Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (9): 1202-1212.DOI: 10.17521/cjpe.2023.0295 cstr: 32100.14.cjpe.2023.0295
• Research Articles • Previous Articles Next Articles
LI Bei-Bei, ZHANG Ming-Jun*(), CHE Cun-Wei, LIU Ze-Chen, ZHONG Xiao-Fei, ZHANG Yuan-Yuan, ZHANG Yu
Received:
2023-10-19
Accepted:
2024-04-08
Online:
2024-09-20
Published:
2024-04-12
Contact:
ZHANG Ming-Jun (Supported by:
LI Bei-Bei, ZHANG Ming-Jun, CHE Cun-Wei, LIU Ze-Chen, ZHONG Xiao-Fei, ZHANG Yuan-Yuan, ZHANG Yu. Water utilization strategy of Ziziphus jujuba under different sand cover thicknesses based on stable isotope tracing[J]. Chin J Plant Ecol, 2024, 48(9): 1202-1212.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0295
Fig. 2 Spatial and temporal variation of soil water content (SWC) in Ziziphus jujuba sample plots under different sand cover thicknesses. A, Without sand cover. B, With 5 cm of sand cover. C, With 10 cm of sand cover. D, With 15 cm of sand cover. Blue line represents soil water content over time, red line represents soil water content over depth.
覆砂厚度 Sand thickness (cm) | 土层 Layer of soil (cm) | SWC (%) | ||
---|---|---|---|---|
2023-05-11 | 2023-05-13 | 2023-05-15 | ||
0 | 0-30 | 6.4 | 7.1 | 5.5 |
30-100 | 7.8 | 7.6 | 6.9 | |
5 | 0-30 | 11.8 | 12.6 | 10.6 |
30-100 | 13.9 | 13.8 | 13.1 | |
10 | 0-30 | 12.0 | 13.4 | 11.7 |
30-100 | 14.8 | 14.7 | 14.8 | |
15 | 0-30 | 13.0 | 14.1 | 13.2 |
30-100 | 16.2 | 17.4 | 16.4 |
Table 1 Mean soil water content (SWC) of Ziziphus jujuba soils under different sand cover thicknesses after irrigation
覆砂厚度 Sand thickness (cm) | 土层 Layer of soil (cm) | SWC (%) | ||
---|---|---|---|---|
2023-05-11 | 2023-05-13 | 2023-05-15 | ||
0 | 0-30 | 6.4 | 7.1 | 5.5 |
30-100 | 7.8 | 7.6 | 6.9 | |
5 | 0-30 | 11.8 | 12.6 | 10.6 |
30-100 | 13.9 | 13.8 | 13.1 | |
10 | 0-30 | 12.0 | 13.4 | 11.7 |
30-100 | 14.8 | 14.7 | 14.8 | |
15 | 0-30 | 13.0 | 14.1 | 13.2 |
30-100 | 16.2 | 17.4 | 16.4 |
Fig. 3 Distribution of soil water isotope ratios under different sand cover thicknesses. GMWL, global meteoric water line; IWL, input water line; LMWL, local meteoric water line.
Fig. 4 Characteristics of oxygen stable isotope composition (δ18O) variations of soil water under different sand cover thicknesses. a, without sand cover; b, with 5 cm of sand cover; c, with 10 cm of sand cover; d, with 15 cm of sand cover; e, before irrigation.
覆砂厚度 Sand thickness (cm) | 土层 Layer of soil (cm) | 同位素 Isotope | 2023-5-11 | 2023-5-13 | 2023-5-15 |
---|---|---|---|---|---|
0 | 0-30 | 2H | -64.6 | -61.0 | -63.8 |
18O | -3.1 | -2.2 | -2.7 | ||
30-100 | 2H | -76.1 | -74.4 | -75.0 | |
18O | -5.4 | -5.3 | -5.4 | ||
5 | 0-30 | 2H | -71.6 | -69.6 | -61.0 |
18O | -4.3 | -3.9 | -3.0 | ||
30-100 | 2H | -73.4 | -74.5 | -73.6 | |
18O | -5.2 | -5.5 | -5.4 | ||
10 | 0-30 | 2H | -71.2 | -71.8 | -67.4 |
18O | -4.4 | -4.4 | -3.6 | ||
30-100 | 2H | -72.2 | -74.3 | -72.0 | |
18O | -5.1 | -5.3 | -5.3 | ||
15 | 0-30 | 2H | -72.1 | -72.9 | -72.2 |
18O | -4.6 | -4.8 | -4.4 | ||
30-100 | 2H | -74.7 | -75.7 | -73.8 | |
18O | -5.3 | -5.6 | -5.4 |
Table 2 Changes in isotope composition (‰) at different soil depths after irrigation occurred at different sand cover thicknesses
覆砂厚度 Sand thickness (cm) | 土层 Layer of soil (cm) | 同位素 Isotope | 2023-5-11 | 2023-5-13 | 2023-5-15 |
---|---|---|---|---|---|
0 | 0-30 | 2H | -64.6 | -61.0 | -63.8 |
18O | -3.1 | -2.2 | -2.7 | ||
30-100 | 2H | -76.1 | -74.4 | -75.0 | |
18O | -5.4 | -5.3 | -5.4 | ||
5 | 0-30 | 2H | -71.6 | -69.6 | -61.0 |
18O | -4.3 | -3.9 | -3.0 | ||
30-100 | 2H | -73.4 | -74.5 | -73.6 | |
18O | -5.2 | -5.5 | -5.4 | ||
10 | 0-30 | 2H | -71.2 | -71.8 | -67.4 |
18O | -4.4 | -4.4 | -3.6 | ||
30-100 | 2H | -72.2 | -74.3 | -72.0 | |
18O | -5.1 | -5.3 | -5.3 | ||
15 | 0-30 | 2H | -72.1 | -72.9 | -72.2 |
18O | -4.6 | -4.8 | -4.4 | ||
30-100 | 2H | -74.7 | -75.7 | -73.8 | |
18O | -5.3 | -5.6 | -5.4 |
Fig. 5 Contribution of soil water to water uptake by Ziziphus jujuba roots with different sand cover thicknesses. a, without sand cover; b, with 5 cm of sand cover; c, with 10 cm of sand cover; d, with 15 cm of sand cover; e, before irrigation.
[1] | Bai YR, Zhao YP, Wang YQ, Zhang X (2017). Soil infiltration process and model analysis of field mulched with different thickness of gravel-sand in Ningxia. Journal of Soil and Water Conservation, 31(4), 81-85. |
[白一茹, 赵云鹏, 王幼奇, 张兴 (2017). 宁夏砂田不同砾石覆盖厚度土壤入渗过程及模型分析. 水土保持学报, 31(4), 81-85.] | |
[2] |
Barbeta A, Gimeno TE, Clavé L, Fréjaville B, Jones SP, Delvigne C, Wingate L, Ogée J (2020). An explanation for the isotopic offset between soil and stem water in a temperate tree species. New Phytologist, 227, 766-779.
DOI PMID |
[3] |
Barbeta A, Mejía-Chang M, Ogaya R, Voltas J, Dawson TE, Peñuelas J (2015). The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Change Biology, 21, 1213-1225.
DOI PMID |
[4] | Beyer M, Kühnhammer K, Dubbert M (2020). In situ measurements of soil and plant water isotopes: a review of approaches, practical considerations and a vision for the future. Hydrology and Earth System Sciences, 24, 4413-4440. |
[5] | Bowen GJ (2010). Isoscapes: spatial pattern in isotopic biogeochemistry. Annual Review of Earth and Planetary Sciences, 38, 161-187. |
[6] | Bu L, Liu J, Zhu L, Luo S, Chen X, Li S, Lee Hill R, Zhao Y (2013). The effects of mulching on maize growth, yield and water use in a semi-arid region. Agricultural Water Management, 123, 71-78. |
[7] | Cai YK, Li Y, Feng H (2014). Effects of gravel-sand mulching degree and size on soil moisture evaporation. Journal of Soil and Water Conservation, 28(6), 273-277. |
[蔡永坤, 李毅, 冯浩 (2014). 不同砂石覆盖度和粒径对土壤水分蒸发的影响. 水土保持学报, 28(6), 273-277.] | |
[8] | Ceacero CJ, Díaz-Hernández JL, del Campo AD, Navarro-Cerrillo RM (2020). Soil rock fragment is stronger driver of spatio-temporal soil water dynamics and efficiency of water use than cultural management in holm oak plantations. Soil and Tillage Research, 197, 104495. DOI: 10.1016/j.still.2019.104495. |
[9] | Che CW, Zhang MJ, Wang SJ, Du QQ, Ma ZZ, Meng HF, Qu DY (2020). Studying spatio-temporal variation and nfluencing factors of soil evaporation in southern and northern mountains of Lanzhou city based on stable hydrogen and oxygen isotopes. Geographical Research, 39, 2537-2551. |
[车存伟, 张明军, 王圣杰, 杜勤勤, 马转转, 孟鸿飞, 瞿德业 (2020). 基于氢氧稳定同位素的兰州市南北两山土壤蒸发时空变化及影响因素研究. 地理研究, 39, 2537-2551.]
DOI |
|
[10] | Dai JJ, Zhang XP, Luo ZD, Wang R, Liu ZL, He XG, Rao ZG, Guan HD (2020). Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region. Journal of Hydrology, 589, 125199. DOI: 10.1016/j.jhydrol.2020.125199. |
[11] | Diaz F, Jimenez CC, Tejedor M (2005). Influence of the thickness and grain size of tephra mulch on soil water evaporation. Agricultural Water Management, 74, 47-55. |
[12] | Ding D, Zhao Y, Feng H, Hill RL, Chu X, Zhang T, He JQ (2018). Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China. Agricultural Water Management, 201, 246-257. |
[13] | Duan CX, Chen GJ, Hu YJ, Wu SF, Feng H, Dong QG (2021). Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions. Agricultural Water Management, 245, 106559. DOI: 10.1016/j.agwat.2020.106559. |
[14] | Fort F, Volaire F, Guilioni L, Barkaoui K, Navas ML, Roumet C (2017). Root traits are related to plant water-use among rangeland Mediterranean species. Functional Ecology, 31, 1700-1709. |
[15] | Gao L, Shao MG (2012). Temporal stability of shallow soil water content for three adjacent transects on a hillslope. Agricultural Water Management, 110, 41-54. |
[16] | Geris J, Tetzlaff D, McDonnell JJ, Soulsby C (2017). Spatial and emporal patterns of soil water storage and vegetation water use in humid northern catchments. Science of the Total Environment, 595, 486-493. |
[17] | Good SP, Noone D, Bowen G (2015). Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 349, 175-177. |
[18] | Gulhanat B, Chang SL, Bahjaynar T, Zhang YT (2022). Water sources of Picea schrenkiana and Berberis heteropoda in the Tianshan Mountains in summer. Chinese Journal of Applied Ecology, 33, 1893-1900. |
[古丽哈娜提·波拉提别克, 常顺利, 巴贺贾依娜尔·铁木尔别克, 张毓涛(2022). 天山林区雪岭云杉和异果小檗夏季水分来源. 应用生态学报, 33, 1893-1900.]
DOI |
|
[19] | Hamzei J (2011). Seed, oil, and protein yields of canola under combinations of irrigation and nitrogen application. Agronomy Journal, 103, 1152-1158. |
[20] |
Hao S, Li FD (2021). Water sources of the typical desert vegetation in Ebinur Lake Basin. Acta Geographica Sinica, 76, 1649-1661.
DOI |
[郝帅, 李发东 (2021). 艾比湖流域典型荒漠植被水分利用来源研究. 地理学报, 76, 1649-1661.]
DOI |
|
[21] | Jia ZJ, Liu XZ, Xu TY, Li WC, Liu QL, Chen JH, Ma B (2023). Analysis of soil water evaporation characteristics and its influencing factors under mixed sand cover. Journal of Soil and Water Conservation, 37, 227-236. |
[贾振江, 刘学智, 徐天渊, 李王成, 刘巧玲, 陈继虹, 马波 (2023). 砂土混合覆盖下的土壤水分蒸发特性及其因子分析. 水土保持学报, 37, 227-236.] | |
[22] | Jiménez CC, Tejedor M, Diaz F, Rodriguez CM (2005). Effectiveness of sand mulch in soil and water conservation in an arid region, Lanzarote, Canary Islands, Spain. Journal of Soil and Water Conservation, 60, 63-67. |
[23] |
Köcher P, Horna V, Leuschner C (2013). Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Tree Physiology, 33, 817-832.
DOI PMID |
[24] | Li JJ, Fang XM, Ma HZ, Zhu JJ, Pan BT, Chen HL (1996). Late Cenozoic geomorphologic evolution of the upper Yellow River and uplift of the Tibetan Plateau. Science in China (Series D), 26, 316-322. |
[李吉均, 方小敏, 马海洲, 朱俊杰, 潘保田, 陈怀录 (1996). 晚新生代黄河上游地貌演化与青藏高原隆起. 中国科学(D辑: 地球科学), 26, 316-322.] | |
[25] | Li R, Chai SX, Chai YW, Li YW, Lan XM, Ma JT, Cheng HB, Chang L (2021). Mulching optimizes water consumption characteristics and improves crop water productivity on the semi-arid Loess Plateau of China. Agricultural Water Management, 254, 106965. DOI: 10.1016/j.agwat.2021.106965. |
[26] | Li S, Li Y, Lin H, Feng H, Dyck M (2018). Effects of different mulching technologies on evapotranspiration and summer maize growth. Agricultural Water Management, 201, 309-318. |
[27] | Liao Y, Cao HX, Liu X, Li HT, Hu QY, Xue WK (2021). By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas. Agricultural Water Management, 253, 106936. DOI: 10.1016/j.agwat.2021.106936. |
[28] | Liu BX, Shao MA (2014). Estimation of soil water storage using temporal stability in four land uses over 10 years on the Loess Plateau, China. Journal of Hydrology, 517, 974-984. |
[29] | Liu JZ, Wu HW, Cheng Y, Jin Z, Hu J (2021). Stable isotope analysis of soil and plant water in a pair of natural grassland and understory of planted forestland on the Chinese Loess Plateau. Agricultural Water Management, 249, 106800. DOI: 10.1016/j.agwat.2021.106800. |
[30] | Liu XE, Li XG, Hai L, Wang YP, Li FM (2014). How efficient is film fully-mulched ridge-furrow cropping to conserve rainfall in soil at a rainfed site. Field Crops Research, 169, 107-115. |
[31] | Lü WC, Qiu Y, Xie ZK, Wang XP, Wang YJ (2021). Effects of mulch gravels with different sizes on the process of water infiltration. Research of Soil and Water Conservation, 28(6), 46-51. |
[吕文聪, 邱阳, 谢忠奎, 王新平, 王亚军 (2021). 砾石覆盖粒径对土壤入渗过程的影响. 水土保持研究, 28(6), 46-51.] | |
[32] | Miguez-Macho G, Fan Y (2021). Spatiotemporal origin of soil water taken up by vegetation. Nature, 598, 624-628. |
[33] | Mo F, Wang J, Zhou H, Luo C, Zhang X, Li X, Li F, Xiong L, Kavagi L, Nguluu SN, Xiong Y (2017). Ridge-furrow plastic-mulching with balanced fertilization in rainfed maize (Zea mays L.): an adaptive management in East African Plateau. Agricultural and Forest Meteorology, 236, 100-112. |
[34] | Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA, Nepstad DC, Moreira A (2005). Deep root function in soil water dynamics in Cerrado savannas of central Brazil. Functional Ecology, 19, 574-581. |
[35] | Schreel JDM, von der Crone JS, Kangur O, Steppe K (2019). Influence of drought on foliar water uptake capacity of temperate tree species. Forests, 10, 562. DOI: 10.3390/f10070562. |
[36] | Sharma R, Bhardwaj S (2017). Effect of mulching on soil and water conservation—A review. Agricultural Reviews, 38, 311-315. |
[37] | Song RQ, Chu GX, Ye J, Bai L, Zhang RX, Yang JS (2010). Indoor experiment on the effect of sand mixing on soil water infiltration and evaporation. Journal of Agricultural Engineering, 26(S1), 109-114. |
[宋日权, 褚贵新, 冶军, 白玲, 张瑞喜, 杨劲松 (2010). 掺砂对土壤水分入渗和蒸发影响的室内试验. 农业工程学报, 26(S1), 109-114.] | |
[38] | Stock B, Semmens B (2016). MixSIAR GUI User Manual v3.1. Scripps Institution of Oceanography. UC San Diego, San Diego, USA. |
[39] | Su PY, Zhang MJ, Wang SJ, Qiu X, Wang JX, Du QQ, Guo R, Che CW (2020). Water sources of riparian plants based on stable hydrogen and oxygen isotopes in Lanzhou section of the Yellow River, China. Chinese Journal of Applied Ecology, 31, 1835-1843. |
[苏鹏燕, 张明军, 王圣杰, 邱雪, 王家鑫, 杜勤勤, 郭蓉, 车存伟 (2020). 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源. 应用生态学报, 31, 1835-1843.]
DOI |
|
[40] | Tang Y (2023). Unravelling δ13C signal in Scots pine trees for climate change and tree physiology studies. Dissertationes Forestales, 2023, 335. DOI: 10.14214/df.335. |
[41] | Tetzlaff D, Buttle J, Carey SK, Kohn MJ, Laudon H, McNamara JP, Smith A, Sprenger M, Soulsby C (2021). Stable isotopes of water reveal differences in plant-soil water relationships across northern environments. Hydrological Processes, 35, 1-19. |
[42] | Wang J, Fu BJ, Lu N, Zhang L (2017). Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609, 27-37. |
[43] | Wang J, Lu N, Fu BJ (2019). Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Science of the Total Environment, 666, 685-693. |
[44] | Wang J, Zhang M, Argiriou AA, Wang S, Qu D, Zhang Y, Su P (2021). Recharge and infiltration mechanisms of soil water in the floodplain revealed by water-stable isotopes in the upper Yellow River. Sustainability, 13, 1-18. |
[45] | Wang P, Chen G, Pei XJ, Tang XL, Song C (2023). Water use strategies of typical plants in a tunnel construction area at eastern margin of Qinghai-Xizang Plateau. Bulletin of Soil and Water Conservation, 43(4), 137-145. |
[王鹏, 陈果, 裴向军, 唐晓鹿, 宋词 (2023). 青藏高原东缘某隧道建设区典型植物水分利用策略. 水土保持通报, 43(4), 137-145.] | |
[46] | Wang Y, Xie Z, Malhi SS, Vera CL, Zhang Y (2014). Gravel-sand mulch thickness effects on soil temperature, evaporation, water use efficiency and yield of watermelon in semi-arid Loess Plateau, China. Acta Ecologica Sinica, 34, 261-265. |
[47] | Xu CJ, Jia SH, Zhao X, Bai YS, Cao R (2022). Application of water saving irrigation and fertilization technology in jujube planting. Water Resources Planning and Design, (2), 82-84. |
[许春娟, 贾生海, 赵霞, 白有帅, 曹睿 (2022). 节水灌溉和施肥技术在枣树中的应用. 水利规划与设计, (2), 82-84.] | |
[48] | Yang Y, Zhang MJ, Wang SJ, Qu DY, Zhang Y, Wang JX (2023). Soil moisture variability affected by sand mulch: an isotope-based assessment of irrigated farmland in Northwest China. Ecohydrology, 16, 1-12. |
[49] | Yeh HF, Lin HI, Lee CH, Hsu KC, Wu CS (2014). Identifying seasonal groundwater recharge using environmental stable isotopes. Water, 6, 2849-2861. |
[50] | Zhang P, Wei T, Han QF, Ren XL, Jia ZK (2020). Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China. Agricultural Water Management, 241, 106382. DOI: 10.1016/j.agwat.2020.106382 |
[51] | Zhao L, Zhang L, Zhao N, Ge JZ, Jin JW (2022). Water use strategy of fruit-grass complex systems in different habitats based on isotope tracer. Journal of Soil and Water Conservation, 36(1), 86-94. |
[赵玲, 张露, 赵妮, 戈建珍, 金晶炜 (2022). 基于同位素示踪的不同生境果草复合系统水分利用策略. 水土保持学报, 36(1), 86-94.] | |
[52] | Zhao WJ, Cui Z, Zhou CQ (2020). Spatiotemporal variability of soil-water content at different depths in fields mulched with gravel for different planting years. Journal of Hydrology, 590, 125253. DOI: 10.1016/j.jhydrol.2020.125253. |
[53] | Zhou PP, Zhang MJ, Wang SJ, Wang J, Zhao PP, Liu XM (2016). The characteristics of stable hydrogen and oxygen isotopes of greening plants in Lanzhou downtown. Chinese Journal of Ecology, 35, 2942-2951. |
[周盼盼, 张明军, 王圣杰, 王杰, 赵培培, 刘雪梅 (2016). 兰州城区绿化植物稳定氢氧同位素特征. 生态学杂志, 35, 2942-2951.] | |
[54] | Zumrat Y, Dong ZW, Liu SYH, Ye M, Ma XD, Su ZH (2022). Analysis of water sources in Tamarix ramosissima and Haloxylon persicum communities in the desert-oasis transition zone. Journal of Soil and Water Conservation, 36(6), 213-221. |
[祖姆热提·于苏甫江, 董正武, 刘隋赟昊, 叶茂, 马晓东, 苏志豪(2022). 荒漠-绿洲过渡带多枝柽柳和白梭梭水分溯源研究. 水土保持学报, 36(6), 213-221.] |
[1] | ZHOU Hong-Juan, LIU Zi-He, LIU Ke-Yan, ZHANG Chu-Rui, HU Xu, HAN Lu, CHEN Li-Xin. Water uptake and niche characteristics of neighboring plants for arbors and shrubs under different rainfall conditions in a rocky mountainous area, Beijing [J]. Chin J Plant Ecol, 2024, 48(9): 1089-1103. |
[2] | NIU Yun-Ming, JIA Guo-Dong, WANG Xin, LIU Zi-He. Dynamic changes of transpiration water age and water utilization strategies for trees at different altitudes in Lushan area [J]. Chin J Plant Ecol, 2024, 48(9): 1104-1117. |
[3] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[4] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[5] | LI Xue, DONG Jie, HAN Guang-Xuan, ZHANG Qi-Qi, XIE Bao-Hua, LI Pei-Guang, ZHAO Ming-Liang, CHEN Ke-Long, SONG Wei-Min. Response of soil CO2 and CH4 emissions to changes in moisture and salinity at a typical coastal salt marsh of Yellow River Delta [J]. Chin J Plant Ecol, 2023, 47(3): 434-446. |
[6] | LEI Zi-Ran, JIA Guo-Dong, YU Xin-Xiao, LIU Zi-He. A review of stable hydrogen and oxygen isotopic offset in plant water source research [J]. Chin J Plant Ecol, 2023, 47(1): 25-40. |
[7] | LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164. |
[8] | WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin [J]. Chin J Plant Ecol, 2018, 42(3): 382-396. |
[9] | CHAI Xi, LI Ying-Nian, DUAN Cheng, ZHANG Tao, ZONG Ning, SHI Pei-Li, HE Yong-Tao, ZHANG Xian-Zhou. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42(1): 6-19. |
[10] | Zhi-Cheng ZHU, Yin HUANG, Feng-Wei XU, Wen XING, Shu-Xia ZHENG, Yong-Fei BAI. Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Nei Mongol grassland [J]. Chin J Plant Ecol, 2017, 41(9): 938-952. |
[11] | Ting LÜ, Xi-Ning ZHAO, Xiao-Dong GAO, Yan-Hui PAN. Soil water use strategy of dominant species in typical natural and planted shrubs in loess hilly region [J]. Chin J Plant Ecol, 2017, 41(2): 175-185. |
[12] | Peng-Sen SUN, Ning LIU, Shi-Rong LIU, Ge SUN. Trade-offs between water yield and carbon sequestration for sub-alpine catchments in western Sichuan, China [J]. Chin J Plant Ecol, 2016, 40(10): 1037-1048. |
[13] | XU Ming-Shan,HUANG Hai-Xia,SHI Qing-Ru,YANG Xiao-Dong,ZHOU Liu-Li,ZHAO Yan-Tao,ZHANG Qing-Qing,YAN En-Rong. Responses of soil water content to change in plant functional traits in evergreen broadleaved forests in eastern Zhejiang Province [J]. Chin J Plan Ecolo, 2015, 39(9): 857-866. |
[14] | ZHANG Bin,ZHU Jian-Jun,LIU Hua-Min,PAN Qing-Min. Effects of extreme rainfall and drought events on grassland ecosystems [J]. Chin J Plant Ecol, 2014, 38(9): 1008-1018. |
[15] | XIONG Yu-Jiu,QIU Guo-Yu,XIE Fang. Plant species change and water budget in restored grasslands in Taibus Banner, Inner Mongolia, China [J]. Chin J Plant Ecol, 2014, 38(5): 425-439. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn