Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (5): 539-549.DOI: 10.17521/cjpe.2018.0042
Special Issue: 全球变化与生态系统
• Research Articles • Previous Articles Next Articles
SONG Xiao-Yan1,2,WANG Gen-Xu1,*(),RAN Fei1,YANG Yan1,ZHANG Li1,2,XIAO Yao1,2
Received:
2018-02-13
Revised:
2018-05-09
Online:
2018-05-20
Published:
2018-07-20
Contact:
Gen-Xu WANG
Supported by:
SONG Xiao-Yan, WANG Gen-Xu, RAN Fei, YANG Yan, ZHANG Li, XIAO Yao. Flowering phenology and growth of typical shrub grass plants in response to simulated warmer and drier climate in early succession Taiga forests in the Da Hinggan Ling of northeast China[J]. Chin J Plant Ecol, 2018, 42(5): 539-549.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0042
对照 Control | 增温 Warming | 排水 Drainage | 增温+排水 Warming + Drainage | |
---|---|---|---|---|
空气温度 Air temperature (℃) | 7.62 | 8.36 | 7.69 | 8.68 |
土壤温度 Soil temperature at 5 cm (℃) W, D | 5.37 ± 0.14 | 5.38 ± 0.14 | 5.97 ± 0.04 | 5.91 ± 0.13 |
土壤水分 Soil moisture at 0-10 cm (%)W, D | 45.52 ± 2.31 | 38.16 ± 6.82 | 25.36 ± 2.47 | 19.52 ± 1.05 |
最大融化深度 Maximun thaw depth (cm)D | 62.4 ± 1.2 | 65.1 ± 1.2 | 57.5 ± 1.8 | 55.2 ± 1.6 |
生长季平均水位 Mean water table (cm) | -20.0 | ND | -26.3 | ND |
Table 1 Simulative warming and drainage effects on the most important environmental factors (mean or mean ± SE)
对照 Control | 增温 Warming | 排水 Drainage | 增温+排水 Warming + Drainage | |
---|---|---|---|---|
空气温度 Air temperature (℃) | 7.62 | 8.36 | 7.69 | 8.68 |
土壤温度 Soil temperature at 5 cm (℃) W, D | 5.37 ± 0.14 | 5.38 ± 0.14 | 5.97 ± 0.04 | 5.91 ± 0.13 |
土壤水分 Soil moisture at 0-10 cm (%)W, D | 45.52 ± 2.31 | 38.16 ± 6.82 | 25.36 ± 2.47 | 19.52 ± 1.05 |
最大融化深度 Maximun thaw depth (cm)D | 62.4 ± 1.2 | 65.1 ± 1.2 | 57.5 ± 1.8 | 55.2 ± 1.6 |
生长季平均水位 Mean water table (cm) | -20.0 | ND | -26.3 | ND |
Fig. 1 Simulated warming and drainage effects on the flowering phenology of the typical shrub-grass species (mean ± SE). CK, control; W, warming; D, drainage; WD, warming + drainage.
Fig. 2 Simulated warming and drainage effects on maximum flowering number of typical shrub grass species (mean ± SE). Different small letters in the same species indicated significant difference among different treatments (p < 0.05). CK, control; W, warming; D, drainage; WD, warming + drainage.
物种 Species | n | 增温 Warming | 排水 Drainage | 增温 × 排水 Warming × Drainage | ||||
---|---|---|---|---|---|---|---|---|
系数 Coefficient | 显著性 Significance | 系数 Coefficient | 显著性 Significance | 系数 Coefficient | 显著性 Significance | |||
圆锥薹草 Carex diandra | 高度 Height | 13 | 4.073 | 0.085 | 13.212 | 0.082 | -12.960 | 0.007 |
盖度 Coverage | 13 | -27.000 | 0.108 | -11.583 | 0.725 | 0.833 | 0.974 | |
频度 Frequency | 13 | -14.015 | 0.385 | -18.246 | 0.671 | -30.882 | 0.268 | |
地上生物量 Above-ground biomass | 13 | -2.692 | 0.362 | -1.731 | 0.774 | -0.322 | 0.934 | |
开花初始期 First flowering date | 7 | - | - | 8.000 | 0.210 | - | - | |
开花结束期 Last flowering date | 7 | - | - | 10.250 | 0.009 | - | - | |
开花峰值期 Flowering peak date | 7 | - | - | 11.167 | 0.076 | - | - | |
开花持续时间 Flowering duration | 7 | - | - | 2.250 | 0.727 | - | - | |
最大开花数量 Maximum flowering number | 7 | - | - | -13.167 | 0.496 | - | - | |
水葡萄茶藨子 Ribes procumbens | 高度 Height | 16 | 2.070 | 0.512 | -2.947 | 0.550 | 3.880 | 0.352 |
盖度 Coverage | 16 | -5.000 | 0.741 | -17.333 | 0.468 | 34.000 | 0.105 | |
频度 Frequency | 16 | -5.200 | 0.785 | -13.867 | 0.641 | 26.533 | 0.298 | |
地上生物量 Above-ground biomass | 16 | -6.507 | 0.263 | -8.738 | 0.299 | 10.792 | 0.138 | |
开花初始期 First flowering date | 15 | 1.727 | 0.449 | 1.382 | 0.799 | -2.524 | 0.604 | |
开花结束期 Last flowering date | 15 | 3.788 | 0.097 | 3.164 | 0.542 | 3.595 | 0.434 | |
开花峰值期 Flowering peak date | 15 | 5.576 | 0.104 | 4.327 | 0.581 | 4.571 | 0.512 | |
开花持续时间 Flowering duration | 15 | 2.061 | 0.418 | 1.782 | 0.768 | 6.119 | 0.247 | |
最大开花数量 Maximum flowering number | 15 | 1.424 | 0.813 | 3.073 | 0.832 | 14.548 | 0.252 | |
杜香 Ledum palustre | 高度 Height | 29 | 6.000 | 0.040 | 1.223 | 0.870 | -10.108 | 0.024 |
盖度 Coverage | 29 | 19.250 | 0.025 | -11.590 | 0.541 | -21.502 | 0.089 | |
频度 Frequency | 29 | 3.500 | 0.591 | -3.088 | 0.832 | -23.450 | 0.023 | |
地上生物量 Above-ground biomass | 29 | 12.999 | 0.249 | -20.981 | 0.579 | 5.287 | 0.824 | |
开花初始期 First flowering date | 16 | 4.088 | 0.177 | 3.514 | 0.642 | 6.933 | 0.241 | |
开花结束期 Last flowering date | 16 | -1.546 | 0.642 | -0.139 | 0.987 | -0.039 | 0.996 | |
开花峰值期 Flowering peak date | 16 | 6.097 | 0.043 | 3.042 | 0.671 | -3.051 | 0.457 | |
开花持续时间 Flowering duration | 16 | -5.634 | 0.243 | -3.653 | 0.763 | -7.315 | 0.470 | |
最大开花数量 Maximum flowering number | 16 | 0.838 | 0.982 | -24.736 | 0.796 | -52.318 | 0.493 | |
齿叶风毛菊 Saussurea neoserrata | 高度 Height | 11 | -9.412 | 0.614 | -12.858 | 0.759 | 5.733 | 0.828 |
盖度 Coverage | 11 | -1.914 | 0.671 | -1.052 | 0.918 | -1.315 | 0.837 | |
频度 Frequency | 11 | 4.000 | 0.757 | 4.667 | 0.866 | -18.667 | 0.336 | |
地上生物量 Above-ground biomass | 11 | -3.670 | 0.186 | -3.098 | 0.438 | 3.361 | 0.326 | |
开花初始期 First flowering date | 8 | 3.464 | 0.623 | -17.036 | 0.289 | -15.500 | 0.311 | |
开花结束期 Last flowering date | 8 | 3.143 | 0.447 | -9.857 | 0.287 | -1.000 | 0.916 | |
开花峰值期 Flowering peak date | 8 | 3.714 | 0.448 | -12.284 | 0.265 | -12.201 | 0.235 | |
开花持续时间 Flowering duration | 8 | -0.321 | 0.943 | 7.179 | 0.477 | 14.500 | 0.105 | |
最大开花数量 Maximum flowering number | 8 | -3.929 | 0.344 | -2.929 | 0.734 | 3.000 | 0.746 |
Supplement I Results of GLME model
物种 Species | n | 增温 Warming | 排水 Drainage | 增温 × 排水 Warming × Drainage | ||||
---|---|---|---|---|---|---|---|---|
系数 Coefficient | 显著性 Significance | 系数 Coefficient | 显著性 Significance | 系数 Coefficient | 显著性 Significance | |||
圆锥薹草 Carex diandra | 高度 Height | 13 | 4.073 | 0.085 | 13.212 | 0.082 | -12.960 | 0.007 |
盖度 Coverage | 13 | -27.000 | 0.108 | -11.583 | 0.725 | 0.833 | 0.974 | |
频度 Frequency | 13 | -14.015 | 0.385 | -18.246 | 0.671 | -30.882 | 0.268 | |
地上生物量 Above-ground biomass | 13 | -2.692 | 0.362 | -1.731 | 0.774 | -0.322 | 0.934 | |
开花初始期 First flowering date | 7 | - | - | 8.000 | 0.210 | - | - | |
开花结束期 Last flowering date | 7 | - | - | 10.250 | 0.009 | - | - | |
开花峰值期 Flowering peak date | 7 | - | - | 11.167 | 0.076 | - | - | |
开花持续时间 Flowering duration | 7 | - | - | 2.250 | 0.727 | - | - | |
最大开花数量 Maximum flowering number | 7 | - | - | -13.167 | 0.496 | - | - | |
水葡萄茶藨子 Ribes procumbens | 高度 Height | 16 | 2.070 | 0.512 | -2.947 | 0.550 | 3.880 | 0.352 |
盖度 Coverage | 16 | -5.000 | 0.741 | -17.333 | 0.468 | 34.000 | 0.105 | |
频度 Frequency | 16 | -5.200 | 0.785 | -13.867 | 0.641 | 26.533 | 0.298 | |
地上生物量 Above-ground biomass | 16 | -6.507 | 0.263 | -8.738 | 0.299 | 10.792 | 0.138 | |
开花初始期 First flowering date | 15 | 1.727 | 0.449 | 1.382 | 0.799 | -2.524 | 0.604 | |
开花结束期 Last flowering date | 15 | 3.788 | 0.097 | 3.164 | 0.542 | 3.595 | 0.434 | |
开花峰值期 Flowering peak date | 15 | 5.576 | 0.104 | 4.327 | 0.581 | 4.571 | 0.512 | |
开花持续时间 Flowering duration | 15 | 2.061 | 0.418 | 1.782 | 0.768 | 6.119 | 0.247 | |
最大开花数量 Maximum flowering number | 15 | 1.424 | 0.813 | 3.073 | 0.832 | 14.548 | 0.252 | |
杜香 Ledum palustre | 高度 Height | 29 | 6.000 | 0.040 | 1.223 | 0.870 | -10.108 | 0.024 |
盖度 Coverage | 29 | 19.250 | 0.025 | -11.590 | 0.541 | -21.502 | 0.089 | |
频度 Frequency | 29 | 3.500 | 0.591 | -3.088 | 0.832 | -23.450 | 0.023 | |
地上生物量 Above-ground biomass | 29 | 12.999 | 0.249 | -20.981 | 0.579 | 5.287 | 0.824 | |
开花初始期 First flowering date | 16 | 4.088 | 0.177 | 3.514 | 0.642 | 6.933 | 0.241 | |
开花结束期 Last flowering date | 16 | -1.546 | 0.642 | -0.139 | 0.987 | -0.039 | 0.996 | |
开花峰值期 Flowering peak date | 16 | 6.097 | 0.043 | 3.042 | 0.671 | -3.051 | 0.457 | |
开花持续时间 Flowering duration | 16 | -5.634 | 0.243 | -3.653 | 0.763 | -7.315 | 0.470 | |
最大开花数量 Maximum flowering number | 16 | 0.838 | 0.982 | -24.736 | 0.796 | -52.318 | 0.493 | |
齿叶风毛菊 Saussurea neoserrata | 高度 Height | 11 | -9.412 | 0.614 | -12.858 | 0.759 | 5.733 | 0.828 |
盖度 Coverage | 11 | -1.914 | 0.671 | -1.052 | 0.918 | -1.315 | 0.837 | |
频度 Frequency | 11 | 4.000 | 0.757 | 4.667 | 0.866 | -18.667 | 0.336 | |
地上生物量 Above-ground biomass | 11 | -3.670 | 0.186 | -3.098 | 0.438 | 3.361 | 0.326 | |
开花初始期 First flowering date | 8 | 3.464 | 0.623 | -17.036 | 0.289 | -15.500 | 0.311 | |
开花结束期 Last flowering date | 8 | 3.143 | 0.447 | -9.857 | 0.287 | -1.000 | 0.916 | |
开花峰值期 Flowering peak date | 8 | 3.714 | 0.448 | -12.284 | 0.265 | -12.201 | 0.235 | |
开花持续时间 Flowering duration | 8 | -0.321 | 0.943 | 7.179 | 0.477 | 14.500 | 0.105 | |
最大开花数量 Maximum flowering number | 8 | -3.929 | 0.344 | -2.929 | 0.734 | 3.000 | 0.746 |
Fig. 3 Simulated warming and drainage effects on coverage (A), height (B), frequency (C) and above-ground biomass (D) of the shrub-grass typical species (mean ± SE). Different small letters in the same species indicated significant difference among different treatments (p < 0.05). CK, control; W, warming; D, drainage; WD, warming + drainage.
[1] |
Abbott BW, Jones JB, Schuur EAG, Iii FSC, Bowden WB, Bretharte MS, Epstein HE, Flannigan MD, Harms TK, Hollingsworth TN ( 2016). Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: An expert assessment. Environmental Research Letters, 11, 034014. DOI: 10.1088/17489326/11/3/034014.
DOI URL |
[2] |
Ackerly DD ( 2003). Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences, 164(Suppl. 3), S165-S184.
DOI URL |
[3] |
Amano T, Smithers RJ, Sparks TH, Sutherland WJ ( 2010). A 250-year index of first flowering dates and its response to temperature changes. Proceedings of the Royal society B, 277, 2451-2457.
DOI URL PMID |
[4] |
Anderson JT, Inouye DW, McKinney AM, Colautti RI, Mitchell-Olds T ( 2012). Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings of the Royal Society of London B: Biological Sciences, 279, 3843-3852.
DOI URL PMID |
[5] |
Ausín I, Alonso-Blanco C, Martínez-Zapater JM ( 2005). Environmental regulation of flowering. International Journal of Developmental Biology, 49, 689-705.
DOI URL |
[6] |
Badeck FW, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S ( 2004). Responses of spring phenology to climate change. New Phytologist, 162, 295-309.
DOI URL |
[7] | Brouwer R ( 1983). Functional equilibrium: Sense or nonsense. Netherlands Journal of Agricultural Science, 31, 335-348. |
[8] |
Brown DRN, Torre JM, Douglas TA, Romanovsky VE, Knut K, Christopher H, Euskirchen ES, Ruess RW ( 2015). Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests. Journal of Geophysical Research Biogeosciences, 120, 1619-1637.
DOI URL |
[9] |
CaraDonna PJ, Iler AM, Inouye DW ( 2014). Shifts in flowering phenology reshape a subalpine plant community. Proceedings of the National Academy of Sciences of the United States of America, 111, 4916-4921.
DOI URL |
[10] |
Cleland EE, Allen JM, Crimmins TM, Dunne JA, Pau S, Travers SE, Zavaleta ES, Wolkovich EM ( 2012). Phenological tracking enables positive species responses to climate change. Ecology, 93, 1765-1771.
DOI URL PMID |
[11] |
Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB ( 2006). Diverse responses of phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 103, 13740-13744.
DOI URL PMID |
[12] |
Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD ( 2007). Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 22, 357-365.
DOI URL PMID |
[13] |
Dorji T, Totland O, Moe SR, Hopping KA, Pan J, Klein JA ( 2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biology, 19, 459-472.
DOI URL PMID |
[14] |
Dudgeon SR, Steneck RS, Davison IR, Vadas RL ( 1999). Coexistence of similar species in a space-limited intertidal zone. Ecological Monographs, 69, 331-352.
DOI URL |
[15] |
Forrest J, Miller-Rushing AJ ( 2010). Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society B, 365, 3101-3112.
DOI URL PMID |
[16] | Galen C, Sheery RA, Carroll AB ( 1999). Are flowers physiolosical sinks or faucets? Costs ans correlates of water use by flowers of Polemonium viscosum. Oecologia, 118, 461-470. |
[17] |
Gugger S, Kesselring H, Stöcklin J, Hamann E ( 2015). Lower plasticity exhibited by high-versus mid-elevation species in their phenological responses to manipulated temperature and drought. Annals of Botany, 116, 953-962.
DOI URL PMID |
[18] |
Hulme PE ( 2011). Contrasting impacts of climate-driven flowering phenology on changes in alien and native plant species distributions. New Phytologist, 189, 272-281.
DOI URL PMID |
[19] |
IPCC ( Intergovernmental Panel on Climate Change) ( 2013). The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.
DOI URL |
[20] |
Jorgenson MT, Racine CH, Walters JC, Osterkamp TE ( 2001). Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Climatic Change, 48, 551-579.
DOI URL |
[21] |
Kim Y, Tanaka N ( 2003). Effect of forest fire on the fluxes of CO2, CH4 and N2O in boreal forest soils, interior Alaska. Journal of Geophysical Research, 108, 8154. DOI: 10.1029/2001JD000663.
DOI URL |
[22] |
Kochmer JP, Handel SN ( 1986). Constraints and competition in the evolution of flowering phenology. Ecological Monographs, 56, 303-325.
DOI URL |
[23] |
Li X, Jiang L, Meng F, Wang S, Niu H, Iler AM, Duan J, Zhang Z, Luo C, Cui S, Zhang L, Li Y, Wang Q, Zhou Y, Bao X, Doriji T, Li Y, Peñuelas J, Du M, Zhao X, Zhao L, Wang G ( 2016). Responses of sequential and hierarchical phenological events to warming and cooling in alpine meadows. Nature Communications, 7, 12489. DOI: 10.1038/ncomms12489.
DOI URL PMID |
[24] |
Meng F, Cui S, Wang S, Duan J, Jiang L, Zhang Z, Luo C, Wang Q, Zhou Y, Li X ( 2016). Changes in phenological sequences of alpine communities across a natural elevation gradient. Agricultural and Forest Meteorology, 224, 11-16.
DOI URL |
[25] |
Meng FD, Jiang LL, Zhang ZH, Cui SJ, Duan JC, Wang SP, Luo CY, Wang Q, Zhou Y, Li XE, Zhang LR, Li BW, Dorij T, Li YN, Du MY ( 2017). Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology, 98, 734-740.
DOI URL PMID |
[26] |
Menzel A, Seifert H, Eatrella N ( 2011). Effects of recent warm and cold spells on European plant phenology. International Journal of Biometeorology, 55, 921-932.
DOI URL PMID |
[27] |
Peñuelas J, Filella I ( 2001). Phenology: Reapones to a warming world. Science, 294, 793-795.
DOI URL PMID |
[28] |
Peñuelas J, Filella I, Comas P ( 2002). Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8, 531-544.
DOI URL |
[29] |
Peñuelas J, Prieto P, Beier C, Cesaraccio C, de Angelis P, de Dato G, Emmett BA, Estiarte M, Garadnai J, Gorissen A ( 2007). Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought: Reductions in primary productivity in the heat and drought year of 2003. Global Change Biology, 13, 2563-2581.
DOI URL |
[30] |
Peñuelas J, Rutishauser T, Filella I ( 2009). Phenology feedbacks on climate change. Science, 324, 887-888.
DOI URL PMID |
[31] |
Post ES, Pedersen C, Wilmers CC, Forchhammer MC ( 2008). Phenological sequences reveal aggregate life history response to climatic warming. Ecology, 89, 363-370.
DOI URL PMID |
[32] |
Schemske DW, Willson MF, Melampy MN, Miller LJ, Verner L, Schemske KM, Best LB ( 1978). Flowering ecology of some spring woodland herbs. Ecology, 59, 351-366.
DOI URL |
[33] |
Sherry RA, Zhou X, Gu S, Arnone JA, Schimel DS, Verburg PS, Wallace LL, Luo Y ( 2007). Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences of the United States of America, 104, 198-202.
DOI URL |
[34] |
Steinaker DF, Wilson SD, Peltzer DA ( 2010). Asynchronicity in root and shoot phenology in grass and woody plants. Global Change Biology, 16, 2241-2251.
DOI URL |
[35] |
Sullivan PF, Welker JM ( 2005). Warming chambers stimulate early season growth of an arctic sedge: Results of a minirhizotron field study. Oecologia, 142, 616-626.
DOI URL PMID |
[36] | Sun MX ( 2011). The Impacts on Soil Properities and Revegetation from Forest in Tahe Forest Region. PhD dissertation, Bejing Forestry University,Beijing. |
[ 孙明学 ( 2011). 塔河林区林火对土壤性质与植被恢复的影响. 博士学位论文, 北京林业大学, 北京.] | |
[37] |
Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F ( 2002). Ecological responses to recent climate change. Nature, 416, 389-395.
DOI URL PMID |
[38] |
Wang S, Meng F, Duan J, Wang Y, Cui X, Piao S, Niu H, Xu G, Luo C, Zhang Z ( 2014 a). Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology, 95, 3387-3398.
DOI URL |
[39] |
Wang S, Wang C, Duan J, Zhu X, Xu G, Luo C, Zhang Z, Meng F, Li Y, Du M ( 2014 b). Timing and duration of phenological sequences of alpine plants along an elevation gradient on the Tibetan Plateau. Agricultural and Forest Meteorology, 189, 220-228.
DOI URL |
[40] | Wang XG, Li XZ, He HS, Leng WF, Wen QC ( 2004). Postfire succession of larch forest in the northern slope of Daxinganling. Chinese Journal of Ecology, 23, 35-41. |
[ 王绪高, 李秀珍, 贺红士, 冷文芳, 问青春 ( 2004). 大兴安岭北坡落叶松林火后植被演替过程研究. 生态学杂志, 23, 35-41.] | |
[41] |
Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJ ( 2012). Warming experiments underpredict plant phenological responses to climate change. Nature, 485, 494-497.
DOI URL PMID |
[42] | Wu RF, Huo ZG, Cao YF, Yan WX ( 2009). Phenophase change of typical herbaceous plants in Inner Mongolia in spring and its response to climate warming. Chinese Journal of Ecology, 28, 1470-1475. |
[ 吴瑞芬, 霍治国, 曹艳芳, 闫伟兄 ( 2009). 内蒙古典型草本植物春季物候变化及其对气候变暖的响应. 生态学杂志, 28, 1470-1475.] | |
[43] |
Ye X, Zhou HK, Liu GH, Yao BQ, Zhao XQ ( 2014). Responses of phenological characteristics of major plants to nutrient and water additions in Kobresia humilis alpine meadow. Chinese Journal of Plant Ecology, 38, 147-158.
DOI URL |
[ 叶鑫, 周华坤, 刘国华, 姚步青, 赵新全 ( 2014). 高寒矮生嵩草草甸主要植物物候特征对养分和水分添加的响应. 植物生态学报, 38, 147-158.]
DOI URL |
|
[44] |
Yu C, He HS, Hu Y, Bu R, Li X ( 2008). Historic and current fire regimes in the Great Xing’an Mountains, northeastern China: Implications for long-term forest management. Forest Ecology and Management, 254, 445-453.
DOI URL |
[1] | Huiying Cai Lanhui Li Yang Lin Yatao Liang Guang Yang Long Sun. Responses of nonstructural carbohydrates in Betula platyphylla leaves and fine roots to time since fire [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[3] | CHEN Xue-Ping, ZHAO Xue-Yong, ZHANG Jing, WANG Rui-Xiong, LU Jian-Nan. Variation of NDVI spatio-temporal characteristics and its driving factors based on geodetector model in Horqin Sandy Land, China [J]. Chin J Plant Ecol, 2023, 47(8): 1082-1093. |
[4] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[5] | GUO Min, LUO Lin, LIANG Jin, WANG Yan-Jie, ZHAO Chun-Zhang. Effects of freeze-thaw changes on soil physicochemical properties and enzyme activities in root zone of Picea asperata and Fargesia nitida under subalpine forests of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 882-894. |
[6] | ZHAO Rong-Jiang, CHEN Tao, DONG Li-Jia, GUO Hui, MA Hai-Kun, SONG Xu, WANG Ming-Gang, XUE Wei, YANG Qiang. Progress of plant-soil feedback in ecology studies [J]. Chin J Plant Ecol, 2023, 47(10): 1333-1355. |
[7] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[8] | CUI Guang-Shuai, LUO Tian-Xiang, LIANG Er-Yuan, ZHANG Lin. Advances in the study of shrubland facilitation on herbs in arid and semi-arid regions [J]. Chin J Plant Ecol, 2022, 46(11): 1321-1333. |
[9] | LÜ Ya-Xiang, QI Zhi-Yan, LIU Wei, SUN Jia-Mei, PAN Qing-Min. Effects of nitrogen and phosphorus addition at early-spring and middle-summer on ecosystem carbon exchanges of a degraded community in Nei Mongol typical steppe [J]. Chin J Plant Ecol, 2021, 45(4): 334-344. |
[10] | WEI Chun-Xue, YANG Lu, WANG Jin-Song, YANG Jia-Ming, SHI Jia-Wei, TIAN Da-Shuan, ZHOU Qing-Ping, NIU Shu-Li. Effects of experimental warming on root biomass in terrestrial ecosystems [J]. Chin J Plant Ecol, 2021, 45(11): 1203-1212. |
[11] | HE Qiang. Biotic interactions and ecosystem dynamics under global change: from theory to application [J]. Chin J Plant Ecol, 2021, 45(10): 1075-1093. |
[12] | ZHU Biao, CHEN Ying. Techniques and methods for field warming manipulation experiments in terrestrial ecosystems [J]. Chin J Plant Ecol, 2020, 44(4): 330-339. |
[13] | DENG Meng-Da, YOU Jian-Rong, LI Jia-Xiang, LI Xiong, YANG Jing, DENG Chuang-Fa, LIU Ang, LIU Wen-Jian, DING Cong, XIE Yong, ZHOU Guo-Hui, YU Xun-Lin. Community characteristics of main vegetation types in the ecological “green-core” area of Changzhutan urban cluster [J]. Chin J Plant Ecol, 2020, 44(12): 1296-1304. |
[14] | HU Hui, YANG Yu, BAO Wei-Kai, LIU Xin, LI Fang-Lan. Effects of microhabitat changes on seedling establishment of native plants in a dry valley [J]. Chin J Plant Ecol, 2020, 44(10): 1028-1039. |
[15] | CHEN Chan, ZHANG Shi-Ji, LI Lei-Da, LIU Zhao-Dan, CHEN Jin-Lei, GU Xiang, WANG Liu-Fang, FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2019, 43(8): 658-671. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn