Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (12): 1523-1536.DOI: 10.17521/cjpe.2021.0427
Special Issue: 稳定同位素生态学; 生态学研究的方法和技术; 生态系统碳水能量通量; 土壤呼吸
• Review • Previous Articles Next Articles
WANG Jing-Yuan1, WEI Jie1,*(), WEN Xue-Fa1,2
Received:
2021-11-22
Accepted:
2022-05-21
Online:
2022-12-20
Published:
2023-01-13
Contact:
*WEI Jie(Supported by:
WANG Jing-Yuan, WEI Jie, WEN Xue-Fa. Progress in the theory, hypothesis and application of the methods measuring soil CO2 flux gradient[J]. Chin J Plant Ecol, 2022, 46(12): 1523-1536.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0427
Fig. 1 Schematic diagram of soil CO2 (12CO2 and 13CO2) production process (A) and emission process (B) and their influencing factors (revised from Ben-Noah & Friedman (2018) and Wen et al. (2019)). Microorganisms include fungi, bacteria, actinomycetes, etc. Soil organic carbon pool include active soil organic carbon pool and soil stable organic carbon pool.
单因子模型 One-factor model | 参考文献 Reference | 双因子模型 Two-factor model | 参考文献 Reference |
---|---|---|---|
Buckingham, | Currie, | ||
Penman, | Sadeghi et al., | ||
Marshall, | Xu et al., | ||
Millington, | Moldrup et al., | ||
Millington & Quirk, | Moldrup et al., | ||
Lai et al., | Moldrup et al., | ||
Jabro et al., | Ghanbarian-Alavijeh & Hunt, | ||
Sánchez-Ca?ete et al., | |||
Sánchez-Ca?ete et al., |
Table 1 Effective diffusion coefficient model of soil gas
单因子模型 One-factor model | 参考文献 Reference | 双因子模型 Two-factor model | 参考文献 Reference |
---|---|---|---|
Buckingham, | Currie, | ||
Penman, | Sadeghi et al., | ||
Marshall, | Xu et al., | ||
Millington, | Moldrup et al., | ||
Millington & Quirk, | Moldrup et al., | ||
Lai et al., | Moldrup et al., | ||
Jabro et al., | Ghanbarian-Alavijeh & Hunt, | ||
Sánchez-Ca?ete et al., | |||
Sánchez-Ca?ete et al., |
[1] |
Albanito F, Saunders M, Jones MB (2009). Automated diffusion chambers to monitor diurnal and seasonal dynamics of the soil CO2 concentration profile. European Journal of Soil Science, 60, 507-514.
DOI URL |
[2] |
Angert A, Yakir D, Rodeghiero M, Preisler Y, Davidson EA, Weiner T (2015). Using O2 to study the relationships between soil CO2 efflux and soil respiration. Biogeosciences, 12, 2089-2099.
DOI URL |
[3] |
Baldocchi D, Tang J, Xu L (2006). How switches and lags in biophysical regulators affect spatial-temporal variation of soil respiration in an oak-grass savanna. Journal of Geophysical Research-Biogeosciences, 111, G02008. DOI: 10.1029/2005JG000063.
DOI |
[4] |
Barba J, Cueva A, Bahn M, Barron-Gafford GA, Bond- Lamberty B, Hanson PJ, Jaimes A, Kulmala L, Pumpanen J, Scott RL, Wohlfahrt G, Vargas R (2018). Comparing ecosystem and soil respiration: review and key challenges of tower-based and soil measurements. Agricultural and Forest Meteorology, 249, 434-443.
DOI URL |
[5] |
Bekele A, Kellman L, Beltrami H (2007). Soil profile CO2 concentrations in forested and clear cut sites in Nova Scotia, Canada. Forest Ecology and Management, 242, 587-597.
DOI URL |
[6] |
Ben-Noah I, Friedman SP (2018). Review and evaluation of root respiration and of natural and agricultural processes of soil aeration. Vadose Zone Journal, 17, 170119. DOI: 10.2136/vzj2017.06.0119.
DOI |
[7] |
Berryman EM, Frank JM, Massman WJ, Ryan MG (2018). Using a Bayesian framework to account for advection in seven years of snowpack CO2 fluxes in a mortality- impacted subalpine forest. Agricultural and Forest Meteorology, 249, 420-433.
DOI URL |
[8] | Bond-Lamberty B (2018). New techniques and data for understanding the global soil respiration flux. Earthʼs Future, 6, 1176-1180. |
[9] |
Bowling DR, Egan JE, Hall SJ, Risk DA (2015). Environmental forcing does not induce diel or synoptic variation in the carbon isotope content of forest soil respiration. Biogeosciences, 12, 5143-5160.
DOI URL |
[10] |
Bowling DR, Massman WJ (2011). Persistent wind-induced enhancement of diffusive CO2transport in a mountain forest snowpack. Journal of Geophysical Research: Biogeosciences, 116, G04006. DOI: 10.1029/2011JG001722.
DOI |
[11] | Buckingham E (1904). Contributions to Our Knowledge of the Aeration of Soils. The United States Department of Agriculture, Bureau of Soils, Washington D.C. |
[12] |
Butterbach-Bahl K, Papen H (2002). Four years continuous record of CH4-exchange between the atmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany. Plant and Soil, 240, 77-90.
DOI URL |
[13] |
Camarda M, de Gregorio S, Capasso G, di Martino RMR, Gurrieri S, Prano V (2019). The monitoring of natural soil CO2 emissions: issues and perspectives. Earth-Science Reviews, 198, 102928. DOI: 10.1016/j.earscirev.2019.102928.
DOI URL |
[14] |
Campeau A, Bishop K, Amvrosiadi N, Billett MF, Garnett MH, Laudon H, Öquist MG, Wallin MB (2019). Current forest carbon fixation fuels stream CO2 emissions. Nature Communications, 10, 1876. DOI: 10.1038/s41467-019-09922-3.
DOI PMID |
[15] |
Cannavo P, Lafolie F, Nicolardot B, Renault P (2006). Modeling seasonal variations in carbon dioxide and nitrous oxide in the vadose zone. Vadose Zone Journal, 5, 990-1004.
DOI URL |
[16] |
Cerling TE, Solomon DK, Quade J, Bowman JR (1991). On the isotopic composition of carbon in soil carbon-dioxide. Geochimica et Cosmochimica Acta, 55, 3403-3405.
DOI URL |
[17] |
Corre MD, Sueta JP, Veldkamp E (2014). Nitrogen-oxide emissions from tropical forest soils exposed to elevated nitrogen input strongly interact with rainfall quantity and seasonality. Biogeochemistry, 118, 103-120.
DOI URL |
[18] | Currie JA (1970). Movement of gases in soil respiration, in sorption and transport processes in soils. Society of Chemical Industry Monograph, 37, 152-171. |
[19] |
Daly E, Palmroth S, Stoy P, Siqueira M, Oishi AC, Juang JY, Oren R, Porporato A, Katul GG (2009). The effects of elevated atmospheric CO2 and nitrogen amendments on subsurface CO2 production and concentration dynamics in a maturing pine forest. Biogeochemistry, 94, 271-287.
DOI URL |
[20] |
Davidson EA, Ishida FY, Nepstad DC (2004). Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Global Change Biology, 10, 718-730.
DOI URL |
[21] |
Davidson EA, Trumbore SE (1995). Gas diffusivity and production of CO2 in deep soils of the eastern Amazon. Tellus Series B-Chemical and Physical Meteorology, 47, 550-565.
DOI URL |
[22] |
de Jong E, Redmann RE, Ripley EA (1979). A comparison of methods to measure soil respiration. Soil Science, 127, 300-306.
DOI URL |
[23] |
DeSutter TM, Sauer TJ, Parkin TB (2006). Porous tubing for use in monitoring soil CO2 concentrations. Soil Biology & Biochemistry, 38, 2676-2681.
DOI URL |
[24] |
DeSutter TM, Sauer TJ, Parkin TB, Heitman JL (2008). A subsurface, closed-loop system for soil carbon dioxide and its application to the gradient efflux approach. Soil Science Society of America Journal, 72, 126-134.
DOI URL |
[25] |
Egan JE, Bowling DR, Risk DA (2019). Technical note: isotopic corrections for the radiocarbon composition of CO2 in the soil gas environment must account for diffusion and diffusive mixing. Biogeosciences, 16, 3197-3205.
DOI URL |
[26] |
Fassbinder JJ, Griffis TJ, Baker JM (2012). Interannual, seasonal, and diel variability in the carbon isotope composition of respiration in a C3/C4 agricultural ecosystem. Agricultural and Forest Meteorology, 153, 144-153.
DOI URL |
[27] |
Freijer JI, Leffelaar PA (1996). Adapted Fickʼs law applied to soil respiration. Water Resources Research, 32, 791-800.
DOI URL |
[28] |
Gamnitzer U, Moyes AB, Bowling DR, Schnyder H (2011). Measuring and modelling the isotopic composition of soil respiration: insights from a grassland tracer experiment. Biogeosciences, 8, 1333-1350.
DOI URL |
[29] |
Ghanbarian B, Hunt AG, Ewing RP, Sahimi M (2013). Tortuosity in porous media: a critical review. Soil Science Society of America Journal, 77, 1461-1477.
DOI URL |
[30] |
Ghanbarian-Alavijeh B, Hunt AG (2012). Comparison of the predictions of universal scaling of the saturation dependence of the air permeability with experiment. Water Resources Research, 48, W08513. DOI: 10.1029/2011WR011758.
DOI |
[31] |
Goffin S, Aubinet M, Maier M, Plain C, Schack-Kirchner H, Longdoz B (2014). Characterization of the soil CO2 production and its carbon isotope composition in forest soil layers using the flux-gradient approach. Agricultural and Forest Meteorology, 188, 45-57.
DOI URL |
[32] |
Grant RH, Omonode RA (2018). Estimation of nocturnal CO2 and N2O soil emissions from changes in surface boundary layer mass storage. Atmospheric Measurement Techniques, 11, 2119-2133.
DOI URL |
[33] |
Gut A, Blatter A, Fahrni M, Lehmann BE, Neftel A, Staffelbach T (1998). A new membrane tube technique (METT) for continuous gas measurements in soils. Plant and Soil, 198, 79-88.
DOI URL |
[34] | Hashimoto S, Carvalhais N, Ito A, Migliavacca M, Nishina K, Reichstein M (2015). Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences, 12, 4121-4132. |
[35] |
Hirano T, Kim H, Tanaka Y (2003). Long-term half-hourly measurement of soil CO2 concentration and soil respiration in a temperate deciduous forest. Journal of Geophysical Research: Atmospheres, 108, 4631. DOI: 10.1029/2003JD003766.
DOI URL |
[36] |
Jabro JD, Sainju UM, Stevens WB, Evans RG (2012). Estimation of CO2 diffusion coefficient at 0-10 cm depth in undisturbed and tilled soils. Archives of Agronomy and Soil Science, 58, 1-9.
DOI URL |
[37] |
Jassal R, Black A, Novak M, Morgenstern K, Nesic Z, Gaumont-Guay D (2005). Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agricultural and Forest Meteorology, 130, 176-192.
DOI URL |
[38] |
Jochheim H, Wirth S, von Unold G, (2018). A multi-layer, closed-loop system for continuous measurement of soil CO2 concentration. Journal of Plant Nutrition and Soil Science, 181, 61-68.
DOI URL |
[39] |
Kammann C, Grünhage L, Jäger HJ (2001). A new sampling technique to monitor concentrations of CH4, N2O and CO2 in air at well-defined depths in soils with varied water potential. European Journal of Soil Science, 52, 297-303.
DOI URL |
[40] |
Kusa K, Sawamoto T, Hu R, Hatano R (2008). Comparison of the closed-chamber and gas concentration gradient methods for measurement of CO2and N2O fluxes in two upland field soils. Soil Science and Plant Nutrition, 54, 777-785.
DOI URL |
[41] |
Kuzyakov Y (2006). Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology & Biochemistry, 38, 425-448.
DOI URL |
[42] |
Kuzyakov Y, Horwath WR, Dorodnikov M, Blagodatskaya E (2019). Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: no changes in pools, but increased fluxes and accelerated cycles. Soil Biology & Biochemistry, 128, 66-78.
DOI URL |
[43] |
Laemmel T, Mohr M, Longdoz B, Schack-Kirchner H, Lang F, Schindler D, Maier M (2019). From above the forest into the soil—How wind affects soil gas transport through air pressure fluctuations. Agricultural and Forest Meteorology, 265, 424-434.
DOI |
[44] |
Lai SH, Tiedje JM, Erickson AE (1976). In situ measurement of gas-diffusion coefficient in soils. Soil Science Society of America Journal, 40, 3-6.
DOI URL |
[45] |
Levintal E, Dragila MI, Weisbrod N (2019). Impact of wind speed and soil permeability on aeration time in the upper vadose zone. Agricultural and Forest Meteorology, 269-270, 294-304.
DOI URL |
[46] |
Liang LL, Riveros-Iregui DA, Risk DA (2016). Spatial and seasonal variabilities of the stable carbon isotope composition of soil CO2 concentration and flux in complex terrain. Journal of Geophysical Research: Biogeosciences, 121, 2328-2339.
DOI URL |
[47] |
Liang N, Hirano T, Zheng ZM, Tang J, Fujinuma Y (2010). Soil CO2 efflux of a larch forest in northern Japan. Biogeosciences, 7, 3447-3457.
DOI URL |
[48] |
Liang NS, Nakadai T, Hirano T, Qu LY, Koike T, Fujinuma Y, Inoue G (2004). In situ comparison of four approaches to estimating soil CO2 efflux in a northern larch (Larix kaempferi Sarg.) forest. Agricultural and Forest Meteorology, 123, 97-117.
DOI URL |
[49] | Lin GH (2013). Stable Isotope Ecology. Higher Education Press, Beijing. 30. |
[ 林光辉 (2013). 稳定同位素生态学. 高等教育出版社, 北京. 30.] | |
[50] |
Lin WS, Li YQ, Yang ZJ, Giardina CP, Xie JS, Chen SD, Lin CF, Kuzyakov Y, Yang YS (2018). Warming exerts greater impacts on subsoil than topsoil CO2 efflux in a subtropical forest. Agricultural and Forest Meteorology, 263, 137-146.
DOI URL |
[51] |
Lopez CJR, Sanchez-Canete EP, Serrano-Ortiz P, Lopez-Ballesteros A, Domingo F, Kowalski AS, Oyonarte C (2018). From microhabitat to ecosystem: identifying the biophysical factors controlling soil CO2 dynamics in a karst shrubland. European Journal of Soil Science, 69, 1018-1029.
DOI URL |
[52] |
Luo ZK, Wang GC, Wang EL (2019). Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate. Nature Communications, 10, 3688. DOI: 10.1038/s41467-019-11597-9.
DOI PMID |
[53] |
Luther-Mosebach J, Kalinski K, Gröngröft A, Eschenbach A (2018). CO2 fluxes in subtropical dryland soils—A comparison of the gradient and the closed-chamber method. Journal of Plant Nutrition and Soil Science, 181, 21-30.
DOI URL |
[54] |
Maier M, Longdoz B, Laemmel T, Schack-Kirchner H, Lang F (2017). 2D profiles of CO2, CH4, N2O and gas diffusivity in a well aerated soil: measurement and Finite Element Modeling. Agricultural and Forest Meteorology, 247, 21-33.
DOI URL |
[55] |
Maier M, Schack-Kirchner H (2014). Using the gradient method to determine soil gas flux: a review. Agricultural and Forest Meteorology, 192-193, 78-95.
DOI URL |
[56] |
Maier M, Schack-Kirchner H, Hildebrand EE, Holst J (2010). Pore-space CO2 dynamics in a deep, well-aerated soil. European Journal of Soil Science, 61, 877-887.
DOI URL |
[57] |
Maier M, Schack-Kirchner H, Hildebrand EE, Schindler D (2011). Soil CO2 efflux vs. soil respiration: implications for flux models. Agricultural and Forest Meteorology, 151, 1723-1730.
DOI URL |
[58] |
Marshall TJ (1959). The diffusion of gases through porous media. Journal of Soil Science, 10, 79-82.
DOI URL |
[59] |
McCloskey CS, Otten W, Paterson E, Kirk GJD (2021). On allowing for transient variation in end-member δ13C values in partitioning soil C fluxes from net ecosystem respiration. European Journal of Soil Science, 72, 2343-2355.
DOI URL |
[60] |
Mencuccini M, Hölttä T (2010). The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked. New Phytologist, 185, 189-203.
DOI PMID |
[61] |
Midwood AJ, Millard P (2011). Challenges in measuring the δ13C of the soil surface CO2 efflux. Rapid Communications in Mass Spectrometry, 25, 232-242.
DOI PMID |
[62] |
Millington RJ (1959). Gas diffusion in porous media. Science, 130, 100-102.
PMID |
[63] |
Millington RJ, Quirk JP (1961). Permeability of porous solids. Transactions of the Faraday Society, 57, 1200-1207.
DOI URL |
[64] |
Moldrup P, Olesen T, Gamst J, Schjønning P, Yamaguchi T, Rolston DE (2000). Predicting the gas diffusion coefficient in repacked soil: water-induced linear reduction model. Soil Science Society of America Journal, 64, 1588-1594.
DOI URL |
[65] |
Moldrup P, Olesen T, Rolston DE, Yamaguchi T (1997). Modeling diffusion and reaction in soils: vii. predicting gas and ion diffusivity in undisturbed and sieved soils. Soil Science, 162, 632-640.
DOI URL |
[66] |
Moldrup P, Olesen T, Yamaguchi T, Schjønning P, Rolston DE (1999). Modeling diffusion and reaction in soils: ix. the Buckingham-Burdine-Campbell equation for gas diffusivity in undisturbed soil. Soil Science, 164, 542-551.
DOI URL |
[67] | Moyes AB, Gaines SJ, Siegwolf RTW, Bowling DR (2010a). Diffusive fractionation complicates isotopic partitioning of autotrophic and heterotrophic sources of soil respiration. Plant, Cell & Environment, 33, 1804-1819. |
[68] |
Moyes AB, Schauer AJ, Siegwolf RTW, Bowling DR (2010b). An injection method for measuring the carbon isotope content of soil carbon dioxide and soil respiration with a tunable diode laser absorption spectrometer. Rapid Communications in Mass Spectrometry, 24, 894-900.
DOI URL |
[69] | Nickerson N, Egan J, Risk D (2014). Subsurface approaches for measuring soil CO2 isotopologue flux: theory and application. Journal of Geophysical Research, 119, 614-629. |
[70] |
Novak MD, Chen W, Orchansky AL, Ketler R (2000). Turbulent exchange processes within and above a straw mulch. Part II: Thermal and moisture regimes. Agricultural and Forest Meteorology, 102, 155-171.
DOI URL |
[71] | Ogle K, Pendall E (2015). Isotope partitioning of soil respiration: a Bayesian solution to accommodate multiple sources of variability. Journal of Geophysical Research, 120, 221-236. |
[72] |
Parent F, Plain C, Epron D, Maier M, Longdoz B (2013). A new method for continuously measuring the δ13C of soil CO2 concentrations at different depths by laser spectrometry. European Journal of Soil Science, 64, 516-525.
DOI URL |
[73] |
Pausch J, Kuzyakov Y (2018). Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Global Change Biology, 24, 1-12.
DOI PMID |
[74] |
Pavelka M, Acosta M, Kiese R, Altimir N, Brümmer C, Crill P, Darenova E, Fuß R, Gielen B, Graf A, Klemedtsson L, Lohila A, Longdoz B, Lindroth A, Nilsson M, et al. (2018). Standardisation of chamber technique for CO2, N2O and CH4fluxes measurements from terrestrial ecosystems. International Agrophysics, 32, 569-587.
DOI URL |
[75] |
Penman HL (1940). Gas and vapour movements in the soil: I. the diffusion of vapours through porous solids. The Journal of Agricultural Science, 30, 437-462.
DOI URL |
[76] |
Pennington SC, McDowell NG, Megonigal JP, Stegen JC, Bond-Lamberty B (2020). Localized basal area affects soil respiration temperature sensitivity in a coastal deciduous forest. Biogeosciences, 17, 771-780.
DOI URL |
[77] |
Phillips CL, Bond-Lamberty B, Desai AR, Lavoie M, Risk D, Tang J, Todd-Brown K, Vargas R (2017). The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling. Plant and Soil, 413, 1-25.
DOI |
[78] |
Piccoli I, Schjønning P, Lamandé M, Zanini F, Morari F (2019). Coupling gas transport measurements and X-ray tomography scans for multiscale analysis in silty soils. Geoderma, 338, 576-584.
DOI |
[79] |
Pingintha N, Leclerc M, Beasley J, Zhang G, Senthong C (2010). Assessment of the soil CO2 gradient method for soil CO2 efflux measurements: comparison of six models in the calculation of the relative gas diffusion coefficient. Tellus B: Chemical and Physical Meteorology, 62, 47-58.
DOI URL |
[80] | Pla C, Cuezva S, Martinez-Martinez J, Fernandez-Cortes A, Garcia-Anton E, Fusi N, Crosta GB, Cuevas-Gonzalez J, Cañaveras JC, Sanchez-Moral S, Benavente D (2017). Role of soil pore structure in water infiltration and CO2 exchange between the atmosphere and underground air in the vadose zone:a combined laboratory and field approach. Catena, 149, 402-416. |
[81] |
Quan Q, Wang CH, He NP, Zhang Z, Wen XF, Su HX, Wang Q, Xue JY (2014). Forest type affects the coupled relationships of soil C and N mineralization in the temperate forests of northern China. Scientific Reports, 4, 6584. DOI: 10.1038/srep06584.
DOI PMID |
[82] |
Redeker KR, Baird AJ, Teh YA (2015). Quantifying wind and pressure effects on trace gas fluxes across the soil- atmosphere interface. Biogeosciences, 12, 7423-7434.
DOI URL |
[83] |
Rey A (2015). Mind the gap: non-biological processes contributing to soil CO2 efflux. Global Change Biology, 21, 1752-1761.
DOI URL |
[84] | Roland M, Vicca S, Bahn M, Ladreiter-Knauss T, Schmitt M, Janssens IA (2015). Importance of nondiffusive transport for soil CO2 efflux in a temperate mountain grassland. Journal of Geophysical Research, 120, 502-512. |
[85] |
Romero-Ruiz A, Linde N, Keller T, Or D (2018). A review of geophysical methods for soil structure characterization. Reviews of Geophysics, 56, 672-697.
DOI URL |
[86] |
Rumpel C, Kögel-Knabner I (2011). Deep soil organic matter—A key but poorly understood component of terrestrial C cycle. Plant and Soil, 338, 143-158.
DOI URL |
[87] |
Sadeghi AM, Kissel DE, Cabrera ML (1989). Estimating molecular diffusion coefficients of urea in unsaturated soil. Soil Science Society of America Journal, 53, 15-18.
DOI URL |
[88] | Sánchez-Cañete EP, Scott RL, van Haren J, Barron-Gafford GA (2017). Improving the accuracy of the gradient method for determining soil carbon dioxide efflux. Journal of Geophysical Research, 122, 50-64. |
[89] |
Sanderman J, Amundson R (2010). Soil carbon dioxide production and climatic sensitivity in contrasting California ecosystems. Soil Science Society of America Journal, 74, 1356-1366.
DOI URL |
[90] |
Schrumpf M, Kaiser K, Guggenberger G, Persson T, Kögel- Knabner I, Schulze ED (2013). Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences, 10, 1675-1691.
DOI URL |
[91] |
Seok B, Helmig D, Williams MW, Liptzin D, Chowanski K, Hueber J (2009). An automated system for continuous measurements of trace gas fluxes through snow: an evaluation of the gas diffusion method at a subalpine forest site, Niwot Ridge, Colorado. Biogeochemistry, 95, 95-113.
DOI URL |
[92] |
Sotta ED, Veldkamp E, Schwendenmann L, Guimarães BR, Paixão RK, Ruivo MdLP, da Costa ACL, Meir P (2007). Effects of an induced drought on soil carbon dioxide efflux and soil CO2 production in an Eastern Amazonian rainforest, Brazil. Global Change Biology, 13, 2218-2229.
DOI URL |
[93] | Sullivan BW, Dore S, Kolb TE, Hart SC, Montes-Helu MC (2010). Evaluation of methods for estimating soil carbon dioxide efflux across a gradient of forest disturbance. Global Change Biology, 16, 2449-2460. |
[94] |
Tang J, Baldocchi DD, Qi Y, Xu L (2003). Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agricultural and Forest Meteorology, 118, 207-220.
DOI URL |
[95] |
Tang JY, Riley WJ (2014). Technical note: simple formulations and solutions of the dual-phase diffusive transport for biogeochemical modeling. Biogeosciences, 11, 3721-3728.
DOI URL |
[96] |
van Asperen H, Warneke T, Sabbatini S, Höpker M, Nicolini G, Chiti T, Papale D, Böhm M, Notholt J (2017). Diel variation in isotopic composition of soil respiratory CO2 fluxes: the role of non-steady state conditions. Agricultural and Forest Meteorology, 234-235, 95-105.
DOI URL |
[97] |
Vargas R, Allen MF (2008). Diel patterns of soil respiration in a tropical forest after Hurricane Wilma. Journal of Geophysical Research, 113, G03021. DOI: 10.1029/2007JG000620.
DOI |
[98] |
Vargas R, Carbone MS, Reichstein M, Baldocchi DD (2011). Frontiers and challenges in soil respiration research: from measurements to model-data integration. Biogeochemistry, 102, 1-13.
DOI URL |
[99] |
Vargas R, Detto M, Baldocchi DD, Allen MF (2010). Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Global Change Biology, 16, 1589-1605.
DOI URL |
[100] |
Venturi S, Tassi F, Magi F, Cabassi J, Ricci A, Capecchiacci F, Caponi C, Nisi B, Vaselli O (2019). Carbon isotopic signature of interstitial soil gases reveals the potential role of ecosystems in mitigating geogenic greenhouse gas emissions: case studies from hydrothermal systems in Italy. Science of the Total Environment, 655, 887-898.
DOI |
[101] |
Voglar GE, Zavadlav S, Levanič T, Ferlan M (2019). Measuring techniques for concentration and stable isotopologues of CO2 in a terrestrial ecosystem: a review. Earth-Science Reviews, 199, 102978. DOI: 10.1016/j.earscirev.2019.102978.
DOI URL |
[102] |
Wang R, Bicharanloo B, Shirvan MB, Cavagnaro TR, Jiang Y, Keitel C, Dijkstra FA (2021). A novel 13C pulse-labelling method to quantify the contribution of rhizodeposits to soil respiration in a grassland exposed to drought and nitrogen addition. New Phytologist, 230, 857-866.
DOI URL |
[103] |
Wei J, Chen CH, Wang JY, Wen XF (2020). Theory, hypothesis and application advance in chamber-based technology and methods for flux measurement. Chinese Journal of Plant Ecology, 44, 318-329.
DOI |
[ 魏杰, 陈昌华, 王晶苑, 温学发 (2020). 箱式通量观测技术和方法的理论假设及其应用进展. 植物生态学报, 44, 318-329.]
DOI |
|
[104] | Wen XF, Zhang XY, Wei J, Lü SD, Wang J, Chen CH, Song XW, Wang JY, Dai XQ (2019). Understanding the biogeochemical process and mechanism of ecosystem carbon cycle from the perspective of the earthʼs critical zone. Advances in Earth Science, 34, 471-479. |
[ 温学发, 张心昱, 魏杰, 吕斯丹, 王静, 陈昌华, 宋贤威, 王晶苑, 戴晓琴 (2019). 地球关键带视角理解生态系统碳生物地球化学过程与机制. 地球科学进展, 34, 471-479.]
DOI |
|
[105] |
Werth M, Kuzyakov Y (2010). 13C fractionation at the root- microorganisms-soil interface: a review and outlook for partitioning studies. Soil Biology & Biochemistry, 42, 1372-1384.
DOI URL |
[106] |
Wiaux F, van clooster M, van Oost K (2015). Vertical partitioning and controlling factors of gradient-based soil carbon dioxide fluxes in two contrasted soil profiles along a loamy hillslope. Biogeosciences, 12, 4637-4649.
DOI URL |
[107] |
Wieder W (2014). Microbes, roots and global carbon. Nature Climate Change, 4, 1052-1053.
DOI |
[108] |
Wolf B, Chen W, Brüggemann N, Zheng X, Pumpanen J, Butterbach-Bahl K (2011). Applicability of the soil gradient method for estimating soil-atmosphere CO2, CH4, and N2O fluxes for steppe soils in Inner Mongolia. Journal of Plant Nutrition and Soil Science, 174, 359-372.
DOI URL |
[109] |
Xiao X, Kuang X, Sauer TJ, Heitman JL, Horton R (2015). Bare soil carbon dioxide fluxes with time and depth determined by high-resolution gradient-based measurements and surface chambers. Soil Science Society of America Journal, 79, 1073-1083.
DOI URL |
[110] |
Xu X, Nieber JL, Gupta SC (1992). Compaction effect on the gas diffusion coefficient in soils. Soil Science Society of America Journal, 56, 1743-1750.
DOI URL |
[111] |
Yang XL, Fan J, Jones SB (2018). Effect of soil texture on estimates of soil-column carbon dioxide flux comparing chamber and gradient methods. Vadose Zone Journal, 17, 180112. DOI: 10.2136/vzj2018.05.0112.
DOI |
[112] |
Yao PW, Li XS, Liu JC, Shen YF, Yue SC, Li SQ (2018). The role of maize plants in regulating soil profile dynamics and surface emissions of nitrous oxide in a semiarid environment. Biology and Fertility of Soils, 54, 119-135.
DOI URL |
[113] |
Young SL, Pierce FJ, Streubel JD, Collins HP (2009). Performance of solid-state sensors for continuous, real-time measurement of soil CO2 concentrations. Agronomy Journal, 101, 1417-1420.
DOI URL |
[114] |
Yu YX, Zhao CY, Jia HT, Niu BC, Sheng Y, Shi FZ (2017). Effects of nitrogen fertilizer, soil temperature and moisture on the soil-surface CO2 efflux and production in an oasis cotton field in arid northwestern China. Geoderma, 308, 93-103.
DOI URL |
[115] |
Zhai X, Horn R (2019). Dynamics of pore functions and gas transport parameters in artificially ameliorated soils due to static and cyclic loading. Geoderma, 337, 300-310.
DOI URL |
[116] | Zhang JR (2021). Dynamic Characteristics and Influencing Factors of Soil Respiration in Alpine Swamp Meadow Under the Conditions of Warming and Nitrogen Application. Master degree dissertation, Lanzhou Jiaotong University, Lanzhou. 1-7. |
[ 张景然 (2021). 增温与施氮条件下高寒沼泽草甸土壤呼吸动态特征及其影响因素. 硕士学位论文, 兰州交通大学, 兰州. 1-7.] | |
[117] |
Zhou J, Yang ZY, Wu GH, Yang YZ, Lin GH (2018). The relationship between soil CO2 efflux and its carbon isotopic composition under non-steady-state conditions. Agricultural and Forest Meteorology, 256-257, 492-500.
DOI URL |
[1] | YANG Meng, YU Gui-Rui. Coupling-decoupling of soil CO2 and CH4 fluxes and their responses to temperature in arid and semi-arid regions of China [J]. Chin J Plant Ecol, 2022, 46(12): 1497-1507. |
[2] | ZHENG Jia-Jia, HUANG Song-Yu, JIA Xin, TIAN Yun, MU Yu, LIU Peng, ZHA Tian-Shan. Spatial variation and controlling factors of temperature sensitivity of soil respiration in forest ecosystems across China [J]. Chin J Plant Ecol, 2020, 44(6): 687-698. |
[3] | CHAI Xi, LI Ying-Nian, DUAN Cheng, ZHANG Tao, ZONG Ning, SHI Pei-Li, HE Yong-Tao, ZHANG Xian-Zhou. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42(1): 6-19. |
[4] | WANG Yu-Hui, JING Chang-Qing, BAI Jie, LI Long-Hui, CHEN Xi, LUO Ge-Ping. Characteristics of water and carbon fluxes during growing season in three typical arid ecosystems in central Asia [J]. Chin J Plant Ecol, 2014, 38(8): 795-808. |
[5] | ZHAO Liang, GU Song, ZHOU Hua-Kun, XU Shi-Xiao, ZHAO Xin-Quan, LI Ying-Nian. CO2 FLUXES OF ARTIFICIAL GRASSLAND IN THE SOURCE REGION OF THE THREE RIVERS ON THE QINGHAI-TIBETAN PLATEAU, CHINA [J]. Chin J Plant Ecol, 2008, 32(3): 544-554. |
[6] | WANG Wen-Jie, ZU Yuan-Gang, WANG Hui-Min, YANG Feng-Jian, Saigusa Nobuko, Koike Takayoshi, Yamamoto Susumu. PRELIMINARY STUDY OF CO<sub>2</sub> FLUX OF A LARCH FOREST BY EDDYCOVARIANCE AND ECOPHYSIOLOGICAL METHODS [J]. Chin J Plant Ecol, 2007, 31(1): 118-128. |
[7] | HUANG Xiang-Zhong, HAO Yan-Bin, WANG Yan-Fen, ZHOU Xiao-Qi, HAN Xi, HE Jun-Jie. IMPACT OF EXTREME DROUGHT ON NET ECOSYSTEM EXCHANGE FROM LEMUS CHINENSIS STEPPE IN XILIN RIVER BASIN, CHINA [J]. Chin J Plant Ecol, 2006, 30(6): 894-900. |
[8] | YANG Jin_Yan, WANG Chuan_Kuan. EFFECTS OF SOIL TEMPERATURE AND MOISTURE ON SOIL SURFACE CO<sub>2</sub> FLUX OF FORESTS IN NORTHEASTERN CHINA [J]. Chin J Plant Ecol, 2006, 30(2): 286-294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn