生理和生长的影响. 生态学报, 42, 8881-8891.] | |
[17] | Liu YY, Luo WM, Mu GT, Wu XL, Su SC, Zhang ZM (2021). C:N:P stoichiometric characteristics of the soil-vegetation system of three rare tree species growing on Mount Fanjing in Southwest China. Global Ecology and Conservation, 32, e01893. DOI: 10.1016/j.gecco.2021.e01893. |
[18] | Luo GW, Xue C, Jiang QH, Xiao Y, Zhang FG, Guo SW, Shen QR, Ling N (2020). Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C:N:P stoichiometry. mSystems, 5, e00162. DOI: 10.1128/mSystems.00162-20. |
[19] | Luo Y, Gong L, Zhu ML, An SQ (2017). Stoichiometry characteristics of leaves and soil of four shrubs in the upper reaches of the Tarim River desert. Acta Ecologica Sinica, 37, 8326-8335. |
[罗艳, 贡璐, 朱美玲, 安申群 (2017). 塔里木河上游荒漠区4种灌木植物叶片与土壤生态化学计量特征. 生态学报, 37, 8326-8335.] | |
[20] |
Mou WB, Xu DH, Wang XJ, Jing WM, Zhang RY, Gu YL, Yao GQ, Qi SH, Zhang L, Gou YF (2022). Soil carbon, nitrogen, and phosphorus stoichiometry along an altitude gradient in shrublands in Pailugou watershed, China. Chinese Journal of Plant Ecology, 46, 1422-1431.
DOI URL |
[牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞 (2022). 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征. 植物生态学报, 46, 1422-1431.]
DOI |
|
[21] |
Ning ZY, Li YL, Yang HL, Zhang ZQ (2019). Nitrogen and phosphorus stoichiometric homoeostasis in leaves of dominant sand-fixing shrubs in Horqin Sandy Land, China. Chinese Journal of Plant Ecology, 43, 46-54.
DOI URL |
[宁志英, 李玉霖, 杨红玲, 张子谦 (2019). 科尔沁沙地优势固沙灌木叶片氮磷化学计量内稳性. 植物生态学报, 43, 46-54.]
DOI |
|
[22] |
Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010). To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 119, 741-751.
DOI URL |
[23] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI PMID |
[24] |
Tao Y, Wu GL, Liu YB, Zhang YM (2017). Soil stoichiometry and their influencing factors in typical shrub communities in the Gurbantunggut Desert, China. Journal of Desert Research, 37, 305-314.
DOI |
[陶冶, 吴甘霖, 刘耀斌, 张元明 (2017). 古尔班通古特沙漠典型灌木群落土壤化学计量特征及其影响因素. 中国沙漠, 37, 305-314.]
DOI |
|
[25] |
Tian H, Chen G, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 98, 139-151.
DOI URL |
[26] | Wang LJ, Zhou ZB, Chang Q, Fan JL, Fan WP (2018). Growth, physiological and biochemical characteristics of Populus pruinosa seedlings under salt-drought stress. Acta Ecologica Sinica, 38, 7026-7033. |
[王利界, 周智彬, 常青, 范敬龙, 范文鹏 (2018). 盐旱交叉胁迫对灰胡杨(Populus pruinosa)幼苗生长和生理生化特性的影响. 生态学报, 38, 7026-7033.] | |
[27] | Wang LL, Zhao GX, Li M, Zhang MT, Zhang LF, Zhang XF, An LZ, Xu SJ (2015a). C:N:P stoichiometry and leaf traits of halophytes in an arid saline environment, northwest China. PLoS ONE, 10, e0119935. DOI: 10.1371/journal.pone.0119935. |
[28] | Wang ZN, Lu JY, Yang M, Yang HM, Zhang QP (2015b). Stoichiometric characteristics of carbon, nitrogen, and phosphorus in leaves of differently aged lucerne (Medicago sativa) stands. Frontiers in Plant Science, 6, 1062. DOI:10.3389/fpls.2015.01062. |
[29] | Wei YH, Liang WZ, Han L, Wang HZ (2021). Leaf functional traits of Populus euphratica and its response to groundwater depths in Tarim extremely arid area. Acta Ecologica Sinica, 41, 5368-5376. |
[魏圆慧, 梁文召, 韩路, 王海珍 (2021). 胡杨叶功能性状特征及其对地下水埋深的响应. 生态学报, 41, 5368-5376.] | |
[30] | Wu XD, Ji B, He JL, Ren XB, Yu HQ, Wang ZJ (2021). The effects of precipitation gradient control on the leaf functional traits and soil nutrients of the dominant plants in a desert steppe. Acta Ecologica Sinica, 41, 2719-2727. |
[吴旭东, 季波, 何建龙, 任小玢, 俞鸿千, 王占军 (2021). 控制降水梯度对荒漠草原优势植物叶功能性状及土壤养分的影响. 生态学报, 41, 2719-2727.] | |
[31] |
Yang Y, Liu BR, An SS (2018). Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. Catena, 166, 328-338.
DOI URL |
[32] |
Yu Q, Wilcox K, La Pierre K, Knapp AK, Han X, Smith MD (2015). Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change. Ecology, 96, 2328-2335.
PMID |
[33] | Zhang B, Gao X, Li L, Lu Y, Shareef M, Huang C, Liu G, Gui D, Zeng F (2018). Groundwater depth affects phosphorus but not carbon and nitrogen concentrations of a desert phreatophyte in northwest China. Frontiers in Plant Science, 9, 338. DOI: 10.3389/fpls.2018.00338. |
[34] | Zhang B, Tang G, Yin H, Zhao S, Shareef M, Liu B, Gao X, Zeng F (2021). Groundwater depths affect phosphorus and potassium resorption but not their utilization in a desert phreatophyte in its hyper-arid environment. Frontiers in Plant Science, 12, 665168. DOI:10.3389/fpls.2021.665168. |
[35] | Zhang X, Feng Q, Cao J, Biswas A, Su H, Liu W, Qin Y, Zhu M (2022). Response of leaf stoichiometry of Potentilla anserina to elevation in China’s Qilian Mountains. Frontiers in Plant Science, 13, 941357. DOI: 10.3389/fpls.2022.941357. |
[36] | Zhang YJ, Wang KQ, Song YL, Su MB, Li XL, Li XF (2020). C, N and P stoichiometric characteristics of leaf, litter and soil for subalpine forests in central Yunnan, China. Acta Ecologica Sinica, 40, 7648-7658. |
[张雨鉴, 王克勤, 宋娅丽, 苏孟白, 李晓龙, 李学峰 (2020). 滇中亚高山森林植物叶-凋落叶-土壤生态化学计量特征. 生态学报, 40, 7648-7658.] | |
[37] | Zhao R, Wang CK, Quan XK, Wang XC (2021). Ecological stoichiometric characteristics of different organs of broadleaf tree species in a temperate forest in Maoershan area, Heilongjiang Province. Scientia Silvae Sinicae, 57(2), 1-11. |
[赵瑞, 王传宽, 全先奎, 王兴昌 (2021). 黑龙江省帽儿山温带阔叶树种不同器官的生态化学计量特征. 林业科学, 57(2), 1-11.] |
[1] | Yu Qing韩雨晴 Wei XIONG 雅莉 刘 景波 张 XIN Zhi-Ming Ying-Bin MA 泓林 廉 思涵 王. Responses of stem sap flow of Haloxylon ammodendron to rainfall pulses in Ulan Buh Desert [J]. Chin J Plant Ecol, 2024, 48(9): 0-0. |
[2] | 蓓蓓 李 Ming-Jun ZHANG 存伟 车 泽琛 刘 晓菲 钟 园园 张 宇 张. Water utilization strategy of date palm under different sand cover thicknesses based on stable isotope tracing [J]. Chin J Plant Ecol, 2024, 48(9): 0-0. |
[3] | CHEN Xuan-Zheng, ZHU Yao-Jun, GAO Ju-Juan, LIU Yi-Fan, WANG Rong, FANG Tao, LUO Fang-Li, XUE Wei, YU Fei-Hai. Research progress on spatial-temporal variation of plant-soil feedback [J]. Chin J Plant Ecol, 2024, 48(8): 955-966. |
[4] | MA Xu-Han, HUANG Ju-Ying, YU Hai-Long, HAN Cui, LI Bing. Soil organic carbon and its easily decomposed components under precipitation change and nitrogen addition in a desert steppe in northwest China [J]. Chin J Plant Ecol, 2024, 48(8): 1065-1077. |
[5] | PENG Si-Rui, ZHANG Hui-Ling, SUN Zhao-Lin, ZHAO Xue-Chao, TIAN Peng, CHEN Di-Ma, WANG Qing-Kui, LIU Sheng-En. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest [J]. Chin J Plant Ecol, 2024, 48(8): 1078-1088. |
[6] | LONG Ji-Lan, JIANG Zheng, LIU Ding-Qin, MIAO Yu-Xuan, ZHOU Ling-Yan, FENG Ying, PEI Jia-Ning, LIU Rui-Qiang, ZHOU Xu-Hui, FU Yu-Ling. Effects of drought on plant root exudates and associated rhizosphere priming effect: review and prospect [J]. Chin J Plant Ecol, 2024, 48(7): 817-827. |
[7] | WANG Yan, ZHANG Quan-Zhi, WANG Chuan-Kuan, GUO Wan-Gui, LIN Jia-Wei. Effects of restoration approaches on forest soil carbon, nitrogen and phosphorus stoichiometry in eastern Northeast China [J]. Chin J Plant Ecol, 2024, 48(7): 943-954. |
[8] | JIANG Kang-Wei, ZHANG Qing-Qing, WANG Ya-Fei, LI Hong, DING Yu, YANG Yong-Qiang, Tuerxunnayi REYIMU. Characteristics of plant functional groups and the relationships with soil environmental factors in middle part of northern slope of Tianshan Mountains under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(6): 701-718. |
[9] | LIU Yao, ZHONG Quan-Lin, XU Chao-Bin, CHENG Dong-Liang, ZHENG Yue-Fang, ZOU Yu-Xing, ZHANG Xue, ZHENG Xin-Jie, ZHOU Yun-Ruo. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(6): 744-759. |
[10] | CAI Hui-Ying, LI Lan-Hui, LIN Yang, LIANG Ya-Tao, YANG Guang, SUN Long. Responses of non-structural carbohydrates in Betula platyphylla leaves and fine roots to time since fire [J]. Chin J Plant Ecol, 2024, 48(6): 780-793. |
[11] | ZHANG Wen-Jin, SHE Wei-Wei, QIN Shu-Gao, QIAO Yan-Gui, ZHANG Yu-Qing. Effects of nitrogen and water addition on leaf nitrogen and phosphorus stoichiometry of the dominant species in an Artemisia ordosica community [J]. Chin J Plant Ecol, 2024, 48(5): 590-600. |
[12] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[13] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[14] | NIU Yi-Di, CAI Ti-Jiu. Changes in species diversity and influencing factors in secondary forest succession in northern Da Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 349-363. |
[15] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn