Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (7): 658-668.DOI: 10.17521/cjpe.2015.0155
• Research Articles • Previous Articles Next Articles
Min-Ling CHEN1,2, Bing-Wei ZHANG1,2, Ting-Ting REN1, Shan-Shan WANG1,2, Shi-Ping CHEN1,*()
Received:
2015-05-03
Accepted:
2015-05-29
Online:
2016-07-10
Published:
2016-07-07
Contact:
Shi-Ping CHEN
Min-Ling CHEN, Bing-Wei ZHANG, Ting-Ting REN, Shan-Shan WANG, Shi-Ping CHEN. Responses of soil moisture to precipitation pattern change in semiarid grasslands in Nei Mongol, China[J]. Chin J Plant Ecol, 2016, 40(7): 658-668.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0155
站点 Site | 经纬度 Longitude and latitude | 海拔 Altitude (m) | 平均年降水量 Mean annual precipitation (mm) | 年平均气温 Mean annual temperature (℃) | 土壤类型 Soil type | 群落高度 Plant community height (cm) | 地上生物量 Aboveground biomass (g·m-2) | 优势植物 Dominant species | 土地利用类型 Land use type |
---|---|---|---|---|---|---|---|---|---|
多伦 Duolun | 42.05° N, 116.28° E | 1 350 | 380 | 2.2 | 栗钙土 Chestnut soils | 42 | 174 | 冷蒿 Artemisia frigida 克氏针茅 Stipa krylovii | 2001年围封 Fenced from 2001 |
锡林浩特Xilinhot | 43.55° N, 116.67 E | 1 250 | 332 | 0.84 | 栗钙土 Chestnut soils | 48 | 185 | 羊草 Leymus chinensis 大针茅 Stipa grandis | 2005年围封并打草 Fenced and clipped from 2005 |
Table 1 General information of Duolun and Xilinhot sites
站点 Site | 经纬度 Longitude and latitude | 海拔 Altitude (m) | 平均年降水量 Mean annual precipitation (mm) | 年平均气温 Mean annual temperature (℃) | 土壤类型 Soil type | 群落高度 Plant community height (cm) | 地上生物量 Aboveground biomass (g·m-2) | 优势植物 Dominant species | 土地利用类型 Land use type |
---|---|---|---|---|---|---|---|---|---|
多伦 Duolun | 42.05° N, 116.28° E | 1 350 | 380 | 2.2 | 栗钙土 Chestnut soils | 42 | 174 | 冷蒿 Artemisia frigida 克氏针茅 Stipa krylovii | 2001年围封 Fenced from 2001 |
锡林浩特Xilinhot | 43.55° N, 116.67 E | 1 250 | 332 | 0.84 | 栗钙土 Chestnut soils | 48 | 185 | 羊草 Leymus chinensis 大针茅 Stipa grandis | 2005年围封并打草 Fenced and clipped from 2005 |
Fig. 1 Conceptual model of the pulse response of surface soil water content (VWC0-10, y) to precipitation events (refer to Liu et al., 2002). a and b, parameters of the equation; PPT, precipitation event, the arrow indicates the time when PPT occurred; Tlasting, the lasting time of pulse response (the periods of VWC0-10 above VWCPre after the PPT); ΔVWC0-10, maximum increment of VWC0-10 after the PPT; VWCMax, maximum VWC0-10 after the PPT; VWCPre (y0), VWC0-10 of the day before the PPT.
Fig. 2 Monthly means of environmental and vegetation factors across eight years (2006-2013) at Duolun (DL) and Xilinhot (XL) sites (mean ± SE, n = 8). A, Seasonal variations of mean monthly precipitation (bar) and air temperature (line) of Duolun. B, Seasonal variations of mean monthly precipitation (bar) and air temperature (line) of Xilinhot. C, Seasonal variations of mean monthly leaf area index (LAI) at Duolun (DL) and Xilinhot (XL).
Fig. 3 Inter-annual variations of precipitation (bar) and soil water content (VWC) during the growing season at different soil depths (scatters and lines) at the two sites (A, Duolun; B, Xilinhot) from 2006 to 2013.
Fig. 4 Relationships between surface soil water content (VWC0-10) and precipitation during the growing season at the two sites (A, Duolun; B, Xilinhot). GSP, the growing season precipitation; AP, annual precipitation. *, p < 0.05.
Fig. 5 Seasonal dynamics of mean daily mean soil water content (VWC) at different soil depths and albedo at the two sites (A, Duolun; B, Xilinhot) from 2006 to 2013.
因变量 Variable | 站点 Site | 进入变量 Entered variable | 移除变量 Removed variable | 参数估计 Parameter estimate | 偏R2 Partial R2 | 模型R2 Model R2 | p |
---|---|---|---|---|---|---|---|
ΔVWC0-10 | 多伦 Duolun | 方程截距 Intercept | 2.32 | ||||
PPT | 0.38 | 0.73 | 0.73 | <0.001 | |||
VWCPre | -0.19 | 0.06 | 0.79 | <0.001 | |||
STPre | -0.08 | 0.00 | 0.79 | 0.282 | |||
LAI | 1.30 | 0.00 | 0.79 | 0.340 | |||
锡林浩特 Xilinhot | 方程截距 Intercept | 0.92 | |||||
PPT | 0.35 | 0.52 | 0.85 | <0.001 | |||
VWCPre | -0.08 | 0.08 | 0.01 | 0.084 | |||
STPre | 0.01 | 0.00 | 0.86 | 0.820 | |||
LAI | 0.58 | 0.00 | 0.86 | 0.356 | |||
Tlasting | 多伦 Duolun | 方程截距 Intercept | 11.63 | ||||
PPT | 0.33 | 0.33 | 0.33 | <0.001 | |||
VWCPre | -0.42 | 0.22 | 0.55 | <0.001 | |||
STPre | -0.17 | 0.05 | 0.60 | 0.011 | |||
LAI | 0.74 | 0.00 | 0.60 | 0.680 | |||
锡林浩特 Xilinhot | 方程截距 Intercept | 6.53 | |||||
PPT | 0.31 | 0.52 | 0.52 | <0.001 | |||
VWCPre | -0.27 | 0.08 | 0.60 | 0.003 | |||
STPre | -0.00 | 0.00 | 0.60 | 0.997 | |||
LAI | 0.95 | 0.00 | 0.60 | 0.502 |
Table 2 Results of the multiple stepwise regressions on increment of surface soil water content (ΔVWC0-10) and lasting time (Tlasting) after the precipitation event at the two sites
因变量 Variable | 站点 Site | 进入变量 Entered variable | 移除变量 Removed variable | 参数估计 Parameter estimate | 偏R2 Partial R2 | 模型R2 Model R2 | p |
---|---|---|---|---|---|---|---|
ΔVWC0-10 | 多伦 Duolun | 方程截距 Intercept | 2.32 | ||||
PPT | 0.38 | 0.73 | 0.73 | <0.001 | |||
VWCPre | -0.19 | 0.06 | 0.79 | <0.001 | |||
STPre | -0.08 | 0.00 | 0.79 | 0.282 | |||
LAI | 1.30 | 0.00 | 0.79 | 0.340 | |||
锡林浩特 Xilinhot | 方程截距 Intercept | 0.92 | |||||
PPT | 0.35 | 0.52 | 0.85 | <0.001 | |||
VWCPre | -0.08 | 0.08 | 0.01 | 0.084 | |||
STPre | 0.01 | 0.00 | 0.86 | 0.820 | |||
LAI | 0.58 | 0.00 | 0.86 | 0.356 | |||
Tlasting | 多伦 Duolun | 方程截距 Intercept | 11.63 | ||||
PPT | 0.33 | 0.33 | 0.33 | <0.001 | |||
VWCPre | -0.42 | 0.22 | 0.55 | <0.001 | |||
STPre | -0.17 | 0.05 | 0.60 | 0.011 | |||
LAI | 0.74 | 0.00 | 0.60 | 0.680 | |||
锡林浩特 Xilinhot | 方程截距 Intercept | 6.53 | |||||
PPT | 0.31 | 0.52 | 0.52 | <0.001 | |||
VWCPre | -0.27 | 0.08 | 0.60 | 0.003 | |||
STPre | -0.00 | 0.00 | 0.60 | 0.997 | |||
LAI | 0.95 | 0.00 | 0.60 | 0.502 |
Fig. 6 Relationships of the maximum increment of surface 0-10 cm soil water content (ΔVWC0-10) and lasting time (Tlasting) in the pulse response process to precipitation with precipitation event size (PPT) and soil moisture content before precipitation events (VWCPre) at the two sites (DL, Duolun; XL, Xilinhot). A, Relationship between ΔVWC0-10 and PPT. B, Relationship between Tlasting and PPT. C, Relationship between ΔVWC0-10 and VWCPre. D, Relationship between Tlasting and VWCPre. E, Relationship between the maximum increment of ΔVWC0-10 induced by 1 mm precipitation and VWCPre. ***, p < 0.001; *, p < 0.050; #, p < 0.100.
Fig. 7 Relationships between infiltration depth (Depth) with precipitation event size (PPT) and soil water content before the events (VWCPre) at the two sites (DL, Duolun; XL, Xilinhot). A, Relationship between Depth and PPT. B, Relationship between infiltration depth of 1 mm precipitation (Depth/PPT) and VWCPre. ***, p < 0.001; **, p < 0.010.
土层 Soil layer (cm) | 多伦 Duolun | 锡林浩特 Xilinhot | |||||||
---|---|---|---|---|---|---|---|---|---|
方程 Equation | 样本量 No. of samples | R2 | p | 方程 Equation | 样本量 No. of samples | R2 | p | ||
10 | y = 0.31x - 0.37 | 40 | 0.54 | <0.000 1 | y = 0.39x - 0.91 | 40 | 0.72 | <0.000 1 | |
20 | y = 0.20x + 0.44 | 14 | 0.34 | 0.029 8 | y = 0.34x - 3.45 | 17 | 0.67 | <0.000 1 | |
30 | y = 0.38x - 7.56 | 7 | 0.77 | 0.009 4 | y = 0.27x - 4.12 | 5 | 0.77 | 0.051 3 |
Table 3 Results of linear regression (including equation, R2 and p value) between precipitation event size (x, mm) and the increment of soil water content (y, %) at different soil depth
土层 Soil layer (cm) | 多伦 Duolun | 锡林浩特 Xilinhot | |||||||
---|---|---|---|---|---|---|---|---|---|
方程 Equation | 样本量 No. of samples | R2 | p | 方程 Equation | 样本量 No. of samples | R2 | p | ||
10 | y = 0.31x - 0.37 | 40 | 0.54 | <0.000 1 | y = 0.39x - 0.91 | 40 | 0.72 | <0.000 1 | |
20 | y = 0.20x + 0.44 | 14 | 0.34 | 0.029 8 | y = 0.34x - 3.45 | 17 | 0.67 | <0.000 1 | |
30 | y = 0.38x - 7.56 | 7 | 0.77 | 0.009 4 | y = 0.27x - 4.12 | 5 | 0.77 | 0.051 3 |
Fig. 8 Vertical distributions of soil bulk density (0-100 cm) at the two sites (DL, Duolun; XL, Xilinhot). * indicates significant difference between the two sites at p < 0.050 (n = 5).
1 | Adams JM, Faure H, Fauredenard L, Mcglade JM, Woodward FI (1990). Increases in terrestrial carbon storage from the last glacial maximum to the present.Nature, 348, 711-714. |
2 | Blair JM (1997). Fire, N availability, and plant response in grasslands: A test of the transient maxima hypothesis.Ecology, 78, 2359-2368. |
3 | Burba GG, Verma SB (2005). Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and cultivated wheat ecosystems.Agricultural and Forest Meteorology, 135, 190-201. |
4 | Chen SP, Lin GH, Huang JH, Jenerette GD (2009). Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe.Global Change Biology, 15, 2450-2461. |
5 | Chen ZZ, Wang SP (2000). Typical Steppe Ecosystems of China. Science Press, Beijing. (in Chinese)[陈佐忠, 汪诗平 (2000). 中国典型草原生态系统. 科学出版社, 北京.] |
6 | Coupland RT (1950). Ecology of mixed prairie in Canada.Ecological Monograph, 20, 271-315. |
7 | Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000). Climate extremes: Observations, modeling, and impacts.Science, 289, 2068-2074. |
8 | Falster DS, Warton DI, Wright IJ (. Cited: 11 Mar. 2006. |
9 | Fay PA, Blair JM, Smith MD, Nippert JB, Carlisle JD, Knapp AK (2011). Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function.Biogeosciences, 8, 3053-3068. |
10 | Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason PF, Hennessy KJ, Suppiah R, Page CM, Wibig J, Fortuniak K, Razuvaev VN, Douglas A, Førland Eirik, Zhai PM (1999). Changes in the probability of heavy precipitation: Important indicators of climatic change.Climatic Change, 42, 243-283. |
11 | Hao YB (2006). Characteristics of Net Ecosystem Exchange of Carbon Dioxide and Their Driving Factors over a Fenced Leymus chinensis Steppe in Inner Mongolia. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. 115-117. (in Chinese with English abstract)[郝彦宾 (2006). 内蒙古羊草草原碳通量观测及其驱动机制分析. 博士学位论文, 中国科学院植物研究所, 北京. 115-117.] |
12 | Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD (2005). Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem.Global Change Biology, 11, 322-334. |
13 | Heisler-White JL, Blair JM, Kelly EF, Harmoney K, Knapp AK (2009). Contingent productivity responses to more extreme rainfall regimes across a grassland biome.Global Change Biology, 15, 2894-2904. |
14 | Heisler-White JL, Knapp AK, Kelly EF (2008). Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland.Oecologia, 158, 129-140. |
15 | Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.Oecologia, 141, 254-268. |
16 | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York. |
17 | Knapp AK, Beier C, Briske DD, Classen AT, Luo YQ, Reich- stein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems.Bioscience, 58, 811-821. |
18 | Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland.Science, 298, 2202-2205. |
19 | Knapp AK, Smith MD (2001). Variation among biomes in temporal dynamics of aboveground primary production.Science, 291, 481-484. |
20 | Liu XZ, Wan SQ, Su B, Hui DF, Luo YQ (2002). Response of soil CO2 ef?ux to water manipulation in a tallgrass prairie ecosystem.Plant and Soil, 240, 213-223. |
21 | Loik ME, Breshears DD, Lauenroth WK, Belnap J (2004). A multi-scale perspective of water pulses in dryland ecosystems: Climatology and ecohydrology of the western USA.Oecologia, 141, 269-281. |
22 | Miao HX (2008). Effects of Cultivation and Grazing on Evapotranspiration of Steppe Ecosystems in Inner Mongolia, China. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. 62-74. (in Chinese with English abstract)[苗海霞 (2008). 开垦和放牧对内蒙古半干旱草原蒸发散的影响. 博士学位论文, 中国科学院植物研究所, 北京. 62-74.] |
23 | Miller PC, Poole DK, Miller PM (1983). The Influence of annual precipitation, topography, and vegetative cover on soil moisture and summer drought in Southern California.Oecologia, 56, 385-391. |
24 | Ni J, Zhang XS (2000). Climate variability, ecological gradient and the Northeast China Transect (NECT).Journal of Arid Environments, 46, 313-325. |
25 | Oki T, Kanae S (2006). Global hydrological cycles and world water resources.Science, 313, 1068-1072. |
26 | Potts DL, Huxman TE, Cable JM, English NB, Ignace DD, Eilts JA, Mason MJ, Weltzin JF, Williams DG (2006). Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland.New Phytologist, 170, 849-860. |
27 | Ryel RJ, Leffler AJ, Peek MS, Ivans CY, Caldwell MM (2004). Water conservation in Artemisia tridentata through redistribution of precipitation.Oecologia, 141, 335-345. |
28 | Sala OE, Lauenroth WK (1982). Small rainfall events: An eco- logical role in semiarid regions.Oecologia, 53, 301-304. |
29 | Schenk HJ, Jackson RB (2005). Mapping the global distribution of deep roots in relation to climate and soil characteristics.Geoderma, 126, 129-140. |
30 | Schwinning S, Sala OE (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems.Oecologia, 141, 211-220. |
31 | Thomey ML, Collins SL, Vargas R, Johnson JE, Brown RF, Natvig DO, Friggens MT (2011). Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland.Global Change Biology, 17, 1505-1515. |
32 | Weltzin JF, Tissue DT (2003). Resource pulses in arid environments-patterns of rain, patterns of life.New Phytologist, 157, 171-173. |
33 | Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts NM (2014). Future changes to the intensity and frequency of short- duration extreme rainfall.Reviews of Geophysics, 52, 522-555. |
34 | Wilcox KR, von Fischer JC, Muscha JM, Petersen MK, Knapp AK (2015). Contrasting above- and belowground sensitivity of three great plains grasslands to altered rainfall regimes.Global Change Biology, 21, 335-344. |
35 | Williams CA, Hanan N, Scholes RJ, Kutsch W (2009). Com- plexity in water and carbon dioxide fluxes following rain pulses in an African savanna.Oecologia, 161, 469-480. |
36 | Yahdjian L, Sala OE (2006). Vegetation structure constrains primary production response to water availability in the Patagonian steppe.Ecology, 87, 952-962. |
37 | Yaseef NR, Yakir D, Rotenberg E, Schiller G, Cohen S (2010). Ecohydrology of a semi-arid forest: Partitioning among water balance components and its implications for predicted precipitation changes.Ecohydrology, 3, 143-154. |
[1] | LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085. |
[2] | GAMADAERJI , YANG Ze, TAN Xing-Ru, WANG Shan-Shan, LI Wei-Jing, YOU Cui-Hai, WANG Yan-Bing, ZHANG Bing-Wei, REN Ting-Ting, CHEN Shi-Ping. Effect of altered litter input and nitrogen addition on ecosystem aboveground primary productivity and plant functional group composition in a semiarid grassland [J]. Chin J Plant Ecol, 2020, 44(8): 791-806. |
[3] | ZHANG Zhen-Zhen, YANG Ke-Jia, GU Yu-Lu, ZHAO Ping, OUYANG Lei. Effects of simulated changes in precipitation pattern on sap flux in two tree species in subtropical region [J]. Chin J Plant Ecol, 2019, 43(11): 988-998. |
[4] | LI Wei-Jing, CHEN Shi-Ping, ZHANG Bing-Wei, TAN Xing-Ru, WANG Shan-Shan, YOU Cui-Hai. Partitioning of soil respiration components and evaluating the mycorrhizal contribution to soil respiration in a semiarid grassland [J]. Chin J Plan Ecolo, 2018, 42(8): 850-862. |
[5] | SONG Xiao-Yan, WANG Gen-Xu, RAN Fei, YANG Yan, ZHANG Li, XIAO Yao. Flowering phenology and growth of typical shrub grass plants in response to simulated warmer and drier climate in early succession Taiga forests in the Da Hinggan Ling of northeast China [J]. Chin J Plant Ecol, 2018, 42(5): 539-549. |
[6] | LI Jin-Bo, YAO Nan, ZHAO Ying, FAN Ting, ZHANG Jian-Guo, LAN Zhi-Long, YI Jun, SI Bing-Cheng. Characteristics of soil water distribution and evaluation of recharge rate under different grazing history in the Xilin Gol Steppe [J]. Chin J Plant Ecol, 2018, 42(10): 1033-1042. |
[7] | Ting XU, Cheng-Zhang ZHAO, Ling HAN, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG. Correlation between vein density and water use efficiency of Salix matsudana in Zhangye Wetland, China [J]. Chin J Plan Ecolo, 2017, 41(7): 761-769. |
[8] | Chao GUAN, Peng ZHANG, Xin-Rong LI. Responses of soil respiration with biocrust cover to water and temperature in the southeastern edge of Tengger Desert, Northwest China [J]. Chin J Plant Ecol, 2017, 41(3): 301-310. |
[9] | Xiao-Gai GE, Ben-Zhi ZHOU, Wen-Fa XIAO, Xiao-Ming WANG, Yong-Hui CAO, Ming YE. Effects of biochar addition on dynamics of soil respiration and temperature sensitivity in a Phyllostachys edulis forest [J]. Chin J Plant Ecol, 2017, 41(11): 1177-1189. |
[10] | Qiang ZHANG, Jia-Xiang LI, Zong-Qiang XIE. Effects of nitrogen addition on soil respiration of Rhododendron simsii shrubland in the subtropical mountainous areas of China [J]. Chin J Plant Ecol, 2017, 41(1): 95-104. |
[11] | LI Yue, LIU Ying-Hui, SHEN Wei-Jun, XU Xia, TIAN Yu-Qiang. Responses of soil heterotrophic respiration to changes in soil temperature and moisture in a Stipa krylovii grassland in Nei Mongol [J]. Chin J Plant Ecol, 2014, 38(3): 238-248. |
[12] | WEN Jun, ZHOU Hua-Kun, YAO Bu-Qing, LI Yi-Kang, ZHAO Xin-Quan, CHEN Zhe, LIAN Li-Ye, GUO Kai-Xian. Characteristics of soil respiration in different degraded alpine grassland in the source region of Three-River [J]. Chin J Plant Ecol, 2014, 38(2): 209-218. |
[13] | LIU Su-Xia, XING Bo, YUAN Guo-Fu, MO Xing-Guo, LIN Zhong-Hui. Relationship analysis between soil moisture in root zone and top-most layer in China [J]. Chin J Plant Ecol, 2013, 37(1): 1-17. |
[14] | GUO Ya-Qi, BORJIGIDAI Almaz, GAO Qing-Zhu, DUAN Min-Jie, GANZHU Zhabu, WAN Yun-Fan, LI Yu-E, GUO Hong-Bao. Photosynthetic characteristics of Stipa purpurea under irrigation in northern Tibet and its short-term response to temperature and CO2 concentration [J]. Chin J Plant Ecol, 2011, 35(3): 311-321. |
[15] | ZHANG Yi, XIE Yong-Sheng, JU Yan, WANG Hui. Effects of controlling apple orchard productivity on soil moisture and photosynthetic characteristics [J]. Chin J Plant Ecol, 2010, 34(8): 973-978. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn