Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (12): 1537-1550.DOI: 10.17521/cjpe.2021.0473
Special Issue: 全球变化与生态系统
• Research Articles • Previous Articles Next Articles
ZANG Yong-Xin1, MA Jian-Ying2,*(), ZHOU Xiao-Bing1, TAO Ye1, YIN Ben-Feng1, Shayaguli JIGEER1,3, ZHANG Yuan-Ming1,*()
Received:
2021-12-14
Accepted:
2022-06-26
Online:
2022-12-20
Published:
2023-01-13
Contact:
*MA Jian-Ying(Supported by:
ZANG Yong-Xin, MA Jian-Ying, ZHOU Xiao-Bing, TAO Ye, YIN Ben-Feng, Shayaguli JIGEER, ZHANG Yuan-Ming. Effects of extreme drought and extreme precipitation on aboveground productivity of ephemeral plants across different slope positions along sand dunes[J]. Chin J Plant Ecol, 2022, 46(12): 1537-1550.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0473
Fig. 1 Study site and experimental design. BE, bottom of sand dune facing east; BW, bottom of sand dune facing west; ME, middle of sand dune facing east; MW, middle of sand dune facing west.
Fig. 2 Probability distribution of ephemeral plants growing season precipitation during the last 100 years for the southern edge of the Gurbantünggüt Desert (A) and effects of extreme drought and precipitation treatments on mean growing season soil water content (B)(mean ± SE). BE, bottom of sand dune facing east; BW, bottom of sand dune facing west; ME, middle of sand dune facing east; MW, middle of sand dune facing west. Different lowercase letters indicates significant differences between precipitation treatments of same slope position (p < 0.05); different uppercase letters indicate significant differences between different slope positions in the same precipitation treatment (p < 0.05).
效应 Effect | 土壤含水量 SWC | ANPP敏感性 ANPP sensitivity | ||
---|---|---|---|---|
df | F | df | F | |
降水处理 P | 2 | 53.15** | 1 | 3.05 |
坡向坡位 Sp | 3 | 5.54* | 3 | 1.31 |
年份 Y | 1 | 49.59** | 1 | 8.53** |
降水处理×坡向坡位 P × Sp | 6 | 43.65** | 3 | 0.52 |
降水处理×年 P × Y | 2 | 0.38 | 1 | 0.22 |
坡向坡位×年 Sp × Y | 3 | 1.75 | 3 | 0.48 |
降水处理×坡向坡位×年 P × Sp × Y | 6 | 0.89 | 3 | 0.32 |
Table 1 Generalized linear mixed model results for the effects of precipitation change (P), sand dune slope positions (Sp), year (Y), and their interactive effects on soil water content (SWC) and sensitivity of aboveground net primary productivity (ANPP) of ephemeral plants
效应 Effect | 土壤含水量 SWC | ANPP敏感性 ANPP sensitivity | ||
---|---|---|---|---|
df | F | df | F | |
降水处理 P | 2 | 53.15** | 1 | 3.05 |
坡向坡位 Sp | 3 | 5.54* | 3 | 1.31 |
年份 Y | 1 | 49.59** | 1 | 8.53** |
降水处理×坡向坡位 P × Sp | 6 | 43.65** | 3 | 0.52 |
降水处理×年 P × Y | 2 | 0.38 | 1 | 0.22 |
坡向坡位×年 Sp × Y | 3 | 1.75 | 3 | 0.48 |
降水处理×坡向坡位×年 P × Sp × Y | 6 | 0.89 | 3 | 0.32 |
Fig. 3 Sensitivity of aboveground net primary productivity (ANPP) of four sand dune slope positions to extreme drought and precipitation treatments (mean ± SE). BE, bottom of sand dune facing east; BW, bottom of sand dune facing west; ME, middle of sand dune facing east; MW, middle of sand dune facing west.
Fig. 4 Relationship between growing season precipitation and aboveground net primary productivity (ANPP) of ephemeral plants in all and four sand dune slope positions (mean ± SE). BE, bottom of sand dune facing east; BW, bottom of sand dune facing west; ME, middle of sand dune facing east; MW, middle of sand dune facing west.
沙垄不同坡向坡位 Sand dune slope positions | 拟合公式 Fitting function | R2 | AIC |
---|---|---|---|
西坡底部 BW | y = 41.6 - 31.2exp(-(x - 39.8)/81.3) | 0.98 | 4.47 |
y = 6.79 + 0.28x | 0.93 | 5.76 | |
西坡中部 MW | y = 30.6 - 22.7exp(-(x - 20.0)/55.5) | 0.94 | 6.83 |
y = 2.04 + 0.23x | 0.90 | 12.98 | |
东坡中部 ME | y = 46.1 - 24.4exp(-(x - 26.3)/57.5) | 0.86 | 10.32 |
y = 14.8 + 0.25x | 0.95 | 9.25 | |
东坡底部 BE | y = 70.5 - 39.7exp(-(x - 91.9)/218.0) | 0.86 | 5.53 |
y = 11.86 + 0.17x | 0.78 | 6.75 | |
全部 All | y = 51.4 - 31.8exp(-(x - 20.1)/81.3) | 0.71 | 68.91 |
y = 10.7 + 0.2x | 0.44 | 78.70 |
Table 2 Fitting function of growing season precipitation and aboveground net primary productivity (ANPP) in all and four sand dune slope positions
沙垄不同坡向坡位 Sand dune slope positions | 拟合公式 Fitting function | R2 | AIC |
---|---|---|---|
西坡底部 BW | y = 41.6 - 31.2exp(-(x - 39.8)/81.3) | 0.98 | 4.47 |
y = 6.79 + 0.28x | 0.93 | 5.76 | |
西坡中部 MW | y = 30.6 - 22.7exp(-(x - 20.0)/55.5) | 0.94 | 6.83 |
y = 2.04 + 0.23x | 0.90 | 12.98 | |
东坡中部 ME | y = 46.1 - 24.4exp(-(x - 26.3)/57.5) | 0.86 | 10.32 |
y = 14.8 + 0.25x | 0.95 | 9.25 | |
东坡底部 BE | y = 70.5 - 39.7exp(-(x - 91.9)/218.0) | 0.86 | 5.53 |
y = 11.86 + 0.17x | 0.78 | 6.75 | |
全部 All | y = 51.4 - 31.8exp(-(x - 20.1)/81.3) | 0.71 | 68.91 |
y = 10.7 + 0.2x | 0.44 | 78.70 |
Fig. 5 Effects of precipitation treatments on the aboveground net primary productivity (ANPP) of dominant species Erodium oxyrhinchum and Centaurea pulchella (A) and its percentage of ANPP (B) in the middle of sand dune facing east (mean ± SE). * indicates significant differences (p < 0.05) between the ANPP of E. oxyrhinchum and C. pulchella.
Fig. 6 A structural equation model (SEM) representing the effects of soil water content (SWC) on above-ground net primary production (ANPP) in all and four sand dune slope positions. The SEM considered all plausible pathways through which plant traits influence ANPP. Solid lines represent the positive paths, dashed lines indicate negative paths. Line width is proportional to the strength of the relationship. BE, bottom of sand dune facing east; BW, bottom of sand dune facing west; ME, middle of sand dune facing east; MW, middle of sand dune facing west. *, p < 0.05; **, p < 0.01. RMSEA, root mean square error of approximation. R2 represents the proportion of the variance for each dependent variable in the model.
[1] |
Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A, Jung M, Reichstein M, Canadell JG, Friedlingstein P, Jain AK, Kato E, Poulter B, Sitch S, Stocker BD, Viovy N, et al. (2015). The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science, 348, 895-899.
DOI PMID |
[2] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
PMID |
[3] |
Bai YX, Michalet R, She WW, Qiao YG, Liu L, Miao C, Qin SG, Zhang YQ (2021). Contrasting responses of different functional groups stabilize community responses to a dominant shrub under global change. Journal of Ecology, 109, 1676-1689.
DOI URL |
[4] |
Barbeta A, Mejía-Chang M, Ogaya R, Voltas J, Dawson TE, Peñuelas J (2015). The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Change Biology, 21, 1213-1225.
DOI PMID |
[5] | Chen CD, Zhang LY, Hu WK (1983). The basic characteristics of plant communities, flora and their distribution in the sandy district of Gurbantungut. Acta Phytoecologica et Geobotanica Sinica, 7, 89-99. |
[ 陈昌笃, 张立运, 胡文康 (1983). 古尔班通古特沙漠的沙地植物群落、区系及其分布的基本特征. 植物生态学与地植物学丛刊, 7, 89-99.] | |
[6] |
Craven D, Isbell F, Manning P, Connolly J, Bruelheide H, Ebeling A, Roscher C, van Ruijven J, Weigelt A, Wilsey B, Beierkuhnlein C, de Luca E, Griffin JN, Hautier Y, Hector A, et al. (2016). Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150277. DOI: 10.1098/rstb.2015.0277.
DOI URL |
[7] |
de Boeck HJ, Bloor JMG, Aerts R, Bahn M, Beier C, Emmett BA, Estiarte M, Grünzweig JM, Halbritter AH, Holub P, Jentsch A, Klem K, Kreyling J, Kröel-Dulay G, Larsen KS, et al. (2020). Understanding ecosystems of the future will require more than realistic climate change experiments—A response to Korell et al. Global Change Biology, 26, e6-e7.
DOI |
[8] |
de Dios Miranda J, Padilla FM, Lázaro R, Pugnaire FI (2009). Do changes in rainfall patterns affect semiarid annual plant communities? Journal of Vegetation Science, 20, 269-276.
DOI URL |
[9] |
Ding JX, Fan LL, Cao YF, Liu M, Ma J, Li Y, Tang LS (2016). Spatial distribution of the herbaceous layer and its relationship to soil physical-chemical properties in the southern margin of the Gurbantonggut Desert, northwestern China. Acta Ecologica Sinica, 36, 327-332.
DOI URL |
[10] |
Eskelinen A, Harrison SP (2015). Resource colimitation governs plant community responses to altered precipitation. Proceedings of the National Academy of Sciences of the United States of America, 112, 13009-13014.
DOI PMID |
[11] |
Fan LL, Tang LS, Wu LF, Ma J, Li Y (2014). The limited role of snow water in the growth and development of ephemeral plants in a cold desert. Journal of Vegetation Science, 25, 681-690.
DOI URL |
[12] |
Felton AJ, Knapp AK, Smith MD (2021). Precipitation- productivity relationships and the duration of precipitation anomalies: an underappreciated dimension of climate change. Global Change Biology, 27, 1127-1140.
DOI URL |
[13] |
Felton AJ, Smith MD (2017). Integrating plant ecological responses to climate extremes from individual to ecosystem levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160142. DOI: 10.1098/rstb.2016.0142.
DOI URL |
[14] |
Felton AJ, Zavislan-Pullaro S, Smith MD (2019). Semiarid ecosystem sensitivity to precipitation extremes: weak evidence for vegetation constraints. Ecology, 100, e02572. DOI: 10.1002/ecy.2572.
DOI |
[15] |
Haberl H, Erb KH, Krausmann F (2014). Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annual Review of Environment and Resources, 39, 363-391.
DOI URL |
[16] | Hooper D, Coughlan J, Mullen MR (2008). Structural equation modeling: guidelines for determining model fit. The Electronic Journal of Business Research Methods, 6, 53-60. |
[17] |
Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3-35.
DOI URL |
[18] |
Hoover DL, Duniway MC, Belnap J (2015). Pulse-drought atop press-drought: unexpected plant responses and implications for dryland ecosystems. Oecologia, 179, 1211-1221.
DOI PMID |
[19] | Hu ZM, Guo Q, Li SG, Piao SL, Knapp AK, Ciais P, Li XR, Yu GR (2018). Shifts in the dynamics of productivity signal ecosystem state transitions at the biome-scale. Ecology Letters, 21, 1457-1466. |
[20] |
Huang G, Li Y (2015). Phenological transition dictates the seasonal dynamics of ecosystem carbon exchange in a desert steppe. Journal of Vegetation Science, 26, 337-347.
DOI URL |
[21] |
Huang JP, Yu HP, Dai AG, Wei Y, Kang LT (2017). Drylands face potential threat under 2 °C global warming target. Nature Climate Change, 7, 417-422.
DOI URL |
[22] |
Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, et al. (2004). Convergence across biomes to a common rain-use efficiency. Nature, 429, 651-654.
DOI |
[23] | IPCC (2001). Climate Change 2001: the Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York. |
[24] | IPCC (2018). Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. World Meteorological Organization, Geneva, Switzerland. |
[25] |
Isbell F, Reich PB, Tilman D (2013). Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the United States of America, 110, 11911-11916.
DOI PMID |
[26] |
Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, Grant K, Hein R, Lara M, Mirzae H, Nadler SE, Nagy L, Otieno D, Pritsch K, Rascher U, Schädler M, et al. (2011). Climate extremes initiate ecosystem-regulating functions while maintaining productivity. Journal of Ecology, 99, 689-702.
DOI URL |
[27] | Ji F, Fan ZL, Zhao GH (1995). Comparison of the physical-chemical characteristics of aeolian soils in the taklamakan desert and the Gurbantonggute Desert. Arid Zone Research, 12, 19-25. |
[ 季方, 樊自立, 赵贵海 (1995). 新疆两大沙漠风沙土土壤理化特性对比分析. 干旱区研究, 12, 19-25.] | |
[28] |
Knapp AK, Avolio ML, Beier C, Carroll CJW, Collins SL, Dukes JS, Fraser LH, Griffin-Nolan RJ, Hoover DL, Jentsch A, Loik ME, Phillips RP, Post AK, Sala OE, Slette IJ, et al. (2017a). Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years. Global Change Biology, 23, 1774-1782.
DOI URL |
[29] |
Knapp AK, Ciais P, Smith MD (2017b). Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change. New Phytologist, 214, 41-47.
DOI URL |
[30] |
Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205.
DOI PMID |
[31] |
Knapp AK, Hoover DL, Wilcox KR, Avolio ML, Koerner SE la Pierre KJ, Loik ME, Luo YQ, Sala OE, Smith MD (2015). Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Global Change Biology, 21, 2624-2633.
DOI PMID |
[32] |
Knapp AK, Smith MD (2001). Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, 481-484.
DOI PMID |
[33] | Liu H, Zhou HF, Liu X (2015). Analysis of soil moisture migration on sand dune under the condition of heavy rainfall. Journal of Soil and Water Conservation, 29(2), 157-162. |
[ 刘昊, 周宏飞, 刘翔 (2015). 强降雨条件下沙丘土壤水分运移特征分析. 水土保持学报, 29(2), 157-162.] | |
[34] |
Liu R, Cieraad E, Li Y, Ma J (2016). Precipitation pattern determines the inter-annual variation of herbaceous layer and carbon fluxes in a phreatophyte-dominated desert ecosystem. Ecosystems, 19, 601-614.
DOI URL |
[35] |
Liu R, Pan LP, Jenerette GD, Wang QX, Cieraad E, Li Y (2012). High efficiency in water use and carbon gain in a wet year for a desert halophyte community. Agricultural and Forest Meteorology, 162-163, 127-135.
DOI URL |
[36] | Liu XP, Zhang TH, Zhao HL, Yue GY (2006). Infiltration and redistribution process of rainfall in desert mobile sand dune. Journal of Hydraulic Engineering, 37(2), 166-171. |
[ 刘新平, 张铜会, 赵哈林, 岳广阳 (2006). 流动沙丘降雨入渗和再分配过程. 水利学报, 37(2), 166-171.] | |
[37] |
Luo WT, Griffin-Nolan RJ, Ma W, Liu B, Zuo XA, Xu C, Yu Q, Luo YH, Mariotte P, Smith MD, Collins SL, Knapp AK, Wang ZW, Han XG (2021). Plant traits and soil fertility mediate productivity losses under extreme drought in C3 grasslands. Ecology, 102, e03465. DOI: 10.1002/ECY.3465.
DOI |
[38] |
Luo YQ, Gerten D, Le Maire G, Parton WJ, Weng ES, Zhou XH, Keough C, Beier C, Ciais P, Cramer W, Dukes JS, Emmett B, Hanson PJ, Knapp A, Linder S, et al. (2008). Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones. Global Change Biology, 14, 1986-1999.
DOI URL |
[39] |
Ma QH, Liu XD, Li YB, Li L, Yu HY, Qi M, Zhou GS, Xu ZZ (2020). Nitrogen deposition magnifies the sensitivity of desert steppe plant communities to large changes in precipitation. Journal of Ecology, 108, 598-610.
DOI URL |
[40] |
Ma SM, Zhou TJ, Dai AG, Han ZY (2015). Observed changes in the distributions of daily precipitation frequency and amount over China from 1960 to 2013. Journal of Climate, 28, 6960-6978.
DOI URL |
[41] |
Ma ZY, Liu HY, Mi ZR, Zhang ZH, Wang YH, Xu W, Jiang L, He JS (2017). Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 8, 15378. DOI: 10.1038/ncomms15378.
DOI PMID |
[42] |
Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993). Global climate change and terrestrial net primary production. Nature, 363, 234-240.
DOI |
[43] |
Meng B, Li JQ, Maurer GE, Zhong SZ, Yao Y, Yang XC, Collins SL, Sun W (2021). Nitrogen addition amplifies the nonlinear drought response of grassland productivity to extended growing-season droughts. Ecology, 102, e03483. DOI: 10.1002/ECY.3483.
DOI |
[44] |
Muraina TO, Xu C, Yu Q, Yang YD, Jing MH, Jia XT, Jaman MS, Dam Q, Knapp AK, Collins SL, Luo YQ, Luo WT, Zuo XA, Xin XP, Han XG, et al. (2021). Species asynchrony stabilises productivity under extreme drought across Northern China grasslands. Journal of Ecology, 109, 1665-1675.
DOI URL |
[45] |
Niu SL, Luo YQ, Li DJ, Cao SH, Xia JY, Li JW, Smith MD (2014). Plant growth and mortality under climatic extremes: an overview. Environmental and Experimental Botany, 98, 13-19.
DOI URL |
[46] |
Noy-Meir I (1973). Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4, 25-51.
DOI URL |
[47] |
Ogle K, Reynolds JF (2004). Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia, 141, 282-294.
PMID |
[48] |
Piao SL, Ciais P, Huang Y, Shen ZH, Peng SS, Li JS, Zhou LP, Liu HY, Ma YC, Ding YH, Friedlingstein P, Liu CZ, Tan K, Yu YQ, Zhang TY, et al. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467, 43-51.
DOI |
[49] |
Reichmann LG, Sala OE, Peters DPC (2013). Precipitation legacies in desert grassland primary production occur through previous-year tiller density. Ecology, 94, 435-443.
PMID |
[50] |
Sala OE, Gherardi LA, Reichmann L, Jobbágy E, Peters D (2012). Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3135-3144.
DOI URL |
[51] |
Sala OE, Lauenroth WK, Parton WJ (1992). Long-term soil water dynamics in the shortgrass steppe. Ecology, 73, 1175-1181.
DOI URL |
[52] |
Sala OE, Parton WJ, Joyce LA, Lauenroth WK (1988). Primary production of the central grassland region of the United States. Ecology, 69, 40-45.
DOI URL |
[53] |
Schwinning S, Sala OE (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, 141, 211-220.
PMID |
[54] |
Smith MD (2011a). The ecological role of climate extremes: current understanding and future prospects. Journal of Ecology, 99, 651-655.
DOI URL |
[55] |
Smith MD (2011b). An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology, 99, 656-663.
DOI URL |
[56] |
Smith MD, Knapp AK, Collins SL (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90, 3279-3289.
DOI PMID |
[57] |
Smith MD, Wilcox KR, Power SA, Tissue DT, Knapp AK (2017). Assessing community and ecosystem sensitivity to climate change—Toward a more comparative approach. Journal of Vegetation Science, 28, 235-237.
DOI URL |
[58] | Song J, Wan SQ, Piao SL, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia JY, Liu Q, Ru JY, Zhou ZX, et al. (2019). A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution, 3, 1309-1320. |
[59] |
Song L, Luo WT, Ma W, He P, Liang XS, Wang ZW (2020). Extreme drought effects on nonstructural carbohydrates of dominant plant species in a meadow grassland. Chinese Journal of Plant Ecology, 44, 669-676.
DOI |
[ 宋琳, 雒文涛, 马望, 何鹏, 梁潇洒, 王正文 (2020). 极端干旱对草甸草原优势植物非结构性碳水化合物的影响. 植物生态学报, 44, 669-676.]
DOI |
|
[60] |
Steiger JH (2007). Understanding the limitations of global fit assessment in structural equation modeling. Personality and Individual Differences, 42, 893-898.
DOI URL |
[61] |
Swain DL, Langenbrunner B, Neelin JD, Hall A (2018). Increasing precipitation volatility in twenty-first-century California. Nature Climate Change, 8, 427-433.
DOI |
[62] |
Tao Y, Zhou XB, Zhang SH, Lu HY, Shao HB (2020). Soil nutrient stoichiometry on linear sand dunes from a temperate desert in Central Asia. Catena, 195, 104847. DOI: 10.1016/j.catena.2020.104847.
DOI URL |
[63] |
Tilman D (1996). Biodiversity: population versus ecosystem stability. Ecology, 77, 350-363.
DOI URL |
[64] |
Tilman D, Isbell F, Cowles JM (2014). Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493.
DOI URL |
[65] |
van Wijk MT (2011). Understanding plant rooting patterns in semi-arid systems: an integrated model analysis of climate, soil type and plant biomass. Global Ecology and Biogeography, 20, 331-342.
DOI URL |
[66] |
Venail P, Gross K, Oakley TH, Narwani A, Allan E, Flombaum P, Isbell F, Joshi J, Reich PB, Tilman D, Ruijven J, Cardinale BJ (2015). Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Functional Ecology, 29, 615-626.
DOI URL |
[67] | Wang XQ, Jiang J, Lei JQ, Zhao CJ (2004). Relationship between ephemeral plants distribution and soil moisture on longitudinal dune surface in Gurbantonggut desert. Chinese Journal of Applied Ecology, 15, 556-560. |
[ 王雪芹, 蒋进, 雷加强, 赵从举 (2004). 短命植物分布与沙垄表层土壤水分的关系——以古尔班通古特沙漠为例. 应用生态学报, 15, 556-560.] | |
[68] |
Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin GH, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, et al. (2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 53, 941-952.
DOI URL |
[69] |
Wilcox KR, Blair JM, Smith MD, Knapp AK (2016). Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions? Ecology, 97, 561-568.
PMID |
[70] |
Wilcox KR, Tredennick AT, Koerner SE, Grman E, Hallett LM, Avolio ML, La Pierre KJ, Houseman GR, Isbell F, Johnson DS, Alatalo JM, Baldwin AH, Bork EW, Boughton EH, Bowman WD, et al. (2017). Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecology Letters, 20, 1534-1545.
DOI PMID |
[71] |
Wu DH, Ciais P, Viovy N, Knapp AK, Wilcox K, Bahn M, Smith MD, Vicca S, Fatichi S, Zscheischler J, He Y, Li XY, Ito A, Arneth A, Harper A, et al. (2018). Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites. Biogeosciences, 15, 3421-3437.
DOI URL |
[72] |
Wu X, Zheng XJ, Li Y, Xu GQ (2019). Varying responses of two Haloxylon species to extreme drought and groundwater depth. Environmental and Experimental Botany, 158, 63-72.
DOI URL |
[73] |
Xu GQ, McDowell NG, Li Y (2016). A possible link between life and death of a xeric tree in desert. Journal of Plant Physiology, 194, 35-44.
DOI URL |
[74] | Xu H, Li Y, Xu GQ, Zou T (2007). Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant, Cell & Environment, 30, 399-409. |
[75] |
Xu ZW, Ren HY, Li MH, van Ruijven J, Han XG, Wan SQ, Li H, Yu Q, Jiang Y, Jiang L (2015). Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. Journal of Ecology, 103, 1308-1316.
DOI URL |
[76] |
Yahdjian L, Sala OE (2002). A rainout shelter design for intercepting different amounts of rainfall. Oecologia, 133, 95-101.
DOI PMID |
[77] |
Yahdjian L, Sala OE (2006). Vegetation structure constrains primary production response to water availability in the Patagonian steppe. Ecology, 87, 952-962.
PMID |
[78] |
Yin JF, Zhou XB, Yin BF, Li YG, Zhang YM (2021). Species-dependent responses of root growth of herbaceous plants to snow cover changes in a temperate desert, Northwest China. Plant and Soil, 459, 249-260.
DOI |
[79] |
Zang YX, Ma JY, Zhou XB, Tao Y, Yin BF, Zhang YM (2021). Extreme precipitation increases the productivity of a desert ephemeral plant community in Central Asia, but there is no slope position effect. Journal of Vegetation Science, 32, e13077. DOI: 10.1111/JVS.13077.
DOI |
[80] |
Zang YX, Min XJ, de Dios VR, Ma JY, Sun W (2020). Extreme drought affects the productivity, but not the composition, of a desert plant community in Central Asia differentially across microtopographies. Science of the Total Environment, 717, 137251. DOI: 10.1016/j.scitotenv.2020.137251.
DOI URL |
[81] |
Zhang B, Zhu JJ, Liu HM, Pan QM (2014). Effects of extreme rainfall and drought events on grassland ecosystems. Chinese Journal of Plant Ecology, 38, 1008-1018.
DOI |
[ 张彬, 朱建军, 刘华民, 潘庆民 (2014). 极端降水和极端干旱事件对草原生态系统的影响. 植物生态学报, 38, 1008-1018.]
DOI |
|
[82] |
Zhang JY, Li JY, Xiao R, Zhang JJ, Wang D, Miao RH, Song HQ, Liu YZ, Yang ZL, Liu MZ (2021). The response of productivity and its sensitivity to changes in precipitation: a meta-analysis of field manipulation experiments. Journal of Vegetation Science, 32, e12954. DOI: 10.1111/JVS.12954.
DOI |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[3] | ZHANG Yi, CHENG Jie, SU Ji-Shuai, CHENG Ji-Min. Diversity-productivity relationship of plant communities in typical grassland during the long- term grazing exclusion succession [J]. Chin J Plant Ecol, 2022, 46(2): 176-187. |
[4] | CONG Nan, ZHANG Yang-Jian, ZHU Jun-Tao. Temperature sensitivity of vegetation phenology in spring in mid- to high-latitude regions of Northern Hemisphere during the recent three decades [J]. Chin J Plant Ecol, 2022, 46(2): 125-135. |
[5] | JI Yu-He, ZHOU Guang-Sheng, WANG Shu-Dong, WANG Li-Xia, ZHOU Meng-Zi. Evolution characteristics and its driving forces analysis of vegetation ecological quality in Qinling Mountains region from 2000 to 2019 [J]. Chin J Plant Ecol, 2021, 45(6): 617-625. |
[6] | WANG Yi-Dan, LI Liang, LIU Qi-Jing, MA Ze-Qing. Lifespan and morphological traits of absorptive fine roots across six typical tree species in subtropical China [J]. Chin J Plant Ecol, 2021, 45(4): 383-393. |
[7] | XU Xiao-Hui, DIAO Hua-Jie, QIN Chu-Yi, HAO Jie, SHEN Yan, DONG Kuan-Hu, WANG Chang-Hui. Response of soil net nitrogen mineralization to different levels of nitrogen addition in a saline-alkaline grassland of northern China [J]. Chin J Plant Ecol, 2021, 45(1): 85-95. |
[8] | ZHAO He-Ju, YUE Yan-Peng, JIA Xiao-Hong, CHENG Long, WU Bo, LI Yuan-Shou, ZHOU Hong, ZHAO Xue-Bin. Effects of simulated warming on biological soil crust-soil system respiration in alpine sandy lands [J]. Chin J Plant Ecol, 2020, 44(9): 916-925. |
[9] | GAMADAERJI , YANG Ze, TAN Xing-Ru, WANG Shan-Shan, LI Wei-Jing, YOU Cui-Hai, WANG Yan-Bing, ZHANG Bing-Wei, REN Ting-Ting, CHEN Shi-Ping. Effect of altered litter input and nitrogen addition on ecosystem aboveground primary productivity and plant functional group composition in a semiarid grassland [J]. Chin J Plant Ecol, 2020, 44(8): 791-806. |
[10] | SONG Lin, LUO Wen-Tao, MA Wang, HE Peng, LIANG Xiao-Sa, WANG Zheng-Wen. Extreme drought effects on nonstructural carbohydrates of dominant plant species in a meadow grassland [J]. Chin J Plant Ecol, 2020, 44(6): 669-676. |
[11] | ZHENG Jia-Jia, HUANG Song-Yu, JIA Xin, TIAN Yun, MU Yu, LIU Peng, ZHA Tian-Shan. Spatial variation and controlling factors of temperature sensitivity of soil respiration in forest ecosystems across China [J]. Chin J Plant Ecol, 2020, 44(6): 687-698. |
[12] | ZHOU Gui-Yao, ZHOU Ling-Yan, SHAO Jun-Jiong, ZHOU Xu-Hui. Effects of extreme drought on terrestrial ecosystems: review and prospects [J]. Chin J Plant Ecol, 2020, 44(5): 515-525. |
[13] | SHU Shu-Miao, ZHU Wan-Ze, RAN Fei, SUN Shou-Qin, ZHANG Yuan-Yuan. Season dynamics of carbon use efficiency and its influencing factors in the old-growth Abies fabri forest in Gongga Mountain, western Sichuan, China [J]. Chin J Plant Ecol, 2020, 44(11): 1127-1137. |
[14] | WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 22-32. |
[15] | LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn