Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (11): 1177-1189.DOI: 10.17521/cjpe.2017.0098
Special Issue: 生态系统碳水能量通量; 土壤呼吸
• Research Articles • Previous Articles Next Articles
Xiao-Gai GE1,2, Ben-Zhi ZHOU1,2,*(), Wen-Fa XIAO3, Xiao-Ming WANG1,2, Yong-Hui CAO1,2, Ming YE4
Received:
2017-04-10
Accepted:
2017-08-29
Online:
2017-11-10
Published:
2017-11-10
Contact:
Ben-Zhi ZHOU
Xiao-Gai GE, Ben-Zhi ZHOU, Wen-Fa XIAO, Xiao-Ming WANG, Yong-Hui CAO, Ming YE. Effects of biochar addition on dynamics of soil respiration and temperature sensitivity in a Phyllostachys edulis forest[J]. Chin J Plant Ecol, 2017, 41(11): 1177-1189.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2017.0098
林分 Stand | 海拔 Elevation (m) | 树高 Tree height (m) | 胸径 DBH (cm) | 坡度 Slope (°) | 坡向 Aspect | 凋落物层厚度 LLD (cm) | 土壤有机碳 SOC (g·kg-1) | 总氮 TN (g·kg-1) | 总磷 TP (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|
1 | 141 | 12.8 | 10.2 | 10 | S | 2.04 | 33.10 ± 9.06 | 2.86 ± 0.79 | 0.56 ± 0.93 |
2 | 115 | 13.0 | 10.3 | 15 | S | 2.22 | 30.1 ± 8.04 | 2.59 ± 0.48 | 0.37 ± 1.03 |
3 | 86 | 13.3 | 10.7 | 20 | S | 2.47 | 28.8 ± 8.21 | 2.38 ± 0.29 | 0.43 ± 1.09 |
4 | 157 | 12.2 | 10.1 | 20 | S | 2.60 | 34.1 ± 8.04 | 2.59 ± 0.29 | 0.72 ± 1.09 |
Table 1 General characteristics of the forest stands studied ((mean ± SD)
林分 Stand | 海拔 Elevation (m) | 树高 Tree height (m) | 胸径 DBH (cm) | 坡度 Slope (°) | 坡向 Aspect | 凋落物层厚度 LLD (cm) | 土壤有机碳 SOC (g·kg-1) | 总氮 TN (g·kg-1) | 总磷 TP (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|
1 | 141 | 12.8 | 10.2 | 10 | S | 2.04 | 33.10 ± 9.06 | 2.86 ± 0.79 | 0.56 ± 0.93 |
2 | 115 | 13.0 | 10.3 | 15 | S | 2.22 | 30.1 ± 8.04 | 2.59 ± 0.48 | 0.37 ± 1.03 |
3 | 86 | 13.3 | 10.7 | 20 | S | 2.47 | 28.8 ± 8.21 | 2.38 ± 0.29 | 0.43 ± 1.09 |
4 | 157 | 12.2 | 10.1 | 20 | S | 2.60 | 34.1 ± 8.04 | 2.59 ± 0.29 | 0.72 ± 1.09 |
Fig. 1 Monthly dynamics of soil respiration in Phyllostachys edulis forest stands with different biochar addition treatments (mean ± SD). CK, control; LB, low rate of biochar addition (5 t·hm-2); HB, high rate of biochar addition (20 t·hm-2); MB, medium rate of biochar addition (10 t·hm-2).
Fig. 2 The characteristics of soil respiration in growing and non-growing seasons in Phyllostachys edulis forest stands with different biochar treatments (mean ± SD). Different lowercase letters indicate significant differences among biochar treatments within seasons, and different capital letters indicate significant differences among seasons within biochar treatments. CK, control; LB, low rate of biochar addition (5 t·hm-2); HB, high rate of biochar addition (20 t·hm-2); MB, medium rate of biochar addition (10 t·hm-2).
林分 Stands | 季节 Season | 生物质炭添加 Biochar addition | 季节×生物质炭添加 Season × biochar addition | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
林分1 Stand 1 | 673.41 | 0.00 | 16.66 | 0.00 | 7.64 | 0.00 |
林分2 Stand 2 | 731.47 | 0.00 | 13.36 | 0.00 | 2.30 | 0.08 |
林分3 Stand 3 | 695.20 | 0.00 | 1.54 | 0.204 | 0.77 | 0.51 |
林分4 Stand 4 | 655.78 | 0.00 | 1.14 | 0.334 | 0.64 | 0.60 |
Table 2 Two-way ANOVA for the effects of biochar addition treatments and seasons on soil respiration in Phyllostachys edulis forest stands
林分 Stands | 季节 Season | 生物质炭添加 Biochar addition | 季节×生物质炭添加 Season × biochar addition | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
林分1 Stand 1 | 673.41 | 0.00 | 16.66 | 0.00 | 7.64 | 0.00 |
林分2 Stand 2 | 731.47 | 0.00 | 13.36 | 0.00 | 2.30 | 0.08 |
林分3 Stand 3 | 695.20 | 0.00 | 1.54 | 0.204 | 0.77 | 0.51 |
林分4 Stand 4 | 655.78 | 0.00 | 1.14 | 0.334 | 0.64 | 0.60 |
Fig. 3 The effects of biochar addition on monthly soil moisture in Phyllostachys edulis forest stands. The Y-axis means the percent of soil moisture difference by biochar addition to the control. (CK-LB)/CK, (CK-MB)/CK, (CK-HB)/CK mean the decreased (minus value indicates a increase) percent of soil moisture on LB, MB and HB treatment, compared with control treatment. The abbreviations are the same as in Fig. 2.
Fig. 4 The characteristics of monthly soil temperaturein Phyllostachys edulis forest stands with different biochar addition treatments. CK, control; LB, low rate of biochar addition (5 t·hm-2); HB, high rate of biochar addition (20 t·hm-2); MB, medium rate of biochar addition (10 t·hm-2).
Fig. 5 Relationships between soil respiration and soil temperature in Phyllostachys edulis forest stands with different biochar addition treatments. CK, control; LB, low rate of biochar addition (5 t·hm-2); HB, high rate of biochar addition (20 t·hm-2); MB, medium rate of biochar addition (10 t·hm-2). Q10, soil temperature sensitivity.
林分 Stand | CK | LB | ||||
---|---|---|---|---|---|---|
拟合方程 Fitted equation | R2 | p | 拟合方程 Fitted equation | R2 | p | |
1 | y = 0.025e0.095x(2.609W - 0.066W2) | 0.80 | ** | y = 0.067e0.097x(0.523W - 0.012W2) | 0.79 | ** |
2 | y = 0.029e0.088x(2.372W - 0.056W2) | 0.76 | ** | y = 0.112e0.093x(0.437W - 0.010W2) | 0.69 | ** |
3 | y = 0.018e0.085x(3.968W - 0.096W2) | 0.72 | ** | y = 0.098e0.072x(0.819W - 0.020W2) | 0.72 | ** |
4 | y = 0.030e0.077x(2.828W - 0.060W2) | 0.73 | ** | y = 0.021e0.093x(0.387W- 0.068W2) | 0.80 | ** |
林分 Stand | MB | HB | ||||
拟合方程 Fitted equation | R2 | p | 拟合方程 Fitted equation | R2 | p | |
1 | y = 0.080e0.086x(0.653W - 0.012W2) | 0.65 | ** | y = 0.091e0.083x(0.510W - 0.008W2) | 0.65 | ** |
2 | y = 0.024e0.091x(1.776W - 0.035W2) | 0.76 | ** | y = 0.096e0.078x(0.769W - 0.017W2) | 0.71 | ** |
3 | y = 0.009e0.086x(6.901W - 0.157W2) | 0.73 | ** | y = 0.032e0.079x(2.237W - 0.049W2) | 0.74 | ** |
4 | y = 0.062e0.090x(1.059W - 0.025W2) | 0.69 | ** | y = 0.015e0.095x(3.825W - 0.087W2) | 0.86 | ** |
Table 3 Regression models of soil respiration (y) with soil temperature (x) and moisture (W) in Phyllostachys edulis forest stands with different biochar addition treatments
林分 Stand | CK | LB | ||||
---|---|---|---|---|---|---|
拟合方程 Fitted equation | R2 | p | 拟合方程 Fitted equation | R2 | p | |
1 | y = 0.025e0.095x(2.609W - 0.066W2) | 0.80 | ** | y = 0.067e0.097x(0.523W - 0.012W2) | 0.79 | ** |
2 | y = 0.029e0.088x(2.372W - 0.056W2) | 0.76 | ** | y = 0.112e0.093x(0.437W - 0.010W2) | 0.69 | ** |
3 | y = 0.018e0.085x(3.968W - 0.096W2) | 0.72 | ** | y = 0.098e0.072x(0.819W - 0.020W2) | 0.72 | ** |
4 | y = 0.030e0.077x(2.828W - 0.060W2) | 0.73 | ** | y = 0.021e0.093x(0.387W- 0.068W2) | 0.80 | ** |
林分 Stand | MB | HB | ||||
拟合方程 Fitted equation | R2 | p | 拟合方程 Fitted equation | R2 | p | |
1 | y = 0.080e0.086x(0.653W - 0.012W2) | 0.65 | ** | y = 0.091e0.083x(0.510W - 0.008W2) | 0.65 | ** |
2 | y = 0.024e0.091x(1.776W - 0.035W2) | 0.76 | ** | y = 0.096e0.078x(0.769W - 0.017W2) | 0.71 | ** |
3 | y = 0.009e0.086x(6.901W - 0.157W2) | 0.73 | ** | y = 0.032e0.079x(2.237W - 0.049W2) | 0.74 | ** |
4 | y = 0.062e0.090x(1.059W - 0.025W2) | 0.69 | ** | y = 0.015e0.095x(3.825W - 0.087W2) | 0.86 | ** |
Fig. 6 Relationships of soil temperature sensitivity (Q10) with soil temperature and moisture in Phyllostachys edulis forest stands with biochar addition.
Fig. 7 The effects of biochar addition on annual cumulative soil respiration in Phyllostachys edulis forest stands (mean ± SD). Different lowercase letters indicate significant differences among biochar treatments within forest stands. CK, control; LB, low rate of biochar addition (5 t·hm-2); MB, medium rate of biochar addition (10 t·hm-2); HB, high rate of biochar addition (20 t·hm-2). (CK-LB)/CK, (CK-MB)/CK, (CK-HB)/CK mean the decrease percent of annual cumulative soil respiration on LB, MB and HB treatment, compared with control treatment.
[1] | Almagro M, López J, Querejeta JI, Martínez-Mena M (2009). Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem.Soil Biology & Biochemistry, 41, 594-605. |
[2] |
Ameloot N, Graber ER, Verheijen FGA, de Neve S (2013). Interactions between biochar stability and soil organisms: Review and research needs.European Journal of Soil Science, 64, 379-390.
DOI URL |
[3] |
Bamminger C, Marschner B, Jüschke E (2014). An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils.European Journal of Soil Science, 65, 72-82.
DOI URL |
[4] |
Bruun S, Clauson-Kaas S, Bobu?ská L, Thomsen IK (2014). Carbon dioxide emissions from biochar in soils: Role of clay, microorganisms and carbonates.European Journal of Soil Science, 65, 52-59.
DOI URL |
[5] | Chen JH, Li SH, Liang CF, Xu QF, Li YC, Qin H, Fuhrmann JF (2017). Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle size and addition rate. Science of the Total Environment, 574, 24-33. |
[6] |
Cross A, Sohi SP (2011). The priming potential of biochar products in relation to labile carbon contents and soil organic matter status.Soil Biology & Biochemistry, 43, 2127-2134.
DOI URL |
[7] | DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006). Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa pine forests.Soil Science Society of America Journal, 70, 448-453. |
[8] |
Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009). Global patterns in belowground communities.Ecology Letters, 12, 1238-1249.
DOI URL PMID |
[9] |
Forbes MS, Raison RJ, Skjemstad JO (2006). Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems.Science of the Total Environment, 370, 190-206.
DOI URL PMID |
[10] |
Ge XG, Zhou BZ, Xiao WF, Wang XM, Cao YH (2016). Priming effect of biochar addition on soil carbon emission: A review.Ecology and Environmental Sciences, 25, 339-345. (in Chinese with English abstract)[葛晓改, 周本智, 肖文发, 王小明, 曹永慧 (2016). 生物质炭输入对土壤碳排放的激发效应研究进展. 生态环境学报, 25, 339-345.]
DOI URL |
[11] |
Hardie M, Clothier B, Bound S, Oliver G, Close D (2014). Does biochar influence soil physical properties and soil water availability?Plant and Soil, 376, 347-361.
DOI URL |
[12] |
Hashimoto S, Carvalhais N, Ito A, Migliavacca M, Nishina K, Reichstein M (2015). Global spatiotemporal distribution of soil respiration modeled using a global database.Biogeosciences, 12, 4121-4132.
DOI URL |
[13] |
He XH, Du ZL, Wang YD, Lu N, Zhang QZ (2016). Sensitivity of soil respiration to soil temperature decreased under deep biochar amended soils in temperate croplands.Applied Soil Ecology, 108, 204-210.
DOI URL |
[14] |
Herath HMSK, Camps-Arbestain M, Hedley MJ, Kirschbaum MUF, Wang T, van Hale R (2015). Experimental evidence for sequestering C with biochar by avoidance of CO2 emissions from original feedstock and protection of native soil organic matter.Global Change Biology Bioenergy, 7, 512-526.
DOI URL |
[15] | Hughes RF, Kauffman JB, Jaramillo VJ (1999). Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of méxico.Ecology, 80, 1892-1907. |
[16] |
Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z (2008). Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand.Global Change Biology, 14, 1305-1318.
DOI URL |
[17] |
Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, DeLuca TH (2011). Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated.Soil Biology & Biochemistry, 43, 1723-1731.
DOI URL |
[18] | Kammann CI, Linsel S, G?βling JW, Koyro HW (2011). Influence of biochar on drought tolerance ofChenopodium quinoa Willd and on soil-plant relations. Plant and Soil, 345, 195-210. |
[19] |
Kuzyakov Y, Friedel JK, Stahr K (2000). Review of mechanisms and quantification of priming effects.Soil Biology & Biochemistry, 32, 1485-1498.
DOI URL |
[20] | Lal R, Follett RF, Stewart BA, Kimble JM (2007). Soil carbon sequestration to mitigate climate change and advance food security.Soil Science, 172, 943-956. |
[21] |
Lehmann J, Gaunt J, Rondon M (2006). Bio-char sequestration terrestrial ecosystems—A review.Mitigation and Adaptation Strategies for Global Change, 11, 403-427.
DOI URL |
[22] |
Lellei-Kovács E, Botta-Dukát Z, de Dato G, Estiarte M, Guidolotti G, Kopittke GR, Kovács-Láng E, Kr?el-Dulay G, Larsen KS, Pe?uelas J, Smith AR, Sowerby A, Tietema A, Schmidt IK (2016). Temperature dependence of soil respiration modulated by thresholds in soil water availability across European shrubland ecosystems.Ecosystems, 19, 1460-1477.
DOI URL |
[23] |
Liang BQ, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luiz?o FJ (2010). Black carbon affects the cycling of non-black carbon in soil.Organic Geochemistry, 41, 206-213.
DOI URL |
[24] | Liu DJ, Zhang JX, Lu Q, Li X, Wu Z (2016). Effects of rain supplementation on the temperature sensitivity of soil respiration inNitraria sphaerocarpa community in a hyperarid area of Dunhuang, China. Chinese Journal of Ecology, 35, 584-590. (in Chinese with English abstract)[刘殿君, 张金鑫, 卢琦, 李旭, 武哲 (2016). 极端干旱区增雨对泡泡刺(Nitraria sphaerocarpa)群落土壤呼吸温度敏感性的影响. 生态学杂志, 35, 584-590.] |
[25] |
Liu XY, Zheng JF, Zhang DX, Cheng K, Zhou HM, Zhang AF, Li LQ, Joseph S, Smith P, Crowley D, Kuzyakov Y, Pan GX (2016). Biochar has no effect on soil respiration across Chinese agricultural soils. Science of the Total Environment, 554-555, 259-265.
DOI URL PMID |
[26] |
Luo Y, Durenkamp M, de Nobili M, Lin Q, Brookes PC (2011). Short term soil priming effects and the mineralization of biochar following its incorporation to soils of different pH.Soil Biology & Biochemistry, 43, 2304-2314.
DOI URL |
[27] | Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol.Plant and Soil, 333, 117-128. |
[28] |
Marland E, Marland G (2003). The treatment of long-lived, carbon-containing products in inventories of carbon dioxide emissions to the atmosphere.Environmental Science & Policy, 6, 139-152.
DOI URL |
[29] |
Mitchell PJ, Simpson AJ, Soong R, Simpson MJ (2015). Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil.Soil Biology & Biochemistry, 81, 244-254.
DOI URL |
[30] |
Novak JM, Busscher WJ, Watts DW, Laird DA, Ahmedna MA, Naiandou MAS (2010). Short-term CO2 mineralization after additions of biochar and switchgrass to a typic kandiudult.Geoderma, 154, 281-288.
DOI URL |
[31] |
Prendergast-Miller MT, Duvall M, Sohi SP (2014). Biochar- root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability.European Journal of Soil Science, 65, 173-185.
DOI URL |
[32] | Saiz G, Byrne KA, Butterbach-Bahl K, Kiese R, Blujdea V, Farrell EP (2006). Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland.Global Change Biology, 12, 1007-1020. |
[33] | Sohi SP, Krull E, Lopez-Capel E, Bol R (2010). A review of biochar and its use and function in soil. In: Donald LS ed. Advances in Agronomy. Academic Press, Burlington, USA. 47-82. |
[34] | Spokas KA, Baker JM, Reicosky DC (2010). Ethylene: Potential key for biochar amendment impacts.Plant and Soil, 333, 443-452. |
[35] |
Suseela V, Conant RT, Wallenstein MD, Dukes JS (2012). Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment.Global Change Biology, 18, 336-348.
DOI URL |
[36] |
Tammeorg P, Simojoki A, M?kel? P, Stoddard FL, Alakukku L, Helenius J (2014). Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand.Agriculture, Ecosystems and Environment, 191, 108-116.
DOI URL |
[37] |
Thomas SC, Gale N (2015). Biochar and forest restoration: A review and meta-analysis of tree growth responses.New Forest, 46, 931-946.
DOI URL |
[38] |
Ulyett J, Sakrabani R, Kibblewhite M, Hann M (2014). Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils.European Journal of Soil Science, 65, 96-104.
DOI URL |
[39] |
Verheijen FGA, Graber ER, Ameloot N, Bastos AC, Sohi S, Knicker H (2014). Biochars in soils: New insights and emerging research needs. European Journal of Soil Science, 65, 22-27.
DOI URL |
[40] |
Wardle DA, Nilsson MC, Zackrisson O (2008). Fire-derived charcoal causes loss of forest humus.Science, 320, 629.
DOI URL PMID |
[41] |
Wu JJ, Yang ZJ, Liu XF, Xiong DC, Lin WS, Chen CQ, Wang XH (2014). Analysis of soil respiration and components inCastanopsis carlesii and Cunninghamia lanceolata plantations. Chinese Journal of Plant Ecology, 38, 45-53. (in Chinese with English abstract)[吴君君, 杨智杰, 刘小飞, 熊德成, 林伟盛, 陈朝琪, 王小红 (2014). 米槠和杉木人工林土壤呼吸及其组分分析. 植物生态学报, 38, 45-53.]
DOI URL |
[42] | Xu Y (2012). Research on Community Structure and Carbon Accumulation of Moso Bamboo Forest. PhD dissertation, Zhejiang University, Hangzhou. (in Chinese with English abstract)[徐涌 (2012). 毛竹林群落结构与碳积累规律研究. 博士学位论文, 浙江大学, 杭州.] |
[43] | Yang QP, Xu M, Liu HS, Wang JS, Liu LX, Chi YG, Zheng YP (2011). Impact factors and uncertainties of the temperature sensitivity of soil respiration.Acta Ecologica Sinica, 31, 2301-2311. (in Chinese with English abstract)[杨庆朋, 徐明, 刘洪升, 王劲松, 刘丽香, 迟永刚, 郑云普 (2011). 土壤呼吸温度敏感性的影响因素和不确定性. 生态学报, 31, 2301-2311.] |
[44] |
Yuste JC, Baldocchi DD, Gershenson A, Goldstein A, Misson L, Wong S (2007). Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology, 13, 2018-2035.
DOI URL |
[45] | Zhou BZ (2006). Dynamics of Bamboo’s Below-ground System Based on Minirhizotron Technique. PhD dissertation, Chinese Academy of Forestry, Beijing. (in Chinese with English abstract)[周本智 (2006). 基于小观察窗技术的竹林地下系统动态研究. 博士学位论文, 中国林业科学研究院, 北京.] |
[46] |
Zimmerman AR, Gao B, Ahn MY (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils.Soil Biology & Biochemistry, 43, 1169-1179.
DOI URL |
[1] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[2] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[3] | ZHENG Jia-Jia, HUANG Song-Yu, JIA Xin, TIAN Yun, MU Yu, LIU Peng, ZHA Tian-Shan. Spatial variation and controlling factors of temperature sensitivity of soil respiration in forest ecosystems across China [J]. Chin J Plant Ecol, 2020, 44(6): 687-698. |
[4] | YANG Ze, null null, TAN Xing-Ru, YOU Cui-Hai, WANG Yan-Bing, YANG Jun-Jie, HAN Xing-Guo, CHEN Shi-Ping. Effects of nitrogen addition amount and frequency on soil respiration and its components in a temperate semiarid grassland [J]. Chin J Plant Ecol, 2020, 44(10): 1059-1072. |
[5] | HU Shu-Ya,DIAO Hua-Jie,WANG Hui-Ling,BO Yuan-Chao,SHEN Yan,SUN Wei,DONG Kuan-Hu,HUANG Jian-Hui,WANG Chang-Hui. Response of soil respiration to addition of different forms of nitrogen and mowing in a saline-alkali grassland in the northern agro-pastoral ecotone [J]. Chin J Plant Ecol, 2020, 44(1): 70-79. |
[6] | WEN Chao,SHAN Yu-Mei,YE Ru-Han,ZHANG Pu-Jin,MU Lan,CHANG Hong,REN Ting-Ting,CHEN Shi-Ping,BAI Yong-Fei,HUANG Jian-Hui,SUN Hai-Lian. Effects of nitrogen and water addition on soil respiration in a Nei Mongol desert steppe with different intensities of grazing history [J]. Chin J Plant Ecol, 2020, 44(1): 80-92. |
[7] | WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin [J]. Chin J Plant Ecol, 2018, 42(3): 382-396. |
[8] | Kai-Jun YANG, Wan-Qin YANG, Yu TAN, Ruo-Yang HE, Li-Yan ZHUANG, Zhi-Jie LI, Bo TAN, Zhen-Feng XU. Short-term responses of winter soil respiration to snow removal in a Picea asperata forest of western Sichuan [J]. Chin J Plant Ecol, 2017, 41(9): 964-971. |
[9] | Rui-Yu ZHAO, Zheng-Cai LI, Bin WANG, Xiao-Gai GE, Yun-Xi DAI, Zhi-Xia ZHAO, Yu-Jie ZHANG. Duration of mulching caused variable pools of labile organic carbon in a Phyllostachys edulis plantation [J]. Chin J Plant Ecol, 2017, 41(4): 418-429. |
[10] | YANG Qing-Xiao, TIAN Da-Shuan, ZENG Hui, NIU Shu-Li. Main factors driving changes in soil respiration under altering precipitation regimes and the controlling processes [J]. Chin J Plant Ecol, 2017, 41(12): 1239-1250. |
[11] | Jian-Hua ZHANG, Zhi-Yao TANG, Hai-Hua SHEN, Jing-Yun FANG. Effects of nitrogen addition on soil respiration in shrublands in Mt. Dongling, Beijing, China [J]. Chin J Plant Ecol, 2017, 41(1): 81-94. |
[12] | Xiao-Jie LI, Xiao-Fei LIU, De-Cheng XIONG, Wei-Sheng LIN, Ting-Wu LIN, You-Wen SHI, Jin-Sheng XIE, Yu-Sheng YANG. Impact of litterfall addition and exclusion on soil respiration in Cunninghamia lanceolata plantation and secondary Castanopsis carlesii forest in mid-subtropical China [J]. Chin J Plant Ecol, 2016, 40(5): 447-457. |
[13] | Bao-Yu SUN, Guang-Xuan HAN, Liang CHEN, Xiao-Jing CHU, Qing-Hui XING, Li-Xin WU, Shu-Yu ZHU. Effects of elevated temperature on soil respiration in a coastal wetland during the non- growing season in the Yellow River Delta, China [J]. Chin J Plant Ecol, 2016, 40(11): 1111-1123. |
[14] | YAO Hui,HU Xue-Yang,ZHU Jiang-Ling,ZHU Jian-Xiao,JI Cheng-Jun,FANG Jing-Yun. Soil respiration and the 20-year change in three temperate forests in Mt. Dongling, Beijing [J]. Chin J Plan Ecolo, 2015, 39(9): 849-856. |
[15] | CHEN Yong-Gang,TANG Meng-Ping,YANG Chun-Ju,MA Tian-Wu,WANG Li. Spatial analysis of competition in natural Phyllostachys edulis community [J]. Chin J Plan Ecolo, 2015, 39(7): 726-735. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn