Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (2): 153-163.DOI: 10.17521/cjpe.2017.0184
Special Issue: 青藏高原植物生态学:种群生态学; 凋落物
• Research Articles • Previous Articles Next Articles
Online:
2018-02-20
Published:
2018-04-16
Contact:
WU Qi-Qian ORCID:0000-0002-4371-6303 Chuan-Kuan WANG ORCID:0000-0003-3513-5426
Supported by:
WU Qi-Qian, WANG Chuan-Kuan. Dynamics in foliar litter decomposition for Pinus koraiensis and Quercus mongolica in a snow-depth manipulation experiment[J]. Chin J Plan Ecolo, 2018, 42(2): 153-163.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0184
Fig. 2 Dynamics in air temperature and the temperatures at the litter layer in different treatment plots (mean, n = 3). A, average air temperature and temperature at the litter layer under the control (CK). B, difference in the temperature between the snow-addition (SA) or snow-removal treatment (SR) and the control. Positive value indicates increased temperature after the treatment, while negative value indicates decreased temperature after the treatment.
树种 Tree species | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 碳/氮 C/N | 碳/磷 C/P | 氮/磷 N/P | 木质素 Lignin (%) | 纤维素 Cellulose (%) | 木质素/氮 Lignin/N |
---|---|---|---|---|---|---|---|---|---|
红松 Pinus koraiensis | 489.6 ± 1.4a | 4.5 ± 0.1b | 0.55 ± 0.01b | 107.0 ± 1.2a | 893.5 ± 6.1a | 8.1 ± 0.5a | 29.8 ± 0.3a | 14.6 ± 0.4a | 66.8 ± 0.2a |
蒙古栎 Quercus mongolica | 458.8 ± 5.1b | 6.5 ± 0.1a | 1.30 ± 0.05a | 71.1 ± 0.6b | 351.7 ± 13.5b | 4.9 ± 0.2b | 16.1 ± 0.1b | 12.9 ± 0.1b | 25.0 ± 0.6b |
Table 1 The initial quality of the foliar litter of Pinus koraiensis and Quercus mongolica (mean ± SD, n = 5)
树种 Tree species | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 碳/氮 C/N | 碳/磷 C/P | 氮/磷 N/P | 木质素 Lignin (%) | 纤维素 Cellulose (%) | 木质素/氮 Lignin/N |
---|---|---|---|---|---|---|---|---|---|
红松 Pinus koraiensis | 489.6 ± 1.4a | 4.5 ± 0.1b | 0.55 ± 0.01b | 107.0 ± 1.2a | 893.5 ± 6.1a | 8.1 ± 0.5a | 29.8 ± 0.3a | 14.6 ± 0.4a | 66.8 ± 0.2a |
蒙古栎 Quercus mongolica | 458.8 ± 5.1b | 6.5 ± 0.1a | 1.30 ± 0.05a | 71.1 ± 0.6b | 351.7 ± 13.5b | 4.9 ± 0.2b | 16.1 ± 0.1b | 12.9 ± 0.1b | 25.0 ± 0.6b |
取样顺序 Sampling order | 取样阶段 Sampling stage | 取样日期 Sampling date | 分解天数 Decomposing days |
---|---|---|---|
1 | 第一年冻结初期 1st year freezing onset stage | 2014-12-02 | 49 |
2 | 第一年深冻期 1st year deep freezing stage | 2015-03-18 | 145 |
3 | 第一年融化期 1st year thawing stage | 2015-04-18 | 176 |
4 | 第一年无雪初期 1st year early snow-free season | 2015-06-20 | 239 |
5 | 第一年无雪中期 1st year mid snow-free season | 2015-08-20 | 300 |
6 | 第一年无雪末期 1st year late snow-free season | 2015-10-20 | 366 |
7 | 第二年冻结初期 2nd year freezing onset stage | 2015-12-25 | 407 |
8 | 第二年深冻期 2nd year deep freezing stage | 2016-03-25 | 516 |
9 | 第二年融化期 2nd year thawing stage | 2016-04-22 | 544 |
10 | 第二年无雪初期 2nd year early snow-free season | 2016-06-20 | 603 |
11 | 第二年无雪中期 2nd year mid snow-free season | 2016-08-22 | 666 |
12 | 第二年无雪末期 2nd year late snow-free season | 2016-10-24 | 732 |
Table 2 Sampling stages, dates and decomposition days across the decomposition process of the foliar litter
取样顺序 Sampling order | 取样阶段 Sampling stage | 取样日期 Sampling date | 分解天数 Decomposing days |
---|---|---|---|
1 | 第一年冻结初期 1st year freezing onset stage | 2014-12-02 | 49 |
2 | 第一年深冻期 1st year deep freezing stage | 2015-03-18 | 145 |
3 | 第一年融化期 1st year thawing stage | 2015-04-18 | 176 |
4 | 第一年无雪初期 1st year early snow-free season | 2015-06-20 | 239 |
5 | 第一年无雪中期 1st year mid snow-free season | 2015-08-20 | 300 |
6 | 第一年无雪末期 1st year late snow-free season | 2015-10-20 | 366 |
7 | 第二年冻结初期 2nd year freezing onset stage | 2015-12-25 | 407 |
8 | 第二年深冻期 2nd year deep freezing stage | 2016-03-25 | 516 |
9 | 第二年融化期 2nd year thawing stage | 2016-04-22 | 544 |
10 | 第二年无雪初期 2nd year early snow-free season | 2016-06-20 | 603 |
11 | 第二年无雪中期 2nd year mid snow-free season | 2016-08-22 | 666 |
12 | 第二年无雪末期 2nd year late snow-free season | 2016-10-24 | 732 |
处理 Treatment | 凋落物层 平均温度 Average temperature in litter layer (°C) | 凋落物层 冻融循环 Freeze-thaw cycle in litter layer | 有机层有机碳 Organic carbon in organic layer (g·kg-1) | 有机层全氮 Total nitrogen in organic layer (g·kg-1) | 有机层全磷 Total phosphorus in organic layer (g·kg-1) | 有机层碳/氮 C/N in organic layer | 有机层碳/磷 C/P in organic layer | 有机层氮/磷 N/P in organic layer |
---|---|---|---|---|---|---|---|---|
增雪 Snow-addition | 4.4 ± 0.3a | 58 ± 1c | 81.4 ± 2.2a | 7.4 ± 0.2a | 1.3 ± 0.1a | 10.9 ± 0.2b | 62.4 ± 0.3c | 5.5 ± 0.2c |
对照 Control | 3.8 ± 0.2b | 70 ± 1b | 75.4 ± 1.1b | 6.6 ± 0.3b | 0.9 ± 0.2b | 11.2 ± 0.2b | 83.9 ± 0.4b | 7.2 ± 0.1b |
除雪 Snow-removal | 2.7 ± 0.5c | 84 ± 2a | 72.6 ± 0.6c | 6.1 ± 0.1c | 0.7 ± 0.1c | 12.0 ± 0.3a | 104.3 ± 0.6a | 8.7 ± 0.3a |
Table 3 Characteristics of environmental conditions in different treatment plots during the decomposition process of the foliar litter (mean ± SD, n = 3)
处理 Treatment | 凋落物层 平均温度 Average temperature in litter layer (°C) | 凋落物层 冻融循环 Freeze-thaw cycle in litter layer | 有机层有机碳 Organic carbon in organic layer (g·kg-1) | 有机层全氮 Total nitrogen in organic layer (g·kg-1) | 有机层全磷 Total phosphorus in organic layer (g·kg-1) | 有机层碳/氮 C/N in organic layer | 有机层碳/磷 C/P in organic layer | 有机层氮/磷 N/P in organic layer |
---|---|---|---|---|---|---|---|---|
增雪 Snow-addition | 4.4 ± 0.3a | 58 ± 1c | 81.4 ± 2.2a | 7.4 ± 0.2a | 1.3 ± 0.1a | 10.9 ± 0.2b | 62.4 ± 0.3c | 5.5 ± 0.2c |
对照 Control | 3.8 ± 0.2b | 70 ± 1b | 75.4 ± 1.1b | 6.6 ± 0.3b | 0.9 ± 0.2b | 11.2 ± 0.2b | 83.9 ± 0.4b | 7.2 ± 0.1b |
除雪 Snow-removal | 2.7 ± 0.5c | 84 ± 2a | 72.6 ± 0.6c | 6.1 ± 0.1c | 0.7 ± 0.1c | 12.0 ± 0.3a | 104.3 ± 0.6a | 8.7 ± 0.3a |
Fig. 3 Comparisons and dynamics in the foliar litter decomposition rates of the two tree species under different treatments (mean ± SD, n = 3). * and different letters indicate significant differences among the treatments (p < 0.05).
树种 Tree species | 处理 Treatment | 回归方程 Regression model | k | R2 | 半分解时间 t0.5 (month) | 95%分解时间 t0.95 (month) |
---|---|---|---|---|---|---|
红松 Pinus koraiensis | 增雪 Snow-addition | y = 99.691e-0.030t | 0.030 | 0.982 | 23.00 | 99.75 |
对照 Control | y = 101.398e-0.029t | 0.029 | 0.979 | 24.38 | 103.78 | |
除雪 Snow-removal | y = 102.545e-0.027t | 0.027 | 0.965 | 26.60 | 111.88 | |
蒙古栎 Quercus mongolica | 增雪 Snow-addition | y = 100.026e-0.037t | 0.037 | 0.984 | 18.74 | 80.97 |
对照 Control | y = 100.342e-0.034t | 0.034 | 0.973 | 20.49 | 88.21 | |
除雪 Snow-removal | y = 103.359e-0.031t | 0.031 | 0.955 | 23.42 | 97.70 |
Table 4 The decomposition model, decomposition coefficient (k), determination coefficient (R2), time of 50% and 95% decomposition of the foliar litter of Pinus koraiensis and Quercus mongolica under different treatments
树种 Tree species | 处理 Treatment | 回归方程 Regression model | k | R2 | 半分解时间 t0.5 (month) | 95%分解时间 t0.95 (month) |
---|---|---|---|---|---|---|
红松 Pinus koraiensis | 增雪 Snow-addition | y = 99.691e-0.030t | 0.030 | 0.982 | 23.00 | 99.75 |
对照 Control | y = 101.398e-0.029t | 0.029 | 0.979 | 24.38 | 103.78 | |
除雪 Snow-removal | y = 102.545e-0.027t | 0.027 | 0.965 | 26.60 | 111.88 | |
蒙古栎 Quercus mongolica | 增雪 Snow-addition | y = 100.026e-0.037t | 0.037 | 0.984 | 18.74 | 80.97 |
对照 Control | y = 100.342e-0.034t | 0.034 | 0.973 | 20.49 | 88.21 | |
除雪 Snow-removal | y = 103.359e-0.031t | 0.031 | 0.955 | 23.42 | 97.70 |
因子 Factor | df | F | p |
---|---|---|---|
树种 Tree species | 1/2 | 85.9 | <0.001 |
雪深 Snow-depth | 2/12 | 52.8 | <0.001 |
分解阶段 Decomposition stage | 11/48 | 3371.1 | <0.001 |
树种×雪深 Tree species × Snow-depth | 2/12 | 4.33 | 0.014 |
树种×分解阶段 Tree species × Decomposition stage | 11/48 | 21.5 | <0.001 |
雪深×分解阶段 Snow-depth × Decomposition stage | 22/48 | 3.58 | 0.028 |
树种×雪深×分解阶段 Tree species × Snow-depth × Decomposition stage | 22/48 | 3.16 | 0.045 |
Table 5 Repeated-measures ANOVA analysis on effects of tree species, snow-depth and decomposition stage on the decomposition rate of the foliar litter
因子 Factor | df | F | p |
---|---|---|---|
树种 Tree species | 1/2 | 85.9 | <0.001 |
雪深 Snow-depth | 2/12 | 52.8 | <0.001 |
分解阶段 Decomposition stage | 11/48 | 3371.1 | <0.001 |
树种×雪深 Tree species × Snow-depth | 2/12 | 4.33 | 0.014 |
树种×分解阶段 Tree species × Decomposition stage | 11/48 | 21.5 | <0.001 |
雪深×分解阶段 Snow-depth × Decomposition stage | 22/48 | 3.58 | 0.028 |
树种×雪深×分解阶段 Tree species × Snow-depth × Decomposition stage | 22/48 | 3.16 | 0.045 |
Fig. 4 Relative contribution of litter loss during the snow-covered and snow-free seasons to the total annual litter loss for the two tree species under different treatments (mean, n = 3).
[1] |
Aanderud ZT, Jones SE, Schoolmaster DR, Fierer N, Lennon JT ( 2013). Sensitivity of soil respiration and microbial communities to altered snowfall. Soil Biology and Biochemistry, 57, 217-227.
DOI URL |
[2] |
Aerts R ( 2006). The freezer defrosting: Global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94, 713-724.
DOI URL |
[3] |
Aerts R, Callaghan TV, Dorrepaal E, van Logtestijn RSP, Cornelissen JHC ( 2012). Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species. Oecologia, 170, 809-819.
DOI URL PMID |
[4] |
Ayres E, Nkem JN, Wall DH, Adams BJ, Barrett JE, Simmons BL, Virginia RA, Fountain AG ( 2010). Experimentally increased snow accumulation alters soil moisture and animal community structure in a polar desert. Polar Biology, 33, 897-907.
DOI URL |
[5] |
Baptist F, Yoccoz NG, Choler P ( 2010). Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Plant and Soil, 328, 397-410.
DOI URL |
[6] |
Beniston M, Keller F, Goyette S ( 2003). Snow pack in the Swiss Alps under changing climatic conditions: An empirical approach for climate impacts studies. Theoretical and Applied Climatology, 74, 19-31.
DOI URL |
[7] | Berg B, McClaugherty C ( 2014). Plant Litter-Decomposition, Humus Formation, Carbon Sequestration. 3rd edn. Springer, Berlin. |
[8] | Berger TW, Duboc O, Djukic I, Tatzber M, Gerzabek MH, Zehetner F ( 2015). Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an alpine elevation gradient: Decay and nutrient release. Geoderma, 251, 92-104. |
[9] |
Blok D, Elberling B, Michelsen A ( 2016). Initial stages of tundra shrub litter decomposition may be accelerated by deeper winter snow but slowed down by spring warming. Ecosystems, 19, 155-169.
DOI URL |
[10] |
Bokhorst S, Metcalfe DB, Wardle DA ( 2013). Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biology & Biochemistry, 62, 157-164.
DOI URL |
[11] |
Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA ( 2016). Understanding the dominant controls on litter decomposition. Journal of Ecology, 104, 229-238.
DOI URL |
[12] |
Brooks PD, Williams MW ( 1999). Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydrological Processes, 13, 2177-2190.
DOI URL |
[13] |
Carbognani M, Petraglia A, Tomaselli M ( 2014). Warming effects and plant trait control on the early-decomposition in alpine snowbeds. Plant and Soil, 376, 277-290.
DOI URL |
[14] |
Christenson LM, Mitchell MJ, Groffman PM ( 2010). Winter climate change implications for decomposition in northeastern forests, comparisons of sugar maple litter with herbivore fecal inputs. Global Change Biology, 16, 2589-2601.
DOI URL |
[15] |
Comerford DP, Schaberg PG, Templer PH, Socci AM, Campbell JL, Wallin KF ( 2013). Influence of experimental snow removal on root and canopy physiology of sugar maple trees in a northern hardwood forest. Oecologia, 171, 261-269.
DOI URL |
[16] |
Criquet S, Ferre E, Farnet AM, Le Petita J ( 2004). Annual dynamics of phosphatase activities in an evergreen oak litter: Influence of biotic and abiotic factors. Soil Biology and Biochemistry, 36, 1111-1118.
DOI URL |
[17] |
Edwards AC, Scalenghe R, Freppaz M ( 2007). Changes in the seasonal snow cover of alpine regions and its effect on soil processes: A review. Quaternary International, 162- 163, 172-181.
DOI URL |
[18] | Fioretto A, Papa S, Curcio E, Sorrentino G, Fuggi A (2000). Enzyme dynamics on decomposing leaf litter of Cistus incanus and Myrtus communis in a Mediterranean ecosystem. Soil Biology and Biochemistry, 32, 1847-1855. |
[19] |
Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL ( 2001). Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry, 56, 191-213.
DOI URL |
[20] |
Guo JF, Yang YS, Chen GS, Lin P, Xie JS ( 2006). A review on litter decomposition in forest ecosystem. Scientia Silvae Sinicae, 42(4), 93-99.
DOI URL |
[ 郭剑芬, 杨玉盛, 陈光水, 林鹏, 谢锦升 ( 2006). 森林凋落物分解研究进展. 林业科学, 42(4), 93-100.]
DOI URL |
|
[21] |
He RL, Chen YM, Deng CC, Yang WQ, Zhang J, Liu Y ( 2015). Litter decomposition and soil faunal diversity of two understory plant debris in the alpine timberline ecotone of western Sichuan in a snow cover season. Chinese Journal of Applied Ecology, 26, 723-731.
DOI URL |
[ 和润莲, 陈亚梅, 邓长春, 杨万勤, 张健, 刘洋 ( 2016). 雪被期川西高山林线交错带两种地被物凋落物分解与土壤动物多样性. 应用生态学报, 26, 723-731.]
DOI URL |
|
[22] |
He W, Wu FZ, Yang WQ, Wu QQ, He M, Zhao YY ( 2013). Effect of snow patches on leaf litter mass loss of two shrubs in an alpine forest. Chinese Journal of Plant Ecology, 37, 306-316.
DOI URL |
[ 何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸 ( 2013). 雪被斑块对高山森林两种灌木凋落叶质量损失的影响. 植物生态学报, 37, 306-316.]
DOI URL |
|
[23] |
Hobbie SE ( 1992). Effects of plant species on nutrient cycling. Trends in Ecology and Evolution, 7, 336-339.
DOI URL PMID |
[24] |
Hobbie SE ( 1996). Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs, 66, 503-522.
DOI URL |
[25] |
Hornsby DC, Lockaby BG, Chappelka AH ( 1995). Influence of microclimate on decomposition in loblolly pine stands: A field microcosm approach. Canadian Journal of Forest Research, 25, 1570-1577.
DOI URL |
[26] | Hu X, Wu N, Wu Y, Zuo WQ, Guo HX, Wang JN ( 2012). Effects of snow cover on the decomposition and nutrient dynamics of Sibiraea angustata leaf litter in western Sichuan plateau, Southwest China. Chinese Journal of Applied Ecology, 23, 1226-1232. |
[ 胡霞, 吴宁, 吴彦, 左万庆, 郭海霞, 王金牛 ( 2012). 川西高原季节性雪被覆盖对窄叶鲜卑花凋落物分解和养分动态的影响. 应用生态学报, 23, 1226-1232.] | |
[27] | IPCC (Intergovernmental Panel on Climate Change) (2007). Impacts,Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[28] |
Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB ( 2008). Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters, 11, 35-43.
DOI URL PMID |
[29] |
Kreyling J, Haei M, Laudon H ( 2013). Snow removal reduces annual cellulose decomposition in a riparian boreal forest. Canadian Journal of Soil Science, 93, 427-433.
DOI URL |
[30] |
Lemma B, Nilsson I, Kleja DB, Olsson M, Knicker H ( 2007). Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia. Soil Biology and Biochemistry, 39, 2317-2328.
DOI URL |
[31] |
Li H, Wu F, Yang W, Xu L, Ni X, He J, Tan B, Hu Y ( 2016). Effects of forest gaps on litter lignin and cellulose dynamics vary seasonally in an alpine forest. Forests, 7, 27.
DOI URL |
[32] |
Liu RP, Mao ZJ, Li XH, Sun T, Li N, Lü HL, Liu CZ ( 2013). Effects of simulated temperature increase and vary little quality on litter decomposition. Acta Ecologica Sinica, 33, 5661-5667.
DOI URL |
[ 刘瑞鹏, 毛子军, 李兴欢, 孙涛, 李娜, 吕海亮, 刘传照 ( 2013). 模拟增温和不同凋落物基质质量对凋落物分解速率的影响. 生态学报, 33, 5661-5667.]
DOI URL |
|
[33] |
Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK ( 2011). Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature, 480, 368-371.
DOI URL PMID |
[34] |
Madritch MD, Hunter MD ( 2003). Intraspecific litter diversity and nitrogen deposition affect nutrient dynamics and soil respiration. Oecologia, 136, 124-128.
DOI URL PMID |
[35] |
Olson JS ( 1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331.
DOI URL |
[36] |
Olsson PQ, Sturm M, Racine CH, Romanovsky V, Liston GE ( 2003). Five stages of the Alaskan Arctic cold season with ecosystem implications. Arctic, Antarctic, and Alpine Research, 35, 74-81.
DOI URL |
[37] |
Saccone P, Morin S, Baptist F, Bonneville JM, Colace MP, Domine F, Faure M, Geremia R, Lochet J, Poly F, Lavorel S, Clément JC ( 2013). The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Plant and Soil, 363, 215-229.
DOI URL |
[38] |
Shibata H, Hasegawa Y, Watanabe T, Fukuzawa K ( 2013). Impact of snowpack decrease on net nitrogen mineralization and nitrification in forest soil of northern Japan. Biogeochemistry, 116, 69-82.
DOI URL |
[39] |
Templer PH, Schiller AF, Fuller NW, Socci AM, Campbell JL, Drake JE, Kunz TH ( 2012). Impact of a reduced winter snowpack on litter arthropod abundance and diversity in a northern hardwood forest ecosystem. Biology and Fertility of Soils, 48, 413-424.
DOI URL |
[40] |
Tomaselli M ( 1991). The snow-bed vegetation in the Northern Apennines. Vegetatio, 94, 177-189.
DOI URL |
[41] |
Uchida M, Mo W, Nakatsubo T, Tsuchiya Y, Horikoshi T, Koizumi H ( 2005). Microbial activity and litter decomposition under snow cover in a cool-temperate broad-leaved deciduous forest. Agricultural and Forest Meteorology, 134, 102-109.
DOI URL |
[42] |
Vanderbilt KL, White CS, Hopkins O, Craig JA ( 2008). Aboveground decomposition in arid environments: Results of a long-term study in central New Mexico. Journal of Arid Environments, 72, 696-709.
DOI URL |
[43] |
Ven?l?inen A, Tuomenvirta H, Heikinheimo M, Kellom?ki S, Peltola H, Strandman H, V?is?nen H ( 2001). Impact of climate change on soil frost under snow cover in a forested landscape. Climate Research, 17, 63-72.
DOI URL |
[44] |
Vossbrinck CR, Coleman DC, WooHey TA ( 1979). Abiotic and biotic factors in litter decomposition in semiarid grassland. Ecology, 60, 265-271.
DOI URL |
[45] |
Wang C, Han Y, Chen J, Wang X, Zhang Q, Bond-Lamberty B ( 2013). Seasonality of soil CO2 efflux in a temperate forest: Biophysical effects of snowpack and spring freeze-thaw cycles. Agricultural and Forest Meteorology, 177, 83-92.
DOI URL |
[46] |
Wu FZ, Yang WQ, Zhang J, Deng R ( 2010). Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica, 36, 135-140.
DOI URL |
[47] |
Wu P, Wang XP, Zhang XP, Zhu B, Zhou HC, Fang JY ( 2016). Effects of climate, forest type and light availability on litter decomposition rate in forests of Northeast China. Acta Ecologica Sinica, 36, 2223-2232.
DOI URL |
[ 吴鹏, 王襄平, 张新平, 朱彪, 周海城, 方精云 ( 2016). 东北地区森林凋落叶分解速率与气候, 林型, 林分光照的关系. 生态学报, 36, 2223-2232.]
DOI URL |
|
[48] | Wu QQ, Wu FZ, Yang WQ, Zhao YY, He W, He M, Zhu JX ( 2015). Effect of snow cover on phosphorus release from leaf litter in the alpine forest in eastern Qinghai-Tibet Plateau. Acta Ecologica Sinica, 35, 4115-4127. |
[ 武启骞, 吴福忠, 杨万勤, 赵野逸, 何伟, 何敏, 朱剑霄 ( 2015). 冬季雪被对青藏高原东缘高海拔森林凋落叶P元素释放的影响. 生态学报, 35, 4115-4127.] | |
[49] |
Yang JY, Wang CK ( 2005). Soil carbon storage and flux of temperate forest ecosystems in northeastern China. Acta Ecologica Sinica, 25, 2875-2882.
DOI URL |
[ 杨金艳, 王传宽 ( 2005). 东北东部森林生态系统土壤碳贮量和碳通量. 生态学报, 25, 2875-2882.]
DOI URL |
|
[50] |
Zhang QZ, Wang CK ( 2010). Carbon density and distribution of six Chinese temperate forests. Science China Life Sciences, 53, 831-840.
DOI URL PMID |
[51] |
Zhang XP, Wang XP, Zhu B, Zong ZJ, Peng CH, Fang JY ( 2008). Litter fall production in relation to environmental factors in Northeast China's forests. Journal of Plant Ecology (Chinese Version), 32, 1031-1040.
DOI URL |
[ 张新平, 王襄平, 朱彪, 宗占江, 彭长辉, 方精云 ( 2008). 我国东北主要森林类型的凋落物产量及其影响因素. 植物生态学报, 32, 1031-1040.]
DOI URL |
|
[52] |
Zheng JQ, Han SJ ( 2016). Nitrogen transfer in the litter-soil interface continuum of the temperate forest. Journal of Beijing Forestry University, 38, 116-122.
DOI URL |
[ 郑俊强, 韩士杰 ( 2016). 氮在凋落物-土壤界面连续体转移研究进展. 北京林业大学学报, 38, 116-122.]
DOI URL |
|
[53] |
Zhu JX, He XH, Wu FZ, Yang W, Tan B ( 2012). Decomposition of Abies faxoniana litter varies with freeze-thaw stages and altitudes in subalpine/alpine forests of southwest China. Scandinavian Journal of Forest Research, 27, 586-596.
DOI URL |
[1] | Yi-Heng Chen Yusupjan Rusul 吾斯曼 阿卜杜热合曼. Analysis of spatial and temporal variation in grassland vegetation cover in the Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[2] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[3] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[4] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[5] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[6] | ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(3): 341-348. |
[7] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[8] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[9] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[10] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[11] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[12] | SU Qi-Tao, DU Zhi-Xuan, ZHOU Bing, LIAO Yong-Hui, WANG Cheng-Cheng, XIAO Yi-An. Potential distribution of Impatiens davidii and its pollinator in China [J]. Chin J Plant Ecol, 2022, 46(7): 785-796. |
[13] | DONG Han-Jun, WANG Xing-Chang, YUAN Dan-Yang, LIU Di, LIU Yu-Long, SANG Ying, WANG Xiao-Chun. Radial distribution differences of non-structural carbohydrates in stems of tree species of different wood in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 722-734. |
[14] | HU Xiao-Fei, WEI Lin-Feng, CHENG Qi, WU Xing-Qi, NI Jian. A climate diagram atlas of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(4): 484-492. |
[15] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn