Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (7): 643-657.DOI: 10.17521/cjpe.2015.0348
Special Issue: 全球变化与生态系统
• Research Articles • Next Articles
Deng-Qiu LI1,2,*(), Chun-Hua ZHANG3, Wei-Min JU2, Li-Juan LIU1
Received:
2015-10-07
Accepted:
2016-02-19
Online:
2016-07-10
Published:
2016-07-07
Contact:
Deng-Qiu LI
Deng-Qiu LI, Chun-Hua ZHANG, Wei-Min JU, Li-Juan LIU. Forest net primary productivity dynamics and driving forces in Jiangxi Province, China[J]. Chin J Plant Ecol, 2016, 40(7): 643-657.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0348
碳分配、周转率 Carbon allocation and turnover rate | 森林类型 Forest type | |||||
---|---|---|---|---|---|---|
马尾松、湿地松 Pinus massoniana, Pinus elliottii | 杉木 Cunninghamia lanceolata | 常绿阔叶林 Evergreen broadleaf forest | 针阔混交林 Conifer and broadleaf mixed forest | 针叶混交林 Coniferous mixed forest | ||
木质部分分配比例 Allocation coefficient to wood | 0.655 4 | 0.772 4 | 0.462 4 | 0.578 4 | 0.694 4 | |
粗根分配比例 Allocation coefficient to coarse root | 0.118 4 | 0.126 2 | 0.222 6 | 0.171 8 | 0.121 0 | |
树叶分配比例 Allocation coefficient to leaf | 0.228 1 | 0.109 9 | 0.119 0 | 0.153 9 | 0.188 7 | |
细根分配比例 Allocation coefficient to fine root | 0.005 1 | 0.012 6 | 0.196 0 | 0.101 8 | 0.007 6 | |
木质部分周转率 Wood turnover rate | 0.027 9 | 0.027 9 | 0.028 8 | 0.028 4 | 0.027 9 | |
粗根部分周转率 Coarse root turnover rate | 0.026 9 | 0.026 9 | 0.044 8 | 0.035 9 | 0.026 9 | |
叶子部分周转率 Leaf turnover rate | 0.192 5 | 0.192 5 | 0.294 8 | 0.243 7 | 0.192 5 | |
细根部分周转率 Fine root turnover rate | 1.433 0 | 1.433 0 | 1 | 1.216 5 | 1.433 0 |
Table 1 Allocation coefficients of net primary productivity (NPP), and turnover rates, decomposition rates of biomass carbon pools for main forest types
碳分配、周转率 Carbon allocation and turnover rate | 森林类型 Forest type | |||||
---|---|---|---|---|---|---|
马尾松、湿地松 Pinus massoniana, Pinus elliottii | 杉木 Cunninghamia lanceolata | 常绿阔叶林 Evergreen broadleaf forest | 针阔混交林 Conifer and broadleaf mixed forest | 针叶混交林 Coniferous mixed forest | ||
木质部分分配比例 Allocation coefficient to wood | 0.655 4 | 0.772 4 | 0.462 4 | 0.578 4 | 0.694 4 | |
粗根分配比例 Allocation coefficient to coarse root | 0.118 4 | 0.126 2 | 0.222 6 | 0.171 8 | 0.121 0 | |
树叶分配比例 Allocation coefficient to leaf | 0.228 1 | 0.109 9 | 0.119 0 | 0.153 9 | 0.188 7 | |
细根分配比例 Allocation coefficient to fine root | 0.005 1 | 0.012 6 | 0.196 0 | 0.101 8 | 0.007 6 | |
木质部分周转率 Wood turnover rate | 0.027 9 | 0.027 9 | 0.028 8 | 0.028 4 | 0.027 9 | |
粗根部分周转率 Coarse root turnover rate | 0.026 9 | 0.026 9 | 0.044 8 | 0.035 9 | 0.026 9 | |
叶子部分周转率 Leaf turnover rate | 0.192 5 | 0.192 5 | 0.294 8 | 0.243 7 | 0.192 5 | |
细根部分周转率 Fine root turnover rate | 1.433 0 | 1.433 0 | 1 | 1.216 5 | 1.433 0 |
输入资料 Input data | 描述 Description | 时间 Time | 空间分辨率 Spatial resolution | 来源 Source |
---|---|---|---|---|
CRU 3.21气象数据 CRU 3.21 meteorological data | 气温、降水、云量、平均饱和水汽压差 Air temperature, precipitation, cloudiness, average water vapor pressure deficit | 1901-1960 | 0.5° | http://badc.nerc.ac.uk |
气象站观测数据 Meteorological observation data | 气温、降水、日照时数 Air temperature, precipitation, sunshine duration | 1961-2010 | 江西87气象站点 87 meteorological sites in Jiangxi | http://cdc.cma.gov.cn/ |
气象站观测数据 Meteorological observation data | 平均饱和水汽压 Average water vapor pressure | 1961-2010 | 中国702气象站点 702 meteorological sites in China | http://cdc.cma.gov.cn/ |
叶面积指数数据 Leaf area index data | MODIS数据反演 Inversed from MODIS data | 2006 | 463 m | 本文 This study |
参考年NPP Referenced NPP | BEPS模型模拟 Simulated by BEPS model | 2006 | 463 m | 本文 This study |
林龄 Forest age | 样地资料、MODIS、K-最近邻法(KNN)算法 Field samples, MODIS data and K-nearest neighborhood method | 2006 | 463 m | 本文 This study |
森林类型 Forest type | 样地资料、MODIS、KNN算法 Field samples, MODIS data and K-nearest neighborhood method | 2006 | 463 m | 本文 This study |
净初级生产力与林龄关系 Relationship between net primary productivity and forest age | 林龄对净初级生产力的影响 Impact of forest age on net primary productivity | 本文 This study | ||
土壤质地 Soil texture | 黏粒、砂粒百分比 Percentage of clay and sandy | 463 m | http://globalchange.bnu.edu.cn/research/ | |
地形湿度指数 Topographic wetness index | 基于数字高程模型(DEM)通过ArcGIS计算 Calculate from digital elevation model by ArcGIS | 463 m | 本文 This study | |
初始地下水位 Initial groundwater level | 地形湿度指数计算 Calculate based on wetness index | 463 m | 本文 This study | |
氮沉降 Nitrogen deposition | 来源于模拟数据 Modelled data | 1960-2010 | 0.1° | 顾峰雪(待发表) From GU Feng-Xue (To be published) |
氮沉降 Nitrogen deposition | 基于温室气体计算 Calculate based on greenhouse gases | 1901-1959 | 无空间变化 No spatial variation | Chen et al., 2003 |
CO2浓度 CO2 concentration | 观测数据 Observation data | 1999-2010 | 无空间变化 No spatial variation | http://ccliacesd.oml.gov |
CO2浓度 CO2 concentration | 观测数据 Observation data | 1901-1998 | 无空间变化 No spatial variation | 碳循环模型联合计划 Carbon Cycle Model Linkage Project |
Table 2 Input data for InTEC model
输入资料 Input data | 描述 Description | 时间 Time | 空间分辨率 Spatial resolution | 来源 Source |
---|---|---|---|---|
CRU 3.21气象数据 CRU 3.21 meteorological data | 气温、降水、云量、平均饱和水汽压差 Air temperature, precipitation, cloudiness, average water vapor pressure deficit | 1901-1960 | 0.5° | http://badc.nerc.ac.uk |
气象站观测数据 Meteorological observation data | 气温、降水、日照时数 Air temperature, precipitation, sunshine duration | 1961-2010 | 江西87气象站点 87 meteorological sites in Jiangxi | http://cdc.cma.gov.cn/ |
气象站观测数据 Meteorological observation data | 平均饱和水汽压 Average water vapor pressure | 1961-2010 | 中国702气象站点 702 meteorological sites in China | http://cdc.cma.gov.cn/ |
叶面积指数数据 Leaf area index data | MODIS数据反演 Inversed from MODIS data | 2006 | 463 m | 本文 This study |
参考年NPP Referenced NPP | BEPS模型模拟 Simulated by BEPS model | 2006 | 463 m | 本文 This study |
林龄 Forest age | 样地资料、MODIS、K-最近邻法(KNN)算法 Field samples, MODIS data and K-nearest neighborhood method | 2006 | 463 m | 本文 This study |
森林类型 Forest type | 样地资料、MODIS、KNN算法 Field samples, MODIS data and K-nearest neighborhood method | 2006 | 463 m | 本文 This study |
净初级生产力与林龄关系 Relationship between net primary productivity and forest age | 林龄对净初级生产力的影响 Impact of forest age on net primary productivity | 本文 This study | ||
土壤质地 Soil texture | 黏粒、砂粒百分比 Percentage of clay and sandy | 463 m | http://globalchange.bnu.edu.cn/research/ | |
地形湿度指数 Topographic wetness index | 基于数字高程模型(DEM)通过ArcGIS计算 Calculate from digital elevation model by ArcGIS | 463 m | 本文 This study | |
初始地下水位 Initial groundwater level | 地形湿度指数计算 Calculate based on wetness index | 463 m | 本文 This study | |
氮沉降 Nitrogen deposition | 来源于模拟数据 Modelled data | 1960-2010 | 0.1° | 顾峰雪(待发表) From GU Feng-Xue (To be published) |
氮沉降 Nitrogen deposition | 基于温室气体计算 Calculate based on greenhouse gases | 1901-1959 | 无空间变化 No spatial variation | Chen et al., 2003 |
CO2浓度 CO2 concentration | 观测数据 Observation data | 1999-2010 | 无空间变化 No spatial variation | http://ccliacesd.oml.gov |
CO2浓度 CO2 concentration | 观测数据 Observation data | 1901-1998 | 无空间变化 No spatial variation | 碳循环模型联合计划 Carbon Cycle Model Linkage Project |
Fig. 1 The change trends of air temperature, precipitation, solar radiation and water vapor pressure during 1901-2010 in Jiangxi Province. The dashed lines are average of 100 years.
Fig. 4 The changes of net primary productivity (NPP) with forest age for main forest types in Jiangxi Province. The black spot in the figure is NPP calculated based on forest inventory data referencing (Wang et al., 2010). A, Pinus massoniana. B, Pinus elliottii. C, Cunninghamia lanceolata.
情景 Scenario | 描述 Description | 非干扰因子 Non-disturbance factors | 干扰因子 Disturbance factor | |||||||
---|---|---|---|---|---|---|---|---|---|---|
气候要素 Climate elements | 氮沉降 Nitrogen deposition | CO2浓度 CO2 concentration | ||||||||
气温 Air temperature | 降水 Precipitation | 太阳辐射 Solar radiation | 平均水汽压 Average water vapor pressure | |||||||
1 | 干扰因子效应 Disturbance factor effect | B | B | B | B | B | B | 林龄变化 Forest age changed | ||
2 | 非干扰因子效应 Non-disturbance factors effect | H | H | H | H | H | H | 林龄不变 Forest age unchanged | ||
3 | 综合因子 Disturbance and non-disturbance factors effect | H | H | H | H | H | H | 林龄变化 Forest age changed | ||
4 | 气候变化效应 Climate change effect | H | H | H | H | B | B | 林龄变化 Forest age changed | ||
5 | 氮沉降效应 Nitrogen deposition effect | B | B | B | B | H | B | 林龄变化 Forest age changed | ||
6 | CO2效应 CO2 effect | B | B | B | B | B | H | 林龄变化 Forest age changed | ||
7 | 氮沉降+CO2 Nitrogen deposition and CO2 effect | B | B | B | B | H | H | 林龄变化 Forest age changed |
Table 3 Scenarios for quantifing each driver factor in forest net primary productivity (NPP) in Jiangxi Province
情景 Scenario | 描述 Description | 非干扰因子 Non-disturbance factors | 干扰因子 Disturbance factor | |||||||
---|---|---|---|---|---|---|---|---|---|---|
气候要素 Climate elements | 氮沉降 Nitrogen deposition | CO2浓度 CO2 concentration | ||||||||
气温 Air temperature | 降水 Precipitation | 太阳辐射 Solar radiation | 平均水汽压 Average water vapor pressure | |||||||
1 | 干扰因子效应 Disturbance factor effect | B | B | B | B | B | B | 林龄变化 Forest age changed | ||
2 | 非干扰因子效应 Non-disturbance factors effect | H | H | H | H | H | H | 林龄不变 Forest age unchanged | ||
3 | 综合因子 Disturbance and non-disturbance factors effect | H | H | H | H | H | H | 林龄变化 Forest age changed | ||
4 | 气候变化效应 Climate change effect | H | H | H | H | B | B | 林龄变化 Forest age changed | ||
5 | 氮沉降效应 Nitrogen deposition effect | B | B | B | B | H | B | 林龄变化 Forest age changed | ||
6 | CO2效应 CO2 effect | B | B | B | B | B | H | 林龄变化 Forest age changed | ||
7 | 氮沉降+CO2 Nitrogen deposition and CO2 effect | B | B | B | B | H | H | 林龄变化 Forest age changed |
Fig. 5 Validation of net primary productivity (NPP) simulated by the InTEC model. A, Simulated NPP by InTEC model comparison with observed NPP at Qianyanzhou eddy tower site during 2003-2009. B, Simulated NPP by InTEC model comparison with NPP calculated from forest inventory data at town level of Ji’an City, Jiangxi Province in 2009.
Fig. 6 Change characteristics of net primary productivity (NPP) of forests in Jiangxi Province during 1901-2010 under scenarios 1, 2 and 3. Scenario 1, scenario 2, and scenario 3 see Table 3.
Fig. 7 Spatial distribution of average annual net primary productivity (NPP) during 2000-2009 (left panel) and changes in the 2000s relative to the values in the 1970s (right panel), positive values indicate increases in NPP, and vice versa.
Fig. 8 Responses of Jiangxi provincial forest net primary productivity (NPP) to non-disturbance and disturbance factors during 1971-2010. A, All non-disturbance factors. B, Disturbance factor. C, Climate factors. D, CO2, N deposition, integrated effects of CO2 and N deposition. The positive ΔNPP values indicate enhancement on NPP and minus ΔNPP values indicate negative effect.
1 | Ainsworth EA, Long SP (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2.New Phytologist, 165, 351-372. |
2 | Albani M, Medvigy D, Hurtt GC, Moorcroft PR (2006). The contributions of land use change, CO2 fertilization, and climate variability to the Eastern US carbon sink.Global Change Biology, 12, 2370-2390. |
3 | Beaudoin A, Bernier PY, Guindon L, Villemaire P, Guo XJ, Stinson G, Bergeron T, Magnussen S, Hall RJ (2014). Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery.Canadian Journal of Forest Research, 44, 521-532. |
4 | Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis.Ecological Applications, 20, 30-59. |
5 | Bonan GB (1995). Sensitivity of a GCM simulation to inclusion of inland water surfaces.Journal of Climate, 8, 2691-2704. |
6 | Campioli M, Gielen B, Göckede M, Papale D, Bouriaud O, Granier A (2011). Temporal variability of the NPP-GPP ratio at seasonal and interannual time scales in a temperate beech forest.Biogeosciences, 8, 2481-2492. |
7 | Canadell JG, Raupach MR (2008). Managing forests for climate change mitigation.Science, 320, 1456-1457. |
8 | Chen J, Liu J, Cihlar J, Goulden M (1999). Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications.Ecological Modelling, 124, 99-119. |
9 | Chen JM, Ju W, Cihlar J, Price D, Liu J, Chen W, Pan J, Black A, Barr A (2003). Spatial distribution of carbon sources and sinks in Canada’s forests.Tellus Series B-Chemical and Physical Meteorology, 55, 622-641. |
10 | Chen W, Chen J, Cihlar J (2000). An integrated terrestrial ecosystem carbon-budget model based on changes in disturbance, climate, and atmospheric chemistry.Ecological Modelling, 135, 55-79. |
11 | Coomes DA, Holdaway RJ, Kobe RK, Lines ER, Allen RB (2012). A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests.Journal of Ecology, 100, 42-64. |
12 | Coursolle C, Margolis HA, Giasson MA, Bernier PY, Amiro BD, Arain MA, Barr AG, Black TA, Goulden ML, McCaughey JH, Chen JM, Dunn AL, Grant RF, Lafleur PM (2012). Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests.Agricultural and Forest Meteorology, 165, 136-148. |
13 | Dufresne JL, Fairhead L, Le Treut H, Berthelot M, Bopp L, Ciais P, Friedlingstein P, Monfray P (2002). On the magnitude of positive feedback between future climate change and the carbon cycle. Geophysical Research Letters, 29, 43-1-43-4. |
14 | Fang J, Chen A, Peng C, Zhao S, Ci L (2001). Changes in forest biomass carbon storage in China between 1949 and 1998.Science, 292, 2320-2322. |
15 | Fang J, Kato T, Guo Z, Yang Y, Hu H, Shen H, Zhao X, Kishimoto-Mo AW, Tang Y, Houghton RA (2014). Evidence for environmentally enhanced forest growth.Proceedings of the National Academy of Sciences of the United States of America, 111, 9527-9532. |
16 | Felzer B, Kicklighter D, Melillo J, Wang C, Zhuang Q, Prinn R (2004). Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model.Tellus Series B-Chemical and Physical Meteorology, 56, 230-248. |
17 | Gu FX, Yu GR, Wen XF, Tao B, Li KR, Liu YF (2008). Drought effects on carbon exchange in a subtropical coniferous plantation in China.Chinese Journal of Plant Ecology, 32, 1041-1051. (in Chinese with English abstract)[顾峰雪, 于贵瑞, 温学发, 陶波, 李克让, 刘允芬 (2008). 干旱对亚热带人工针叶林碳交换的影响. 植物生态学报, 32, 1041-1051.] |
18 | Houghton R (2007). Balancing the global carbon budget.Annual Review of Earth and Planetary Sciences, 35, 313-347. |
19 | Huang L, Shao QQ, Liu JY (2012). Forest carbon sequestration and carbon sink/source in Jiangxi Province.Acta Ecologica Sinica, 32, 3010-3020. (in Chinese with English abstract)[黄麟, 邵全琴, 刘纪远 (2012). 江西省森林碳蓄积过程及碳源/汇的时空格局. 生态学报, 32, 3010-3020.] |
20 | Jiang Y, Hu HB, Zhang XS, Xue JH (2011). The carbon flux and its environmental factors in a north subtropical secondary oak forest ecosystem. Journal of Nanjing Forestry University (Natural Science Edition), 35(3), 38-42. (in Chinese with English abstract)[蒋琰, 胡海波, 张学仕, 薛建辉 (2011). 北亚热带次生栎林碳通量及其影响因子研究. 南京林业大学学报(自然科学版), 35(3), 38-42.] |
21 | Ju W, Chen J, Harvey D, Wang S (2007). Future carbon balance of China’s forests under climate change and increasing CO2.Journal of Environmental Management, 85, 538-562. |
22 | Ju W, Wang S, Yu G, Zhou Y, Wang H (2010). Modeling the impact of drought on canopy carbon and water fluxes for a subtropical evergreen coniferous plantation in southern China through parameter optimization using an ensemble Kalman filter.Biogeosciences, 7, 845-857. |
23 | Lü C, Tian H (2007). Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data.Journal of Geophysical Research: Atmospheres, 112, doi: 10.1029/2006JD007990. |
24 | Li DQ, Ju WM, Fan WY, Gu ZJ (2014). Estimating the age of deciduous forests in Northeast China with Enhanced Thematic Mapper Plus data acquired in different phenological seasons.Journal of Applied Remote Sensing, 8, 083670. doi: 10.1117/1.JRS.8.083670. |
25 | Li DQ, Ju WM, Zheng G, Liu YB, Zan M, Zhang CH, Huang JL (2013). Comparison of estimated forest biomass increment rate based on a process-based ecological model and forest inventory data.Ecology and Environmental Sciences, 22, 1647-1657. (in Chinese with English abstract)[李登秋, 居为民, 郑光, 柳艺博, 昝梅, 张春华, 黄金龙 (2013). 基于生态过程模型和森林清查数据的森林生长量估算对比研究. 生态环境学报, 22, 1647-1657.] |
26 | Li DQ, Zhou YL, Ju WM, Wang HM, Liu YB, Wu XC (2014). Modelling the effects of changes in solar radiation on gross primary production in subtropical evergreen needle- leaf plantations.Chinese Journal of Plant Ecology, 38, 219-230. (in Chinese with English abstract)[李登秋, 周艳莲, 居为民, 王辉民, 柳艺博, 吴小翠 (2014). 太阳辐射变化对亚热带人工常绿针叶林总初级生产力影响的模拟分析. 植物生态学报, 38, 219-230.] |
27 | Li MZ, Wang B, Fan WY, Zhao DD (2015). Simulation of forest net primary production and the effects of fire disturbance in Northeast China.Chinese Journal of Plant Ecology, 39, 322-332. (in Chinese with English abstract)[李明泽, 王斌, 范文义, 赵丹丹 (2015). 东北林区净初级生产力及大兴安岭地区林火干扰影响的模拟研究. 植物生态学报, 39, 322-332.] |
28 | Li XJ, Zhou T, He XZ (2009). Carbon sink of forest ecosystem driven by NPP increasing in China.Journal of Natural Resources, 24, 491-497. (in Chinese with English abstract)[李秀娟, 周涛, 何学兆 (2009). NPP增长驱动下的中国森林生态系统碳汇. 自然资源学报, 24, 491-497.] |
29 | Liang W, Yang Y, Fan D, Guan H, Zhang T, Long D, Zhou Y, Bai D (2015). Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010.Agricultural and Forest Meteorology, 204, 22-36. |
30 | Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems.Forest Ecology and Management, 259, 698-709. |
31 | Liu YB, Ju WM, Chen JM, Zhu GL, Xing BL, Zhu JF, He MZ (2012). Spatial and temporal variations of forest LAI in China during 2000-2010.Chinese Science Bulletin, 57, 2846-2856. |
32 | Masek JG, Collatz GJ (2006). Estimating forest carbon fluxes in a disturbed southeastern landscape: Integration of remote sensing, forest inventory, and biogeochemical modeling.Journal of Geophysical Research, 111, G01006. doi: 10.1029/2005JG000062. |
33 | Masek JG, Goward SN, Kennedy RE, Cohen WB, Moisen GG, Schleeweis K, Huang C (2013). United States forest disturbance trends observed using Landsat Time Series.Ecosystems, 16, 1087-1104. |
34 | Mo J, Brown S, Xue J, Fang Y, Li Z (2006). Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China.Plant & Soil, 282, 135-151. |
35 | Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003). Climate- driven increases in global terrestrial net primary production from 1982 to 1999.Science, 300, 1560. |
36 | Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJ, Ceulemans R (2005). Forest response to elevated CO2 is conserved across a broad range of productivity.Proceedings of the National Academy of Sciences of the United States of America, 102, 18052-18056. |
37 | Pan Y, Birdsey R, Hom J, McCullough K (2009). Separating effects of changes in atmospheric composition, climate and land-use on carbon sequestration of US Mid-Atlantic temperate forests.Forest Ecology and Management, 259, 151-164. |
38 | Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG (2011). A large and persistent carbon sink in the world’s forests.Science, 333, 988-993. |
39 | Petritsch R, Hasenauer H, Pietsch SA (2007). Incorporating forest growth response to thinning within biome-BGC.Forest Ecology and Management, 242, 324-336. |
40 | Piao S, Sitch S, Ciais P, Friedlingstein P, Peylin P, Wang X, Ahlström A, Anav A, Canadell JG, Cong N (2013). Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends.Global Change Biology, 19, 2117-2132. |
41 | Pretzsch H, Biber P, Schutze G, Uhl E, Rotzer T (2014). Forest stand growth dynamics in Central Europe have accelerated since 1870.Nature Communications, 5, 4967. |
42 | Ter-Mikaelian MT, Colombo SJ, Chen J (2014). Effect of age and disturbance on decadal changes in carbon stocks in managed forest landscapes in central Canada.Mitigation and Adaptation Strategies for Global Change, 19, 1063-1075. |
43 | Wang B, Huang J, Yang X, Zhang B, Liu M (2010). Estimation of biomass, net primary production and net ecosystem production of China’s forests based on the 1999-2003 National Forest Inventory.Scandinavian Journal of Forest Research, 25, 544-553. |
44 | Wang S, Zhou L, Chen J, Ju W, Feng X, Wu W (2011). Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance.Journal of Environmental Management, 92, 1651-1662. |
45 | Williams CA, Collatz GJ, Masek J, Goward SN (2012). Carbon consequences of forest disturbance and recovery across the conterminous United States. Global Biogeochemical Cycles, 26, GB1005. doi: 10.1029/2010GB003947. |
46 | Yu G, Chen Z, Piao S, Peng C, Ciais P, Wang Q, Li X, Zhu X (2014). High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region.Proceedings of the National Academy of Sciences of the United States of America, 111, 4910-4915. |
47 | Zaehle S, Sitch S, Prentice IC, Liski J, Cramer W, Erhard M, Hickler T, Smith B (2006). The importance of age-related decline in forest NPP for modeling regional carbon balances.Ecological Applications, 16, 1555-1574. |
48 | Zhang C, Ju W, Chen JM, Li D, Wang X, Fan W, Li M, Zan M (2014). Mapping forest stand age in China using remotely sensed forest height and observation data.Journal of Geophysical Research: Biogeosciences, 119, 1163-1179. |
49 | Zhang CH (2015). Simulating Forest Carbon Sources and Sinks in China with the Integration of Remote Sensing and Inventory Data. PhD dissertation, Nanjing University, Nanjing. 86-87. (in Chinese with English abstract)[张春华 (2015). 融合遥感和清查数据的中国森林碳源汇模拟研究. 博士学位论文, 南京大学, 南京. 86-87.] |
50 | Zhang WJ, Wang HM, Yang FT, Yi YH, Wen XF, Sun XM, Yu GR, Wang YD, Ning JC (2011). Underestimated effects of low temperature during early growing season on carbon sequestration of a subtropical coniferous plantation.Biogeosciences, 8, 1667-1678. |
51 | Zhou G, Wang Y, Jiang Y, Yang Z (2002). Estimating biomass and net primary production from forest inventory data: A case study of China’s Larix forests.Forest Ecology and Management, 169, 149-157. |
52 | Zhou L, Wang S, Ju W, Xiong Z, Georg K, Chen J, Shi H (2013). Assessment of carbon dynamics of forest ecosystems in the Poyang Lake Basin responding to afforestation and future climate change.Journal of Resources and Ecology, 4, 11-19. |
53 | Zhu WQ, Pan YZ, Yang XQ, Song GB (2007). Comprehensive analysis of the impact of climatic changes on Chinese terrestrial net primary productivity.Chinese Science Bulletin, 52, 3253-3560. |
[1] | Qingshui Yu xiaofeng ni Jiangling Zhu Zhi-Yao TANG Jing-Yun FANG. Effects of 10 years of nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in two tropical rainforests in the Jianfengling, Hainan [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Yi-Heng Chen Yusupjan Rusul 吾斯曼 阿卜杜热合曼. Analysis of spatial and temporal variation in grassland vegetation cover in the Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[3] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[4] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[5] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[6] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[7] | ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(3): 341-348. |
[8] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition [J]. Chin J Plant Ecol, 2023, 47(9): 1234-1244. |
[9] | ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China [J]. Chin J Plant Ecol, 2023, 47(5): 629-643. |
[10] | ZHANG Ya-Qi, PANG Dan-Bo, CHEN Lin, CAO Meng-Hao, HE Wen-Qiang, LI Xue-Bin. Response of ammonia oxidizing bacteria to nitrogen fertilization and plant litter input on desert steppe [J]. Chin J Plant Ecol, 2023, 47(5): 699-712. |
[11] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[12] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[13] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[14] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[15] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn