Chin J Plant Ecol ›› 2006, Vol. 30 ›› Issue (2): 286-294.DOI: 10.17521/cjpe.2006.0038
Special Issue: 生态系统碳水能量通量
• Original article • Previous Articles Next Articles
YANG Jin_Yan, WANG Chuan_Kuan()
Accepted:
2005-01-06
Published:
2006-03-30
YANG Jin_Yan, WANG Chuan_Kuan. EFFECTS OF SOIL TEMPERATURE AND MOISTURE ON SOIL SURFACE CO<sub>2</sub> FLUX OF FORESTS IN NORTHEASTERN CHINA[J]. Chin J Plant Ecol, 2006, 30(2): 286-294.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2006.0038
生态系统类型 Forest ecosystem | 坡度 Slope | 坡向 Aspect | 植被组成 Vegetation composition | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
乔木(优势种) Overstory (Dominant species) | 下木 Understory | |||||||||||||
蒙古栎林Quercus mongolica forest | 23° | 南South | (1)、2、3、4、5、6 | 7、8、9、10 | ||||||||||
杨桦林Populus davidiana_Betula platyphylla forest | 16° | 西南Southwest | (6)、(5)、11、4、3、2 | 7、8、9、12、10、13、14 | ||||||||||
硬阔叶林Hard_wood forest | 7° | 北North | 4、3、2、11 | 7、9、13、15、16、17 | ||||||||||
杂木林Mixed forest | 15° | 西南Southwest | 2、11、4、3、5、6 | 7、9、15、13、18、19 | ||||||||||
落叶松人工林Larix gmelinii plantation | 2° | 西南Southwest | (20)、3、21 | 15、22、16、10、9、7、23 | ||||||||||
红松人工林Pinus koraiensis plantation | 12° | 西北Northwest | (24)、6、3、25、5、11、6 | 9、19 |
Table 1 The site features and vegetation composition of the sampled plots
生态系统类型 Forest ecosystem | 坡度 Slope | 坡向 Aspect | 植被组成 Vegetation composition | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
乔木(优势种) Overstory (Dominant species) | 下木 Understory | |||||||||||||
蒙古栎林Quercus mongolica forest | 23° | 南South | (1)、2、3、4、5、6 | 7、8、9、10 | ||||||||||
杨桦林Populus davidiana_Betula platyphylla forest | 16° | 西南Southwest | (6)、(5)、11、4、3、2 | 7、8、9、12、10、13、14 | ||||||||||
硬阔叶林Hard_wood forest | 7° | 北North | 4、3、2、11 | 7、9、13、15、16、17 | ||||||||||
杂木林Mixed forest | 15° | 西南Southwest | 2、11、4、3、5、6 | 7、9、15、13、18、19 | ||||||||||
落叶松人工林Larix gmelinii plantation | 2° | 西南Southwest | (20)、3、21 | 15、22、16、10、9、7、23 | ||||||||||
红松人工林Pinus koraiensis plantation | 12° | 西北Northwest | (24)、6、3、25、5、11、6 | 9、19 |
生态系统类型 Forest ecosystem | 土壤深度 Soil depth (cm) | 回归方程 Regression model | 决定系数 R2 | 显著水平 p |
---|---|---|---|---|
蒙古栎林 Quercus mongolica forest | 10 | ln(RS)=-0.294 5+0.073 4×T10+1.692 4×W10 | 0.675 | <0.001 |
2 | ln(RS)=-0.740 1+0.104 5×T2+1.804 5×W2-0.067 0×T2×W2 | 0.704 | <0.001 | |
杨桦林Populus davidiana_ Betula platyphylla forest | 10 | ln(RS)=-1.611+0.195 1×T10+3.190 2×W10-0.188 2×T10×W10 | 0.906 | <0.001 |
2 | ln(RS)=-1.068 6+0.147 2×T2+1.239×W2-0.063 6×T2×W2 | 0.855 | <0.001 | |
硬阔叶林 Hard_wood forest | 10 | ln(RS)=-1.161 0+0.175 4×T10+1.956 5×W10-0.1277×T10×W10 | 0.771 | <0.001 |
2 | ln(RS)=-0.078 4+0.094 7×T2 | 0.751 | <0.001 | |
杂木林 Mixed forest | 10 | ln(RS)=-1.730 2+0.203 0×T10+3.224 4×W10-0.1737×T10×W10 | 0.902 | <0.001 |
2 | ln(RS)=-0.202 6+0.108 8×T2 | 0.852 | <0.001 | |
红松人工林 Pinus koraiensis plantation | 10 | ln(RS)=-1.538 6+0.155 6×T10+3.199 0×W10-0.1304×T10×W10 | 0.855 | <0.001 |
2 | ln(RS)=-0.740 1+0.096 0×T2+0.822 9×W2 | 0.780 | <0.001 | |
落叶松人工林 Larix gmelinii plantation | 10 | ln(RS)=-0.831 9+0.099 1×T10+0.926 0×W10 | 0.846 | <0.001 |
2 | ln(RS)=-0.573 4+0.093 7×T2 | 0.809 | <0.001 |
Table 2 Models of soil surface CO2 flux (RS) against soil temperature (T2 and T10) and soil moisture (W2 and W10)
生态系统类型 Forest ecosystem | 土壤深度 Soil depth (cm) | 回归方程 Regression model | 决定系数 R2 | 显著水平 p |
---|---|---|---|---|
蒙古栎林 Quercus mongolica forest | 10 | ln(RS)=-0.294 5+0.073 4×T10+1.692 4×W10 | 0.675 | <0.001 |
2 | ln(RS)=-0.740 1+0.104 5×T2+1.804 5×W2-0.067 0×T2×W2 | 0.704 | <0.001 | |
杨桦林Populus davidiana_ Betula platyphylla forest | 10 | ln(RS)=-1.611+0.195 1×T10+3.190 2×W10-0.188 2×T10×W10 | 0.906 | <0.001 |
2 | ln(RS)=-1.068 6+0.147 2×T2+1.239×W2-0.063 6×T2×W2 | 0.855 | <0.001 | |
硬阔叶林 Hard_wood forest | 10 | ln(RS)=-1.161 0+0.175 4×T10+1.956 5×W10-0.1277×T10×W10 | 0.771 | <0.001 |
2 | ln(RS)=-0.078 4+0.094 7×T2 | 0.751 | <0.001 | |
杂木林 Mixed forest | 10 | ln(RS)=-1.730 2+0.203 0×T10+3.224 4×W10-0.1737×T10×W10 | 0.902 | <0.001 |
2 | ln(RS)=-0.202 6+0.108 8×T2 | 0.852 | <0.001 | |
红松人工林 Pinus koraiensis plantation | 10 | ln(RS)=-1.538 6+0.155 6×T10+3.199 0×W10-0.1304×T10×W10 | 0.855 | <0.001 |
2 | ln(RS)=-0.740 1+0.096 0×T2+0.822 9×W2 | 0.780 | <0.001 | |
落叶松人工林 Larix gmelinii plantation | 10 | ln(RS)=-0.831 9+0.099 1×T10+0.926 0×W10 | 0.846 | <0.001 |
2 | ln(RS)=-0.573 4+0.093 7×T2 | 0.809 | <0.001 |
生态系统类型 Forest ecosystems | 土壤呼吸速率 RS (μmol CO2·m-2·s-1) | 土壤温度 Soil temperature (℃) | 土壤湿度 Soil moisture (%) | |||
---|---|---|---|---|---|---|
均值 Mean | 标准差 SD | 均值 Mean | 标准差 SD | 均值 Mean | 标准差 SD | |
杂木林Mixed forest | 3.94A | 1.86 | 12.95A | 4.24 | 40.70B | 4.83 |
蒙古栎林Quercus mongolica forest | 3.79ABC | 1.07 | 13.81A | 3.95 | 30.19F | 7.05 |
杨桦林Populus davidiana- Betula platyphylla forest | 3.70B | 1.65 | 13.08A | 4.40 | 37.44D | 5.18 |
硬阔叶林 Hard_wood forest | 3.61C | 1.56 | 13.17A | 3.91 | 53.42A | 4.43 |
红松人工林 Pinus koraiensis plantation | 3.05D | 1.16 | 12.06A | 4.28 | 38.60C | 6.91 |
落叶松人工林 Larix gmelinii plantation | 2.35E | 0.85 | 11.14A | 4.55 | 32.02E | 6.67 |
Table 3 Duncan's multiple_range test for the means of soil surface CO2 flux (RS), soil temperature (T10) and moisture (W10) for the six forest ecosystems
生态系统类型 Forest ecosystems | 土壤呼吸速率 RS (μmol CO2·m-2·s-1) | 土壤温度 Soil temperature (℃) | 土壤湿度 Soil moisture (%) | |||
---|---|---|---|---|---|---|
均值 Mean | 标准差 SD | 均值 Mean | 标准差 SD | 均值 Mean | 标准差 SD | |
杂木林Mixed forest | 3.94A | 1.86 | 12.95A | 4.24 | 40.70B | 4.83 |
蒙古栎林Quercus mongolica forest | 3.79ABC | 1.07 | 13.81A | 3.95 | 30.19F | 7.05 |
杨桦林Populus davidiana- Betula platyphylla forest | 3.70B | 1.65 | 13.08A | 4.40 | 37.44D | 5.18 |
硬阔叶林 Hard_wood forest | 3.61C | 1.56 | 13.17A | 3.91 | 53.42A | 4.43 |
红松人工林 Pinus koraiensis plantation | 3.05D | 1.16 | 12.06A | 4.28 | 38.60C | 6.91 |
落叶松人工林 Larix gmelinii plantation | 2.35E | 0.85 | 11.14A | 4.55 | 32.02E | 6.67 |
[1] | Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396,570-572. |
[2] | Chen QS (陈全胜), Li LH (李凌浩), Han XG (韩兴国), Yan ZD (阎志丹), Wang YF (王艳芬), Yuan ZY (袁志友) (2003). Influence of temperature and soil moisture on soil respiration of degraded steppe community in the Xilin River Basin of Inner Mongolia. Acta Phytoeclogica Sinica (植物生态学报), 27,202-209. (in Chinese with English abstract) |
[3] | Chen QS (陈全胜), Li LH (李凌浩), Han XG (韩兴国), Yan ZD (阎志丹), Wang YF (王艳芬), Zhang Y (张焱), Xiong XG (熊小刚), Chen SP (陈世苹), Zhang LX (张丽霞), Gao YZ (高英志), Tang F (唐芳), Yang J (杨晶), Dong YS (董云社) (2004). Temperature sensitivity of soil respiration in relation to soil moisture in 11 communities of typical temperate steppe in Inner Mongolia. Acta Ecologica Sinica (生态学报), 24,831-836. (in Chinese with English abstract) |
[4] | Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4,217-227. |
[5] | Fang C, Moncrief JB, Gholz HL, Clark KL (1998). Soil CO 2 efflux and its spatial variation in a Florida slash pine plantation . Plant and Soil, 205,135-146. |
[6] | Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996). Measurement of carbon sequestration by long_term eddy covariance, methods and a critical evaluation of accuracy. Global Change Biology, 2,169-182. |
[7] | Kang SY, Doh SY, Lee DS, Lee DW, Jin VL, Kimball JS (2003). Topographic and climatic controls on soil respiration in six temperate mixed_hardwood forest slopes, Korea. Global Change Biology, 9,1427-1437. |
[8] | Keith H, Jacobsen KL, Raison RJ (1997). Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest . Plant and Soil, 190,127-141. |
[9] | Landsberg JJ, Gower ST (1997). Applications of Physiological Ecology to Forest Management . Academic, San Diego, California, 354. |
[10] | Liu JJ (刘建军), Wang DX (王得祥), Lei RD (雷瑞德), Wu XQ (吴钦孝) (2003). Soil respiration and release of carbon dioxide from natural forest of Pinus tabulaeformis and Quercus aliena var. acuteserrata. Scientia Silvae Sinicae (林业科学), 39(2),8-13. (in Chinese with English abstract) |
[11] | Luo YQ, Wan SQ, Hui DF, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413,622-625. |
[12] | Ohashi M, Gyokusen K, Saito A (1999). Measurement of carbon dioxide evolution from a Japanese cedar (Cryptomeria japonica) forest floor using an open_flow chamber method . Forest Ecology and Management, 123,105-114. |
[13] | Post WM, Emanuel WR (1982). Soil carbon pools and world life zones. Nature, 298,156-159. |
[14] | Pypker TG, Fredeen AL (2003). Below ground CO 2 efflux from cut blocks of varying ages in sub_ boreal British Columbia . Forest Ecology and Management, 172,249-259. |
[15] | Raich JW, Potter CS (1995). Global patterns of carbon dioxide emissions from soils. Global Biochemical Cycles, 9,23-36. |
[16] | Raich JW, Tufekcioglu A (2000). Vegetation and soil respiration: correlation and controls. Biogeochemistry, 48,71-90. |
[17] | Raich JW, Schlesinger WH (1992). The global carbon dioxide efflux in soil respiration and its relationship to vegetation and climate. Tellus, 44B,81-90. |
[18] | Raich JW, Potter CS, Bhagawati D (2002). Interannual variability in global soil respiration, 1980-94. Global Change Biology, 8,800-812. |
[19] | Rayment MB, Jarvis PG (2000). Temporal and spatial variation of soil CO 2 efflux in a Canadian boreal forest . Soil Biology and Biochemistry, 32,35-45. |
[20] | Russell CA, Voroney RP (1998). Carbon dioxide efflux from the floor of a boreal aspen forest I. relationship to environmental variables and estimates of C respired. Canadian Journal of Soil Science, 78,301-310. |
[21] | Savin MC, Gorres JH, Neher DA (2001). Biogeophysical factors influencing soil respiration and mineral nitrogen content in an old field soil. Soil Biology and Biogeochemistry, 33,429-438. |
[22] | Scott_Denton LE, Sparks KL, Monson RK (2003). Spatial and temporal controls of soil respiration rate in a high_elevation, subalpine forest. Soil Biology and Biochemistry, 35,525-534. |
[23] | Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich J (1999). The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO 2 in the United States . Tellus, 51 B ,414-452. |
[24] |
Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Á, Berbigier P, Loustau D, Guemundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000). Respiration as the main determinant of carbon balance in European forests. Nature, 404,861-865.
URL PMID |
[25] | Wang CK, Bond_Lamberty B, Gower ST (2002). Soil surface CO 2 flux in a boreal black spruce fire chronosequence . Journal of Geophysical Research_Atmospheres, 108,8224. |
[26] | Wang M (王淼), Ji LZ (姬兰柱), Li QR (李秋荣), Liu YQ (刘延秋) (2003). Effects of soil temperature and moisture in different forest in Changbai Mountain. Chinese Journal of Applied Ecology (应用生态学报), 14,1234-1238. (in Chinese with English abstract) |
[27] | Wang M (王淼), Han SJ (韩士杰), Wang YS (王跃思) (2004). Important factors controlling CO 2 emission rates from forest soil . Chinese Journal of Ecology (生态学杂志), 23(5),24-29. (in Chinese with English abstract) |
[28] | Xu M, Qi Y (2001a). Soil_surface CO 2 efflux and its spatial andtemporal variations in a young ponderosa pine plantation in northern California . Global Change Biology, 7,667-677. |
[29] | Xu M, Qi Y (2001b). Spatial and seasonal variations of Q 10 determined by soil respiration measurements at a Sierra Nevadan forest . Global Biogeochemical Cycles, 15,687-696. |
[30] | The Chinese Forestry Ministry (中华人民共和国林业部) (1996). Statistics of National Forest Resources in China (全国森林资源统计), China Forestry Publishing House, Beijing. (in Chinese) |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[3] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[4] | LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085. |
[5] | DONG Han-Jun, WANG Xing-Chang, YUAN Dan-Yang, LIU Di, LIU Yu-Long, SANG Ying, WANG Xiao-Chun. Radial distribution differences of non-structural carbohydrates in stems of tree species of different wood in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 722-734. |
[6] | YU Hai-Ying, YANG Li-Lin, FU Su-Jing, ZHANG Zhi-Min, YAO Qi-Fu. Response of leaf-unfolding dates of woody species to variation of chilling and heat accumulation in warm temperate forests [J]. Chin J Plant Ecol, 2022, 46(12): 1573-1584. |
[7] | ZHENG Jia-Jia, HUANG Song-Yu, JIA Xin, TIAN Yun, MU Yu, LIU Peng, ZHA Tian-Shan. Spatial variation and controlling factors of temperature sensitivity of soil respiration in forest ecosystems across China [J]. Chin J Plant Ecol, 2020, 44(6): 687-698. |
[8] | YANG Ze, null null, TAN Xing-Ru, YOU Cui-Hai, WANG Yan-Bing, YANG Jun-Jie, HAN Xing-Guo, CHEN Shi-Ping. Effects of nitrogen addition amount and frequency on soil respiration and its components in a temperate semiarid grassland [J]. Chin J Plant Ecol, 2020, 44(10): 1059-1072. |
[9] | HU Shu-Ya,DIAO Hua-Jie,WANG Hui-Ling,BO Yuan-Chao,SHEN Yan,SUN Wei,DONG Kuan-Hu,HUANG Jian-Hui,WANG Chang-Hui. Response of soil respiration to addition of different forms of nitrogen and mowing in a saline-alkali grassland in the northern agro-pastoral ecotone [J]. Chin J Plant Ecol, 2020, 44(1): 70-79. |
[10] | WEN Chao,SHAN Yu-Mei,YE Ru-Han,ZHANG Pu-Jin,MU Lan,CHANG Hong,REN Ting-Ting,CHEN Shi-Ping,BAI Yong-Fei,HUANG Jian-Hui,SUN Hai-Lian. Effects of nitrogen and water addition on soil respiration in a Nei Mongol desert steppe with different intensities of grazing history [J]. Chin J Plant Ecol, 2020, 44(1): 80-92. |
[11] | ZOU An-Long,LI Xiu-Ping,NI Xiao-Feng,JI Cheng-Jun. Responses of tree growth to nitrogen addition in Quercus wutaishanica forests in Mount Dongling, Beijing, China [J]. Chin J Plant Ecol, 2019, 43(9): 783-792. |
[12] | LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164. |
[13] | SONG Xiao-Yan, WANG Gen-Xu, RAN Fei, YANG Yan, ZHANG Li, XIAO Yao. Flowering phenology and growth of typical shrub grass plants in response to simulated warmer and drier climate in early succession Taiga forests in the Da Hinggan Ling of northeast China [J]. Chin J Plant Ecol, 2018, 42(5): 539-549. |
[14] | WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin [J]. Chin J Plant Ecol, 2018, 42(3): 382-396. |
[15] | WU Qi-Qian, WANG Chuan-Kuan. Dynamics in foliar litter decomposition for Pinus koraiensis and Quercus mongolica in a snow-depth manipulation experiment [J]. Chin J Plan Ecolo, 2018, 42(2): 153-163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn