Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (2): 152-164.DOI: 10.17521/cjpe.2017.0280
Special Issue: 土壤呼吸
• Research Articles • Previous Articles Next Articles
LI Jian-Jun1,2,LIU Lian1,2,CHEN Di-Ma1,XU Feng-Wei1,2,CHENG Jun-Hui3,BAI Yong-Fei1,**()
Received:
2017-11-02
Accepted:
2018-04-19
Online:
2019-02-20
Published:
2019-06-04
Contact:
BAI Yong-Fei
Supported by:
LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe[J]. Chin J Plant Ecol, 2019, 43(2): 152-164.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0280
Fig. 1 Effects of collar buried depth, collar size, and precipitation events on soil respiration rate (SR)(A), soil temperature (ST)(B), and soil water content (SWC)(C) in the growing season of 2013 (insets: mean ± SE). D2S15、D5S15、D2S30、D5S30 see Table 2. Different lowercase letters indicate significant difference among treatments (p < 0.05).
处理 Treatment | 响应变量 Response variable | ||
---|---|---|---|
SR | ST | SWC | |
t | 506.6*** | 2293.6*** | 311.8*** |
D | 20.5*** | 143.8*** | 6.2* |
S | 35.9*** | 13.2** | 61.4*** |
t × D | 15.1*** | 24.7*** | 0.8ns |
t × S | 6.2** | 4.3* | 5.5** |
D × S | 0.6ns | 1.5ns | 1.2ns |
t × D × S | 7.2*** | 2.5ns | 0.2ns |
Table 1 Results of repeated measures ANOVA for the effects of collar buried depth (D), collar size (S), and time of measurement (t) on soil respiration (SR), soil temperature (ST), and soil water content (SWC)
处理 Treatment | 响应变量 Response variable | ||
---|---|---|---|
SR | ST | SWC | |
t | 506.6*** | 2293.6*** | 311.8*** |
D | 20.5*** | 143.8*** | 6.2* |
S | 35.9*** | 13.2** | 61.4*** |
t × D | 15.1*** | 24.7*** | 0.8ns |
t × S | 6.2** | 4.3* | 5.5** |
D × S | 0.6ns | 1.5ns | 1.2ns |
t × D × S | 7.2*** | 2.5ns | 0.2ns |
日期 Date | 处理 Treatment | SR | ST | SWC |
---|---|---|---|---|
2013-06-24 | D2S15 | 4.22 ± 0.10ab | 15.83 ± 0.08b | 17.12 ± 1.30a |
D5S15 | 4.58 ± 0.11a | 18.08 ± 0.27a | 15.52 ± 0.75a | |
D2S30 | 4.10 ± 0.16b | 16.33 ± 0.14b | 17.50 ± 1.00a | |
D5S30 | 4.52 ± 0.12a | 17.98 ± 0.13a | 15.92 ± 0.8a | |
2013-07-06 | D2S15 | 5.68 ± 0.52a | 18.05 ± 0.10c | 20.67 ± 1.43a |
D5S15 | 4.79 ± 0.16b | 19.83 ± 0.11a | 17.20 ± 1.05a | |
D2S30 | 4.58 ± 0.11b | 18.83 ± 0.08b | 19.02 ± 1.36a | |
D5S30 | 4.69 ± 0.20b | 19.73 ± 0.05a | 19.03 ± 0.80a | |
2013-07-22 | D2S15 | 8.10 ± 0.18a | 23.27 ± 0.24c | 26.68 ± 0.4a |
D5S15 | 6.00 ± 0.06b | 23.78 ± 0.07bc | 24.17 ± 0.21b | |
D2S30 | 6.29 ± 0.22b | 24.13 ± 0.26ab | 25.68 ± 0.43a | |
D5S30 | 5.37 ± 0.07c | 24.40 ± 0.20a | 22.72 ± 0.62c | |
2013-08-14 | D2S15 | 5.21 ± 0.22a | 20.43 ± 0.13a | 19.88 ± 1.53a |
D5S15 | 5.26 ± 0.20a | 20.48 ± 0.08a | 18.63 ± 0.88a | |
D2S30 | 5.38 ± 0.31a | 20.43 ± 0.13a | 19.47 ± 1.19a | |
D5S30 | 3.96 ± 0.09b | 20.72 ± 0.09a | 15.23 ± 0.65b | |
2013-09-15 | D2S15 | 3.31 ± 0.15a | 12.33 ± 0.29b | 14.10 ± 0.83ab |
D5S15 | 3.42 ± 0.11a | 14.83 ± 0.13a | 13.97 ± 0.43ab | |
D2S30 | 3.02 ± 0.13a | 11.55 ± 0.22c | 14.93 ± 1.3a | |
D5S30 | 3.17 ± 0.15a | 15.00 ± 0.17a | 11.77 ± 0.56b | |
2013-10-16 | D2S15 | 0.63 ± 0.03a | 7.65 ± 0.54b | 8.33 ± 0.42a |
D5S15 | 0.66 ± 0.02a | 8.28 ± 0.27ab | 6.90 ± 0.38b | |
D2S30 | 0.67 ± 0.02a | 9.12 ± 0.52a | 8.27 ± 0.41a | |
D5S30 | 0.60 ± 0.04a | 8.88 ± 0.31ab | 6.48 ± 0.17b |
Table 2 The variables to collar buried depth and side length of the square collar on soil respiration rate (SR), soil temperature (ST), and soil water content (SWC) of each time depend on one-way ANOVA
日期 Date | 处理 Treatment | SR | ST | SWC |
---|---|---|---|---|
2013-06-24 | D2S15 | 4.22 ± 0.10ab | 15.83 ± 0.08b | 17.12 ± 1.30a |
D5S15 | 4.58 ± 0.11a | 18.08 ± 0.27a | 15.52 ± 0.75a | |
D2S30 | 4.10 ± 0.16b | 16.33 ± 0.14b | 17.50 ± 1.00a | |
D5S30 | 4.52 ± 0.12a | 17.98 ± 0.13a | 15.92 ± 0.8a | |
2013-07-06 | D2S15 | 5.68 ± 0.52a | 18.05 ± 0.10c | 20.67 ± 1.43a |
D5S15 | 4.79 ± 0.16b | 19.83 ± 0.11a | 17.20 ± 1.05a | |
D2S30 | 4.58 ± 0.11b | 18.83 ± 0.08b | 19.02 ± 1.36a | |
D5S30 | 4.69 ± 0.20b | 19.73 ± 0.05a | 19.03 ± 0.80a | |
2013-07-22 | D2S15 | 8.10 ± 0.18a | 23.27 ± 0.24c | 26.68 ± 0.4a |
D5S15 | 6.00 ± 0.06b | 23.78 ± 0.07bc | 24.17 ± 0.21b | |
D2S30 | 6.29 ± 0.22b | 24.13 ± 0.26ab | 25.68 ± 0.43a | |
D5S30 | 5.37 ± 0.07c | 24.40 ± 0.20a | 22.72 ± 0.62c | |
2013-08-14 | D2S15 | 5.21 ± 0.22a | 20.43 ± 0.13a | 19.88 ± 1.53a |
D5S15 | 5.26 ± 0.20a | 20.48 ± 0.08a | 18.63 ± 0.88a | |
D2S30 | 5.38 ± 0.31a | 20.43 ± 0.13a | 19.47 ± 1.19a | |
D5S30 | 3.96 ± 0.09b | 20.72 ± 0.09a | 15.23 ± 0.65b | |
2013-09-15 | D2S15 | 3.31 ± 0.15a | 12.33 ± 0.29b | 14.10 ± 0.83ab |
D5S15 | 3.42 ± 0.11a | 14.83 ± 0.13a | 13.97 ± 0.43ab | |
D2S30 | 3.02 ± 0.13a | 11.55 ± 0.22c | 14.93 ± 1.3a | |
D5S30 | 3.17 ± 0.15a | 15.00 ± 0.17a | 11.77 ± 0.56b | |
2013-10-16 | D2S15 | 0.63 ± 0.03a | 7.65 ± 0.54b | 8.33 ± 0.42a |
D5S15 | 0.66 ± 0.02a | 8.28 ± 0.27ab | 6.90 ± 0.38b | |
D2S30 | 0.67 ± 0.02a | 9.12 ± 0.52a | 8.27 ± 0.41a | |
D5S30 | 0.60 ± 0.04a | 8.88 ± 0.31ab | 6.48 ± 0.17b |
Fig. 2 Results of ANOVAs for aboveground biomass before treatments (pre-AGP)(A), the aboveground net primary productivity (post-ANPP)(B) in the growing season of 2013 (mean ± SE). Different lowercase letters indicate significant difference among treatments (p < 0.05).
Fig. 3 Relationship between soil respiration rate (SR) and soil temperature (ST) at 10 cm soil depth under different treatments. D and S denote the buried depth and length of the square soil collar, respectively. D2S15, D = 2 cm and S =15 cm; D5S15, D = 5 cm, S = 15 cm; D2S30, D = 2 cm, S = 30 cm; and D5S30, D = 5 cm, S = 30 cm.
Fig. 4 Relationship between soil respiration rate (SR) and soil water content (SWC) at 10 cm soil depth under different treatments. D and S denote the buried depth and length of the square soil collar, respectively. D2S15, D = 2 cm and S =15 cm; D5S15, D = 5 cm, S = 15 cm; D2S30, D = 2 cm, S = 30 cm; and D5S30, D = 5 cm, S = 30 cm.
Fig. 5 Relationships between soil respiration rate (SR) and aboveground net primary productively (post-ANPP) under different treatments. D and S denote the buried depth and length of the square soil collar, respectively. D2S15, D = 2 cm and S =15 cm; D5S15, D = 5 cm, S = 15 cm; D2S30, D = 2 cm, S = 30 cm; and D5S30, D = 5 cm, S = 30 cm.
Fig. 6 Structural equation modeling analysis for the effects of collar depth (D) and size (S) on soil respiration rate, via pathways of biotic and abiotic factors during the study period. Square boxes indicate variables included in the model. Results of model fitting: χ2 = 0.89, p = 0.874 > 0.085, df = 5, RMSEA = 0.000 < 0.05, AGFI = 0.900 > 0.90, GFI = 0.975 > 0.90 (which indicates a good fit of the model to the data). Black and gray solid arrows indicate significantly positive and negative effects, respectively and dashed arrows indicate insignificant effects (p > 0.05). Values associated with the arrows represent standardized path coefficients. R2 values associated with response variables indicate the proportion of variation explained by relationships with all other variables. RMSEA, root-mean-square error of approximation; AGFI, adjusted goodness-of-fit index; GFI, goodness-of-fit index. post-ANPP, post aboveground net primary productivity; SR, soil respiration; ST, soil temperature; SWC, soil water content. **, p < 0.01; ***, p < 0.001.
[1] |
Atkin OK, Edwards EJ, Loveys BR ( 2000). Response of root respiration to changes in temperature and its relevance to global warming. New Phytologist, 147, 141-154.
DOI URL |
[2] |
Bahn M, Rodeghiero M, Anderson-Dunn M, Dore S, Gimeno C, Drösler M, Williams M, Ammann C, Berninger F, Flechard C ( 2008). Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems, 11, 1352-1367.
DOI URL |
[3] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH ( 2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
DOI |
[4] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG ( 2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
DOI URL |
[5] |
Batjes NH ( 1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151-163.
DOI URL |
[6] |
Berry LJ, Norris W ( 1949). Studies of onion root respiration I. Velocity of oxygen consumption in different segments of root at different temperatures as a function of partial pressure of oxygen. Biochimica et Biophysica Acta, 3, 593-606.
DOI URL |
[7] |
Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP ( 1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570-572.
DOI |
[8] | Buchmann N ( 2000). Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology & Biochemistry, 32, 1625-1635. |
[9] | Cao GM, Tang YH, Mo WH, Wang YS, Li YN, Zhao XQ ( 2004). Grazing intensity alters soil respiration in an alpine meadow on the Tibetan Plateau. Soil Biology & Biochemistry, 36, 237-243. |
[10] |
Chen D, Zheng S, Shan Y, Taube F, Bai Y ( 2013). Vertebrate herbivore-induced changes in plants and soils: Linkages to ecosystem functioning in a semi-arid steppe. Functional Ecology, 27, 273-281.
DOI URL |
[11] |
Chen DM, Li JJ, Lan ZC, Hu SJ, Bai YF ( 2016). Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 30, 658-669.
DOI URL |
[12] |
Chen SP, Lin GH, Huang JH, Jenerette GD ( 2009). Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Global Change Biology, 15, 2450-2461.
DOI URL |
[13] |
Davidson EA, Verchot LV, Cattanio JH, Ackerman IL, Carvalho J ( 2000). Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48, 53-69.
DOI URL |
[14] |
Drewitt GB, Black TA, Nesic Z, Humphreys ER, Jork EM, Swanson R, Ethier GJ, Griffis T, Morgenstern K ( 2002). Measuring forest floor CO2 fluxes in a Douglas-fir forest. Agricultural and Forest Meteorology, 110, 299-317.
DOI URL |
[15] | Guenet B, Juarez S, Bardoux G, Abbadie L, Chenu C ( 2012). Evidence that stable C is as vulnerable to priming effect as is more labile C in soil. Soil Biology & Biochemistry, 52, 43-48. |
[16] |
Heinemeyer A, Di Bene C, Lloyd AR, Tortorella D, Baxter R, Huntley B, Gelsomino A, Ineson P ( 2011). Soil respiration: Implications of the plant-soil continuum and respiration chamber collar-insertion depth on measurement and modelling of soil CO2 efflux rates in three ecosystems. European Journal of Soil Science, 62, 82-94.
DOI URL |
[17] | Högberg P, Read DJ ( 2006). Towards a more plant physiological perspective on soil ecology. Trends in Ecology & Evolution, 21, 548-554. |
[18] |
Hopkins F, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik C, Tang J, Subke JA ( 2013). Ecosystem-level controls on root-rhizosphere respiration. New Phytologist, 199, 339-351.
DOI URL |
[19] |
Hutchinson GL, Livingston GP ( 2001). Vents and seals in non-steady-state chambers used for measuring gas exchange between soil and the atmosphere. European Journal of Soil Science, 52, 675-682.
DOI URL |
[20] |
Jasoni RL, Smith SD, Arnone JA ( 2005). Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biology, 11, 749-756.
DOI URL |
[21] | Kirschbaum MUF ( 2006). The temperature dependence of organic-matter decomposition—Still a topic of debate. Soil Biology & Biochemistry, 38, 2510-2518. |
[22] |
Kutsch WL, Staack A, Wötzel J, Middelhoff U, Kappen L ( 2001). Field measurements of root respiration and total soil respiration in an alder forest. New Phytologist, 150, 157-168.
DOI URL |
[23] | Kuzyakov Y ( 2010). Priming effects: Interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371. |
[24] |
Kuzyakov Y, Cheng W ( 2001). Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology and Biochemistry, 33, 1915-1925.
DOI URL |
[25] | Li W, Cao WX, Liu HD, Li XL, Xu CL, Shi SL, Feng J, Zhou CM ( 2015). Analysis of soil respiration under different grazing management patterns in the alpine meadow-steppe of the Qinghai-Tibet Plateau. Acta Prataculturae Sinica, 24, 22-32. |
[26] |
Lloyd J, Taylor JA ( 1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323.
DOI URL |
[27] | Mikan CJ, Schimel JP, Doyle AP ( 2002). Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biology & Biochemistry, 34, 1785-1795. |
[28] |
Nay SM, Mattson KG, Bormann BT ( 1994). Biases of chamber methods for measuring soil CO2 efflux demonstrated with a laboratory apparatus. Ecology, 75, 2460-2463.
DOI URL |
[29] |
Ngao J, Longdoz B, Perrin D, Vincent G, Epron D, Le Dantec V, Soudani K, Aubinet M, Willm F, Granier A ( 2006). Cross-calibration functions for soil CO2 efflux measurement systems. Annals of Forest Science, 63, 477-484.
DOI URL |
[30] |
Raich JW, Potter CS, Bhagawati D ( 2002). Interannual variability in global soil respiration, 1980-94. Global Change Biology, 8, 800-812.
DOI URL |
[31] |
Raich JW, Schlesinger WH ( 1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81-99.
DOI URL |
[32] | Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals P, Cheng Y, Grünzweig JM, Irvine J ( 2003). Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles, 17, 1104. |
[33] |
Schlesinger WH ( 1977). Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics, 8, 51-81.
DOI URL |
[34] |
Schlesinger WH, Andrews JA ( 2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20.
DOI URL |
[35] |
Subke JA, Inglima I, Francesca Cotrufo M ( 2006). Trends and methodological impacts in soil CO2 efflux partitioning: A meta analytical review. Global Change Biology, 12, 921-943.
DOI URL |
[36] | Subke JA, Moody CS, Hill TC, Voke N, Toet S, Ineson P, Teh Y ( 2018). Rhizosphere activity and atmospheric methane concentrations drive variations of methane fluxes in a temperate forest soil. Soil Biology & Biochemistry, 116, 323-332. |
[37] | Wan SQ, Luo YQ ( 2003). Substrate regulation of soil respiration in a tallgrass prairie: Results of a clipping and shading experiment. Global Biogeochemical Cycles, 17, 1054. DOI: 10.1029/2002GB001971. |
[38] |
Wang N, Yu FH, Li PX, He WM, Liu J, Yu GL, Song YB, Dong M ( 2009). Clonal integration supports the expansion from terrestrial to aquatic environments of the amphibious stoloniferous herb Alternanthera philoxeroides. Plant Biology, 11, 483-489.
DOI URL |
[39] |
Wang W, Fang JY ( 2009). Soil respiration and human effects on global grasslands. Global and Planetary Change, 67, 20-28.
DOI URL |
[40] |
Wang WJ, Zu YG, Wang HM, Hirano T, Takagi K, Sasa K, Koike T ( 2005). Effect of collar insertion on soil respiration in a larch forest measured with a LI-6400 soil CO2 flux system. Journal of Forest Research, 10, 57-60.
DOI URL |
[41] |
Wang Y, Liu H, Chung H, Yu L, Mi Z, Geng Y, Jing X, Wang S, Zeng H, Cao G, Zhao X, He JS ( 2014). Non-growing-season soil respiration is controlled by freezing and thawing processes in the summer monsoon-dominated Tibetan alpine grassland. Global Biogeochemical Cycles, 28, 1081-1095.
DOI URL |
[42] |
Ward SE, Smart SM, Quirk H, Tallowin JRB, Mortimer SR, Shiel RS, Wilby A, Bardgett RD ( 2016). Legacy effects of grassland management on soil carbon to depth. Global Change Biology, 22, 2929-2938.
DOI URL |
[43] |
Widén B, Majdi H ( 2001). Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: Seasonal and diurnal variation. Canadian Journal of Forest Research, 31, 786-796.
DOI URL |
[44] |
Xia JY, Niu SL, Wan SQ ( 2009). Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 15, 1544-1556.
DOI URL |
[45] | Yan LM, Chen SQ, Huang JH, Lin GH ( 2010). Differential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe. Global Change Biology, 16, 2345-2357. |
[46] |
Zhang XL, Tan YL, Zhang BW, Li A, Daryanto S, Wang LX, Huang JH ( 2017). The impacts of precipitation increase and nitrogen addition on soil respiration in a semiarid temperate steppe. Ecosphere, 8, e01655. DOI: 10.1002/ecs2.1655.
DOI URL |
[47] |
Zhou GY, Zhou XH, He YH, Shao JJ, Hu ZH, Liu RQ, Zhou HM, Hosseinibai S ( 2017). Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta-analysis. Global Change Biology, 23, 1167-1179.
DOI URL |
[48] | Zhou XH, Sherry RA, An Y, Wallace LL, Luo YQ ( 2006). Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem. Global Biogeochemical Cycles, 20, GB1003. DOI: 10.1029/2005GB002526. |
[49] | Zhou XH, Wan SQ, Luo YQ ( 2007). Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 13, 761-775. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn