Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (5): 526-538.DOI: 10.17521/cjpe.2017.0305
Special Issue: 全球变化与生态系统; 生态遥感及应用; 青藏高原植物生态学:生态系统生态学
• Research Articles • Previous Articles Next Articles
ZHOU Tong1,CAO Ru-Yin2,WANG Shao-Peng1,CHEN Jin3,TANG Yan-Hong1,*()
Received:
2017-11-21
Revised:
2018-02-11
Online:
2018-05-20
Published:
2018-07-20
Contact:
Yan-Hong TANG
Supported by:
ZHOU Tong, CAO Ru-Yin, WANG Shao-Peng, CHEN Jin, TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis[J]. Chin J Plant Ecol, 2018, 42(5): 526-538.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0305
属 Genus | 物种 Species | 植株数 Plant No. |
---|---|---|
七叶树属 Aesculus | 欧洲七叶树 Aesculus hippocastanum | 31 |
桤木属 Alnus | Alnus glutinosa | 4 |
桦木属 Betula | 垂枝桦 Betula pendula | 19 |
山毛榉属 Fagus | Fagus sylvatica | 16 |
栎属 Quercus | 夏栎 Quercus robur | 16 |
梣属 Fraxinus | 欧梣 Fraxinus excelsior | 9 |
茶藨子属 Ribes | Ribes grossularia | 12 |
Table 1 List of woody plant species in European database
属 Genus | 物种 Species | 植株数 Plant No. |
---|---|---|
七叶树属 Aesculus | 欧洲七叶树 Aesculus hippocastanum | 31 |
桤木属 Alnus | Alnus glutinosa | 4 |
桦木属 Betula | 垂枝桦 Betula pendula | 19 |
山毛榉属 Fagus | Fagus sylvatica | 16 |
栎属 Quercus | 夏栎 Quercus robur | 16 |
梣属 Fraxinus | 欧梣 Fraxinus excelsior | 9 |
茶藨子属 Ribes | Ribes grossularia | 12 |
Fig. 1 Spatial distribution of study sites in China (A) and Europe (B). The triangles/dots in (A) are the distributions of meteorological stations in Qinghai-Xizang Plateau and in Nei Mongol, respectively. The points in (B) indicate the locations of phenological observation sites for woody plants in Europe.
Fig. 2 The changes in model coefficients of green-up date with spring precipitation and air temperature for the grasslands in Nei Mongol, meadows in Qinghai-Xizang Plateau, and woody plants in Europe. In these boxplots, the top and bottom values of the bars indicate the 25th and 75th percentiles, respectively; the black line within the box indicates the median; whiskers below and above the box indicate the 10th and 90th percentiles; and points indicate outliers. Letters on top of the whiskers are the results of an analysis of variance: different letters indicate statistically significant difference between the mean values (p < 0.01, t-test).
Fig. 3 Boxplots of the Holdridge aridity index (HAI) for the grasslands of Nei Mongol, meadows in Qinghai-Xizang Plateau, and woody plants in Europe. See Fig. 2 for explanations of the symbols.
Fig. 4 The changes in the model coefficient of precipitation and temperature with the Holdridge aridity index (HAI) for the grasslands of Nei Mongol,meadows in Qinghai-Xizang Plateau, and woody plants in Europe.
Fig. 5 Predicted changes of green-up date under the three scenarios of elevated spring-temperature at 1, 2 and 3 °C for the target areas. Negative and positive dates indicate the delayed and advanced days of the green-up date, respectively. A, Predicted changes under all the three temperature scenarios. B, C, D, Predicted changes for each target area with the temperature increase of 1, 2 and 3 °C, respectively.
Fig. 6 Predicted changes of green-up date under the three scenarios of elevated spring-precipitation at 10, 20 and 30 mm among each target area. Negative and positive dates indicate the delayed and advanced days of the green-up date, respectively. A, Predicted changes for all the three precipitation scenarios. B, C, D, Predicted changes for each target area with the precipitation increase at 10, 20 and 30 mm, respectively.
Fig. 7 Boxplots of temperature sensitivity of green-up date from linear regression models for the three cases of the study. See Fig. 2 for explanations of the symbols.
升温情景 Warming scenarios (℃) | 内蒙古 Nei Mongol | 青藏高原 Qinghai-Xizang Plateau | 欧洲 Europe | ||||||
---|---|---|---|---|---|---|---|---|---|
生存分析法 Survival analysis | 线性回归法 Linear analysis | p | 生存分析法 Survival analysis | 线性回归法 Linear analysis | p | 生存分析法 Survival analysis | 线性回归法 Linear analysis | p | |
+ 1 | 0.92 | 0.13 | 0.04 | 3.56 | 1.87 | < 0.001 | 5.66 | 4.47 | < 0.001 |
+ 2 | 2.33 | 0.26 | 0.01 | 7.29 | 3.74 | < 0.001 | 10.5 | 8.94 | < 0.001 |
+ 3 | 4.17 | 0.39 | < 0.01 | 10.88 | 5.61 | < 0.001 | 14.06 | 13.41 | < 0.001 |
Table 2 The mean advanced days of green-up date for the two grasslands in Nei Mongol and the Qinghai-Xizang Plateau, and woody plants in Europe under three warming scenarios: elevated spring temperature at +1, +2 and +3 °C for each day as compared with the days from March 1st, 2009.
升温情景 Warming scenarios (℃) | 内蒙古 Nei Mongol | 青藏高原 Qinghai-Xizang Plateau | 欧洲 Europe | ||||||
---|---|---|---|---|---|---|---|---|---|
生存分析法 Survival analysis | 线性回归法 Linear analysis | p | 生存分析法 Survival analysis | 线性回归法 Linear analysis | p | 生存分析法 Survival analysis | 线性回归法 Linear analysis | p | |
+ 1 | 0.92 | 0.13 | 0.04 | 3.56 | 1.87 | < 0.001 | 5.66 | 4.47 | < 0.001 |
+ 2 | 2.33 | 0.26 | 0.01 | 7.29 | 3.74 | < 0.001 | 10.5 | 8.94 | < 0.001 |
+ 3 | 4.17 | 0.39 | < 0.01 | 10.88 | 5.61 | < 0.001 | 14.06 | 13.41 | < 0.001 |
[1] |
Allen JM, Terres MA, Katsuki T, Iwamoto K, Kobori H, Higuchi H, Primack RB, Wilson AM, Gelfand A, Silander JA ( 2014). Modeling daily flowering probabilities: Expected impact of climate change on Japanese cherry phenology. Global Change Biology, 20, 1251-1263.
DOI URL PMID |
[2] |
Bradley AV, Gerard FF, Barbier N, Weedon GP, Anderson LO, Huntingford C, Aragão LEOC, Zelazowski P, Arai E ( 2011). Relationships between phenology, radiation and precipitation in the Amazon region. Global Change Biology, 17, 2245-2260.
DOI URL |
[3] |
Chen J, Jönsson P, Tamura M, Gu Z, Matsushita B, Eklundh L ( 2004). A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sensing of Environment, 91, 332-344.
DOI URL |
[4] |
Chen J, Rao Y, Shen M, Wang C, Zhou Y, Ma L, Tang Y, Yang X ( 2016). A simple method for detecting phenological change from time series of vegetation idexindex. IEEE Transactions on Geoscience & Remote Sensing, 54, 3436-3449.
DOI URL |
[5] | Chen W, Yu SZ ( 1997). Comparison of the Cox Model and log-linear models in analysing survival data. Chinese Journal of Health Statistics, 14, 18-20. |
[ 陈文, 俞顺章 ( 1997). Cox回归模型与对数线性回归模型在生存分析中应用的比较. 中国卫生统计, 14, 18-20.] | |
[6] |
Cox DR ( 1972). Regression models and life-tables. Biometrical Journal, 34, 187.
DOI URL |
[7] |
Diez JM, Ibanez I, Silander Jr JA, Primack R, Higuchi H, Kobori H, Sen A, James TY ( 2014). Beyond seasonal climate: Statistical estimation of phenological responses to weather. Ecological Applications, 24, 1793-1802.
DOI URL PMID |
[8] |
Ding M, Zhang Y, Sun X, Liu L, Wang Z, Bai W ( 2013). Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. Chinese Science Bulletin, 58, 396-405.
DOI URL |
[9] |
Forkel M, Migliavacca M, Thonicke K, Reichstein M, Schaphoff S, Weber U, Carvalhais N ( 2015). Codominant water control on global interannual variability and trends in land surface phenology and greenness. Global Change Biology, 21, 3414-3435.
DOI URL PMID |
[10] |
Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Peñuelas J, Song Y, Vitasse Y, Zeng Z, Janssens IA ( 2015). Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526, 104-107.
DOI URL PMID |
[11] |
Grace J, Allen SJ, Wilson C ( 1989). Climate and the meristem temperatures of plant communities near the tree-line. Oecologia, 79, 198-204.
DOI URL |
[12] |
Güsewell S, Furrer R, Gehrig R, Pietragalla B ( 2017). Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Global Change Biology, 23, 5189-5202.
DOI URL PMID |
[13] |
Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M ( 2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. Journal of Geophysical Research, 113, D20119. DOI: 10.1029/2008JD010201.
DOI URL |
[14] |
Iler AM, Hoye TT, Inouye DW, Schmidt NM ( 2013). Long-term trends mask variation in the direction and magnitude of short-term phenological shifts. American Journal of Botany, 100, 1398-1406.
DOI URL PMID |
[15] |
Jochner S, Sparks TH, Laube J, Menzel A ( 2016). Can we detect a nonlinear response to temperature in European plant phenology? International Journal of Biometeorology, 60, 1551-1561.
DOI URL PMID |
[16] | Li XZ, Han GD, Guo CY ( 2013). Impacts of climate change on dominant pasture growing season in central Inner Mongolia. Acta Ecologica Sinica, 33, 4146-4155. |
[ 李夏子, 韩国栋, 郭春燕 ( 2013). 气候变化对内蒙古中部草原优势牧草生长季的影响. 生态学报, 33, 4146-4155.] | |
[17] | Lian JS, Jiang HS ( 1995). The ecological meaning and its identification of the Logistic population growth model. Supplement to the Journal of Sun Yatsen University, ( 3), 160-164. |
[ 练健生, 江海声 ( 1995). Logistic种群增长模型参数的生态学意义及其辨识──南湾野生猕猴种群的应用. 中山大学学报论丛, ( 3), 160-164.] | |
[18] |
Mazer SJ, Travers SE, Cook BI, Davies TJ, Bolmgren K, Kraft NJB, Salamin N, Inouye DW ( 2013). Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa. American Journal of Botany, 100, 1381-1397.
DOI URL PMID |
[19] | Meng M, Ni J, Zhang ZG ( 2004). Aridity index and its applications in geo-ecological study. Acta Phytoecologica Sinica, 28, 853-861. |
[ 孟猛, 倪健, 张治国 ( 2004). 地理生态学的干燥度指数及其应用评述. 植物生态学报, 28, 853-861.] | |
[20] |
Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski F, Zach S, Zust A ( 2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969-1976.
DOI URL |
[21] |
Niu JM ( 2001). Impacts prediction of climatic change on distribution and production of grassland in Inner Mongolia. Acta Agrestia Sinica, 9, 277-282.
DOI URL |
[ 牛建明 ( 2001). 气候变化对内蒙古草原分布和生产力影响的预测研究. 草地学报, 9, 277-282.]
DOI URL |
|
[22] | Richard P, Liu HY, Yin Y ( 2011). Conservation of biodiversity under impact of human activities: Vegetation evolution in Central Europe and its implication, Chinese Journal of Ecology, 30, 584-588. |
[ Richard P, 刘鸿雁, 印轶 ( 2011). 人类活动影响下的生物多样性保护: 中欧的植被演化及其启示. 生态学杂志, 30, 584-588.] | |
[23] |
Sadras VO, Moran MA ( 2013). Nonlinear effects of elevated temperature on grapevine phenology. Agricultural and Forest Meteorology, 173, 107-115.
DOI URL |
[24] | Sarmiento G, Monasterio M ( 1983). Life Forms and Phenology: Tropical Savannas. Elsevier,Amsterdam. 79-104. |
[25] |
Shen M, Cong N, Cao R ( 2015 a). Temperature sensitivity as an explanation of the latitudinal pattern of green-up date trend in Northern Hemisphere vegetation during 1982-2008. International Journal of Climatology, 35, 3707-3712.
DOI URL |
[26] |
Shen M, Piao S, Cong N, Zhang G, Jassens IA ( 2015 b). Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Global Change Biology, 21, 3647-3656.
DOI URL PMID |
[27] |
Shen M, Tang Y, Chen J, Yang X, Wang C, Cui X, Yang Y, Han L, Li L, Du J, Zhang G, Cong N ( 2014). Earlier-?season vegetation has greater temperature sensitivity of spring phenology in Northern Hemisphere. POLS ONE, 9, e88178. DOI: 10.1371/journal.pone.0088178.
DOI URL PMID |
[28] |
Shen M, Tang Y, Chen J, Zhu X, Zheng Y ( 2011). Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 151, 1711-1722.
DOI URL |
[29] |
Sun HL, Zheng D, Yao TD, Zhang YL ( 2012). Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geographica Sinca, 67, 3-12.
DOI URL |
[ 孙鸿烈, 郑度, 姚檀栋, 张镱锂 ( 2012). 青藏高原国家生态安全屏障保护与建设. 地理学报, 67, 3-12.]
DOI URL |
|
[30] | The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences ( 2001). 1:1000000 Vegetation Atlas of China. Secience Press, Beijing . |
[ 中国科学院中国植被图编辑委员会 ( 2001). 1:1000000中国植被图集. 科学出版社, 北京] | |
[31] |
Vitasse Y, Hoch G, Randin CF, Lenz A, Kollas C, Scheepens JF, Koerner C ( 2013). Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species. Oecologia, 171, 663-678.
DOI URL |
[32] |
Wang C, Chen J, Wu J, Tang Y, Shi P, Black TA, Zhu K ( 2017). A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sensing of Environment, 196, 1-12.
DOI URL |
[33] |
Wang SP, Meng FD, Duan JC, Wang YF, Cui XY, Piao SL, Niu HS, Xu GP, Luo CY, Zhang ZH, Zhu XX, Shen MG, Li YN, Du MY, Tang YH, Zhao XQ, Ciais P, Kimball B, Penuelas J, Janssens IA, Cui SJ, Zhao L, Zhang FW ( 2014). Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology, 95, 3387-3398.
DOI URL |
[34] |
White MA, de Beurs KM, Didan K, Inouye DW, Richardson AD, Jensen OP, O’Keefe J, Zhang G, Nemani RR, van Leeuwen WJD, Brown JF, de Wit A, Schaepman M, Lin X, Dettinger M, Bailey AS, Kimball J, Schwartz MD, Baldocchi DD, Lee JT, Lauenroth WK ( 2009). Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Global Change Biology, 15, 2335-2359.
DOI URL |
[35] |
Xie Y, Ahmed KF, Allen JM, Wilson AM, Silander JA ( 2015). Green-up of deciduous forest communities of northeastern North America in response to climate variation and climate change. Landscape Ecology, 30, 109-123.
DOI URL |
[36] |
Yu H, Luedeling E, Xu J ( 2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 107, 22151-22156.
DOI URL PMID |
[37] | Zhou GS, Zhang XS ( 1996). Study on climate-vegetation classification for global change in China. Acta Botanica Sinica, 38, 8-17. |
[ 周广胜, 张新时 ( 1996). 全球变化的中国气候-植被分类研究. 植物学报, 38, 8-17.] |
[1] | Ke-Yu CHEN Sen Xing Yu Tang Sun JiaHui Shijie Ren Bao-Ming JI. Arbuscular mycorrhizal fungal community characteristics and driving factors in different grassland types [J]. Chin J Plant Ecol, 2024, 48(5): 660-674. |
[2] | Yi-Heng Chen Yusupjan Rusul 吾斯曼 阿卜杜热合曼. Analysis of spatial and temporal variation in grassland vegetation cover in the Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[3] | Hao-Ran BAI Meng HOU Yan-Jie LIU. Effects of the invasion of Cenchrus spinifex and drought on productivity of Leymus chinensis community [J]. Chin J Plant Ecol, 2024, 48(5): 577-589. |
[4] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[5] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[6] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[7] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[8] | ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(3): 341-348. |
[9] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[10] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[11] | CHEN Ying-Jie, FANG Kai, QIN Shu-Qi, GUO Yan-Jun, YANG Yuan-He. Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2023, 47(9): 1245-1255. |
[12] | WANG Yan-Ling, ZHAO Li-Jun, ZHU Li-Qiong, MO Ruo-Guo, LIN Ting, ZHAO Xiao-Yu. Seedling quantitative characteristics and dynamics of Syzygium hancei populations in Guangxi, China [J]. Chin J Plant Ecol, 2023, 47(9): 1278-1286. |
[13] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[14] | ZHANG Qi, FENG Ke, CHANG Zhi-Hui, HE Shuang-Hui, XU Wei-Qi. Effects of shrub encroachment on plant and soil microbial in the forest-grassland ecotone [J]. Chin J Plant Ecol, 2023, 47(6): 770-781. |
[15] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn