Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (11): 1127-1137.DOI: 10.17521/cjpe.2019.0289
• Research Articles • Previous Articles Next Articles
SHU Shu-Miao1,2, ZHU Wan-Ze1,*(), RAN Fei1, SUN Shou-Qin1, ZHANG Yuan-Yuan1,2
Received:
2019-10-30
Accepted:
2020-06-10
Online:
2020-11-20
Published:
2021-01-05
Contact:
ZHU Wan-Ze
Supported by:
SHU Shu-Miao, ZHU Wan-Ze, RAN Fei, SUN Shou-Qin, ZHANG Yuan-Yuan. Season dynamics of carbon use efficiency and its influencing factors in the old-growth Abies fabri forest in Gongga Mountain, western Sichuan, China[J]. Chin J Plant Ecol, 2020, 44(11): 1127-1137.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0289
Fig. 1 Research route of seasonal dynamics of carbon use efficiency (CUE) in an old-growth Abies fabri forest on Gongga Mountain. NPP, net primary productivity.
Fig. 2 Respiration of the tree layer and trees with different diameter classes in an old-growth Abies fabri forest on Gongga Mountain. Different lowercase letters indicate significant difference at p < 0.05 level for the respiration amount of same organ under different diameter classes.
Fig. 3 Net primary productivity of the tree layer and trees with different diameter classes in an old-growth Abies fabri forest on Gongga Mountain. Different lowercase letters indicate significant difference at p < 0.05 level for the net primary productivity of same organ under different diameter classes.
Fig. 4 Carbon use efficiency (CUE) of the tree layer and trees with different diameter classes in an old-growth Abies fabri forest on Gongga Mountain. Different lowercase letters indicate significant difference at p < 0.05 level for the CUE of same organ under different diameter classes.
Fig. 5 Influencing factors of carbon use efficiency (CUE) in tree layer and organs of an old-growth Abies fabri forest. Values associated with solid arrows are standardized path coefficients, indicating positive or negative effects. Values associated with the rectangles are R2, indicating the proportion of variation explained by relationships with other variables. Small circles represent residuals. Values associated with two way arrow indicate the correlation. The dotted line indicates the preset path.
影响因素 Impact factor | 标准化总影响系数 Standardized total influence coefficients | 标准化直接影响系数 Standardized direct influence coefficients | 标准化间接影响系数 Standardized indirect influence coefficients | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
树干CUE Stem CUE | 细根CUE Fine root CUE | 针叶CUE Needle CUE | 乔木层CUE Tree layer CUE | 树干CUE Stem CUE | 细根CUE Fine root CUE | 针叶CUE Needle CUE | 乔木层CUE Tree layer CUE | 树干CUE Stem CUE | 细根CUE Fine root CUE | 针叶CUE Needle CUE | 乔木层CUE Tree layer CUE | |
土壤温度 Soil temperature | - | 0.59 | -0.41 | 0.37 | - | 0.59 | - | - | - | - | -0.41 | 0.37 |
气温 Air temperature | 0.93 | - | -0.06 | 0.45 | 0.93 | - | - | - | - | - | -0.06 | 0.45 |
降水 Precipitation | 0.09 | - | -0.40 | 0.04 | 0.09 | - | -0.39 | - | - | - | -0.01 | 0.04 |
树干CUE Stem CUE | - | - | -0.07 | 0.48 | - | - | -0.07 | 0.48 | - | - | - | - |
细根CUE Fine root CUE | - | - | -0.69 | 0.63 | - | - | -0.69 | 0.63 | - | - | - | - |
Table 1 Standardized influence coefficients of the structural equation model (SEM) for the arbor layer carbon use efficiency (CUE) of Abies fabri old-growth forest
影响因素 Impact factor | 标准化总影响系数 Standardized total influence coefficients | 标准化直接影响系数 Standardized direct influence coefficients | 标准化间接影响系数 Standardized indirect influence coefficients | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
树干CUE Stem CUE | 细根CUE Fine root CUE | 针叶CUE Needle CUE | 乔木层CUE Tree layer CUE | 树干CUE Stem CUE | 细根CUE Fine root CUE | 针叶CUE Needle CUE | 乔木层CUE Tree layer CUE | 树干CUE Stem CUE | 细根CUE Fine root CUE | 针叶CUE Needle CUE | 乔木层CUE Tree layer CUE | |
土壤温度 Soil temperature | - | 0.59 | -0.41 | 0.37 | - | 0.59 | - | - | - | - | -0.41 | 0.37 |
气温 Air temperature | 0.93 | - | -0.06 | 0.45 | 0.93 | - | - | - | - | - | -0.06 | 0.45 |
降水 Precipitation | 0.09 | - | -0.40 | 0.04 | 0.09 | - | -0.39 | - | - | - | -0.01 | 0.04 |
树干CUE Stem CUE | - | - | -0.07 | 0.48 | - | - | -0.07 | 0.48 | - | - | - | - |
细根CUE Fine root CUE | - | - | -0.69 | 0.63 | - | - | -0.69 | 0.63 | - | - | - | - |
[1] | An X, Chen YM, Tang YK (2017). Factors affecting the spatial variation of carbon use efficiency and carbon fluxes in east Asian forest and grassland. Research of Soil and Water Conservation, 24(5), 79-87. |
[ 安相, 陈云明, 唐亚坤 (2017). 东亚森林、草地碳利用效率及碳通量空间变化的影响因素分析. 水土保持研究, 24(5), 79-87.] | |
[2] | Ashraf M, Ahmad A, McNeilly T (2001). Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply. Photosynthetica, 39, 389-394. |
[3] | Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N, dos Santos J, Araújo AC, Kruijt B, Nobre AD, Trumbore SE (2004). Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecological Applications, 14, 72-88. |
[4] |
Chantuma P, Lacointe A, Kasemsap P, Thanisawanyangkura S, Gohet E, Clément A, Guilliot A, Améglio T, Thaler P (2009). Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping. Tree Physiology, 29, 1021-1031.
DOI URL PMID |
[5] | Chen GS, Yang YS, Guo JF, Xie JS, Yang ZJ (2011). Relationships between carbon allocation and partitioning of soil respiration across world mature forests. Plant Ecology, 212, 195-206. |
[6] |
Chen GS, Hobbie SE, Reich PB, Yang YS, Robinson D (2019). Allometry of fine roots in forest ecosystems. Ecology Letters, 22, 322-331.
URL PMID |
[7] | de Lucia EH, Drake JE, Thomas RB, Gonzalez-Meler M (2007). Forest carbon use efficiency: Is respiration a constant fraction of gross primary production? Global Change Biology, 13, 1157-1167. |
[8] |
Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
URL PMID |
[9] | Du Z, Gan SS, Hu J (2014). Characteristics and protection strategy of forest resources in the alpine region of southwest China. Forest Resources Management, (z1), 27-31. |
[ 杜志, 甘世书, 胡觉 (2014). 西南高山林区森林资源特点及保护利用对策探讨. 林业资源管理, (z1), 27-31.] | |
[10] | Malhi Y, Aragão L, Metcalfe D, PAIVA R, Quesada C, Almeida S, Anderson L, Brando P, Chambers J, Costa A, Hutyra L, Souza P, Patiño S, Pyle E, Robertson A, Teixeira L (2009). Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology, 15, 1255-1274. |
[11] | Mencuccini M, Martínez-Vilalta J, Vanderklein D, Hamid H, A, Korakaki E, Lee S, Michiels B (2005). Size-mediated ageing reduces vigour in trees. Ecology Letters, 11, 1183-1190. |
[12] | Gao SP, Li JX, Xu MC, Chen X, Dai J (2007). Leaf N and P stoichiometry of common species in successional stages of the evergreen broad-leaved forest in Tiantong National Forest Park, Zhejiang Province, China. Acta Ecologica Sinica, 27, 947-952. |
[ 高三平, 李俊祥, 徐明策, 陈熙, 戴洁 (2007). 天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征. 生态学报, 27, 947-952.] | |
[13] |
Gifford RM (2003). Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Functional Plant Biology, 30, 171-186.
URL PMID |
[14] | Hu ZY, Wang GX, Sun XY, Wang J, Chen XP, Song CL, Song XY, Lin S (2019). Variations in belowground carbon use strategies under different climatic conditions. Agricultural and Forest Meteorology, 268, 32-39. |
[15] | Jarčuška B, Barna M (2011). Plasticity in above-ground biomass allocation in Fagus sylvatica L. saplings in response to light availability. Annals of Forest Research, 54, 151-160. |
[16] | Kalyn AL, van Rees KCJ (2006). Contribution of fine roots to ecosystem biomass and net primary production in black spruce, aspen, and jack pine forests in Saskatchewan. Agricultural and Forest Meteorology, 140, 236-243. |
[17] | Liu T, Sun SQ, Qiu Y (2017). Dynamics and differences in the decomposition of litters from three dominating plants in subalpine ecosystems in Western Sichuan China. Mountain Research, 35, 663-668. |
[ 刘涛, 孙守琴, 邱阳 (2017). 川西亚高山生态系统三种典型植物凋落物分解动态特征. 山地学报, 35, 663-668.] | |
[18] | Liu ZG, Qiu FY (1986). The main vegetation types and their distribution in the Gongga Mountainous region. Acta Phytoecologica et Geobotanica Sinica, (1), 28-36. |
[ 刘照光, 邱发英 (1986). 贡嘎山地区主要植被类型和分布. 植物生态学与地植物学丛刊, (1), 28-36.] | |
[19] |
Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008). Old-growth forests as global carbon sinks. Nature, 455, 213-215.
DOI URL PMID |
[20] |
Mäkelä A, Valentine HT (2001). The ratio of NPP to GPP: evidence of change over the course of stand development. Tree Physiology, 21, 1015-1030.
URL PMID |
[21] | Malhi Y (2012). The productivity, metabolism and carbon cycle of tropical forest vegetation. Journal of Ecology, 100, 65-75. |
[22] | Malhi Y, Doughty C, Galbraith D (2011). The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society B, 366, 3225-3245. |
[23] | Metcalfe DB, Meir P, Aragão LEOC, Lobo-do-Vale R, Galbraith D, Fisher RA, Chaves MM, Maroco JP, da Costa ACL, de Almeida SS, Braga AP, Gonçalves PHL, de Athaydes J, da Costa M, Portela TTB, de Oliveira AAR, Malhi Y, Williams M (2010). Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon. New Phytologist, 187, 608-621. |
[24] | Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR (2009). Global patterns in plant height. Journal of Ecology, 97, 923-932. |
[25] | Mollier A, Pellerin S (1999). Maize root system growth and development as influenced by phosphorous deficiency. Journal of Experimental Botany, 50, 487-497. |
[26] | Peng L, Peng JH, Sun SQ, Wu YH, He G (2015). Characteristics of mountain ecosystem soil respiration along an elevation gradient on Gongga Mountain. Journal of Mountain Science, 33, 696-702. |
[ 彭亮, 彭尽晖, 孙守琴, 吴艳宏, 何刚 (2015). 贡嘎山生态系统土壤呼吸带谱特征. 山地学报, 33, 696-702.] | |
[27] | Raich JW, Nadelhoffer KJ (1989). Belowground carbon allocation in forest ecosystems: global trends. Ecology, 70, 1346-1354. |
[28] | Shu SM, Zhu WZ, Wang WZ, Jia M, Zhang YY, Sheng ZL (2019). Effects of tree size heterogeneity on carbon sink in old forests. Forest Ecology and Management, 432, 637-648. |
[29] |
Waring RH, Landsberg JJ, Williams M (1998). Net primary production of forests: a constant fraction of gross primary production? Tree Physiology, 18, 129-134.
URL PMID |
[30] | Williams CA, Collatz GJ, Masek J, Huang C, Goward SN (2014). Impacts of disturbance history on forest carbon stocks and fluxes: merging satellite disturbance mapping with forest inventory data in a carbon cycle model framework. Remote Sensing of Environment, 151, 57-71. |
[31] | Wu ML (2010). Structural Equation Model: Operation and Application of AMOS. Chongqing University Press, Chongqing. |
[ 吴明隆 (2010). 结构方程模型: AMOS的操作与应用. 重庆大学出版社, 重庆.] | |
[32] | Xiang WH, Tian DL, Yan WD (2003). Review of researches on forest biomass and productivity. Central South Forest Inventory and Planning, 22(3), 57-64. |
[ 项文化, 田大伦, 闫文德 (2003). 森林生物量与生产力研究综述. 中南林业调查规划, 22(3), 57-64.] | |
[33] | Yang LD, Wang GX, Yang Y, Cao Y, Li W, Guo JY (2010). Dynamics of litter fall in Abies fabric mature forest at Gongga Mountain. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 32, 1163-1167. |
[ 羊留冬, 王根绪, 杨燕, 曹洋, 李伟, 郭剑英 (2010). 贡嘎山峨眉冷杉成熟林凋落物量动态研究. 江西农业大学学报, 32, 1163-1167.] | |
[34] | Zhang FY, Quan Q, Ma FF, Tian DS, Zhou QP, Niu SL (2019). Differential responses of ecosystem carbon flux components to experimental precipitation gradient in an alpine meadow. Functional Ecology, 33, 889-900. |
[35] | Zhao G (2015). The Breathing Dynamics of the Emei Fir Trunks of Gongga Mountain and Its Influence Factors. Master degree dissertation, University of the Chinese Academy of Sciences, Beijing. |
[ 赵广 (2015). 贡嘎山峨眉冷杉树干呼吸时空动态及其影响因子. 硕士学位论文, 中国科学院大学, 北京.] | |
[36] |
Zhou G, Liu S, Li Z, Zhang D, Tang X, Zhou C, Yan J, Mo J (2006). Old-growth forests can accumulate carbon in soils. Science, 314, 1417. DOI: 10.1126/science.1130168.
URL PMID |
[37] | Zhou P, Zhu WZ, Luo J, Chen YC, Yang Y, Xie J (2013). Aboveground biomass and carbon storage of typical forest types in Gongga Mountain. Acta Botanica Boreali- Occidentalia Sinica, 33, 162-168. |
[ 周鹏, 朱万泽, 罗辑, 陈有超, 杨阳, 谢静 (2013). 贡嘎山典型植被地上生物量与碳储量研究. 西北植物学报, 33, 162-168.] | |
[38] | Zhou T, Shi PJ, Jia GS, Li XJ, Luo YQ (2010). Spatial patterns of ecosystem carbon residence time in Chinese forests. Science China Earth Sciences, 53, 1229-1240. |
[39] | Zhu WZ (2013). Advances in the carbon use efficiency of forest. Chinese Journal of Plant Ecology, 37, 1043-1058. |
[ 朱万泽 (2013). 森林碳利用效率研究进展. 植物生态学报, 37, 1043-1058.] | |
[40] | Zhu WZ (2020). Advances in the carbon sequestration of mature forest. Scientia Silvae Sinicae, 56(3), 117-126. |
[ 朱万泽 (2020). 成熟森林固碳研究进展. 林业科学, 56(3), 117-126.] |
[1] | LI Bo-Xin, JIANG Chao, SUN Osbert Jianxin. Comprehensive assessment of vegetation carbon use efficiency in southwestern China simulated by CMIP6 models [J]. Chin J Plant Ecol, 2023, 47(9): 1211-1224. |
[2] | ZHANG Yao, CHEN Lan, WANG Jie-Ying, LI Yi, WANG Jun, GUO Yao-Xin, REN Cheng-Jie, BAI Hong-Ying, SUN Hao-Tian, ZHAO Fa-Zhu. Differences and influencing factors of microbial carbon use efficiency in forest rhizosphere soils at different altitudes in Taibai Mountain, China [J]. Chin J Plant Ecol, 2023, 47(2): 275-288. |
[3] | ZHANG Yi, CHENG Jie, SU Ji-Shuai, CHENG Ji-Min. Diversity-productivity relationship of plant communities in typical grassland during the long- term grazing exclusion succession [J]. Chin J Plant Ecol, 2022, 46(2): 176-187. |
[4] | ZANG Yong-Xin, MA Jian-Ying, ZHOU Xiao-Bing, TAO Ye, YIN Ben-Feng, Shayaguli JIGEER, ZHANG Yuan-Ming. Effects of extreme drought and extreme precipitation on aboveground productivity of ephemeral plants across different slope positions along sand dunes [J]. Chin J Plant Ecol, 2022, 46(12): 1537-1550. |
[5] | JI Yu-He, ZHOU Guang-Sheng, WANG Shu-Dong, WANG Li-Xia, ZHOU Meng-Zi. Evolution characteristics and its driving forces analysis of vegetation ecological quality in Qinling Mountains region from 2000 to 2019 [J]. Chin J Plant Ecol, 2021, 45(6): 617-625. |
[6] | WANG Yi-Dan, LI Liang, LIU Qi-Jing, MA Ze-Qing. Lifespan and morphological traits of absorptive fine roots across six typical tree species in subtropical China [J]. Chin J Plant Ecol, 2021, 45(4): 383-393. |
[7] | GAMADAERJI , YANG Ze, TAN Xing-Ru, WANG Shan-Shan, LI Wei-Jing, YOU Cui-Hai, WANG Yan-Bing, ZHANG Bing-Wei, REN Ting-Ting, CHEN Shi-Ping. Effect of altered litter input and nitrogen addition on ecosystem aboveground primary productivity and plant functional group composition in a semiarid grassland [J]. Chin J Plant Ecol, 2020, 44(8): 791-806. |
[8] | WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 22-32. |
[9] | LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164. |
[10] | WU Hong-Bao, GAO Qing-Zhu, Ganjurjav Hasbagan, LI Yu, YAN Yu-Long, HU Guo-Zheng, WANG Xue-Xia, YAN Jun, HE Shi-Cheng. Effects of grazing and simulated warming on plant community structure and productivity of alpine grassland in Northern Xizang, China [J]. Chin J Plant Ecol, 2019, 43(10): 853-862. |
[11] | Ya-Lin XIE, Hai-Yan WANG, Xiang-Dong LEI. Effects of climate change on net primary productivity in Larix olgensis plantations based on process modeling [J]. Chin J Plan Ecolo, 2017, 41(8): 826-839. |
[12] | Deng-Qiu LI, Chun-Hua ZHANG, Wei-Min JU, Li-Juan LIU. Forest net primary productivity dynamics and driving forces in Jiangxi Province, China [J]. Chin J Plant Ecol, 2016, 40(7): 643-657. |
[13] | Zheng-Hu ZHOU, Chuan-Kuan WANG. Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry [J]. Chin J Plan Ecolo, 2016, 40(6): 620-630. |
[14] | PAN Shi-Yu,KONG Bin-Bin,YAO Tian-Hua,WEI Xin-Hua,LI Ying-Nian,ZHU Zhi-Hong. Effects of clipping and fertilizing on the relationship between functional diversity and aboveground net primary productivity in an alpine meadow [J]. Chin J Plan Ecolo, 2015, 39(9): 867-877. |
[15] | LI Ming-Ze,WANG Bin,FAN Wen-Yi,ZHAO Dan-Dan. Simulation of forest net primary production and the effects of fire disturbance in Northeast China [J]. Chin J Plan Ecolo, 2015, 39(4): 322-332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn