Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (2): 275-288.DOI: 10.17521/cjpe.2022.0090
• Research Articles • Previous Articles
ZHANG Yao1, CHEN Lan1, WANG Jie-Ying1, LI Yi1, WANG Jun1,2, GUO Yao-Xin3, REN Cheng-Jie4, BAI Hong-Ying1, SUN Hao-Tian1, ZHAO Fa-Zhu1,2,*()
Received:
2022-03-09
Accepted:
2022-07-06
Online:
2023-02-20
Published:
2023-02-28
Contact:
*(Supported by:
ZHANG Yao, CHEN Lan, WANG Jie-Ying, LI Yi, WANG Jun, GUO Yao-Xin, REN Cheng-Jie, BAI Hong-Ying, SUN Hao-Tian, ZHAO Fa-Zhu. Differences and influencing factors of microbial carbon use efficiency in forest rhizosphere soils at different altitudes in Taibai Mountain, China[J]. Chin J Plant Ecol, 2023, 47(2): 275-288.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0090
酶 Enzyme | 缩写 Abbreviation | 酶编号 Enzyme number | 底物 Substrate |
---|---|---|---|
纤维二糖水解酶 Cellobiohydrolase | CBH | 3.2.1.91 | 4-甲基伞形酮-β-D-纤维素二糖苷 4-Methylumbelliferyl-β-D-cellobioside |
β-1,4-木糖苷酶 β-1,4-xylosidase | BX | 3.2.1.37 | 4-甲基伞形酮酰-β-D-吡喃木糖苷 4-Methylumbelliferyl-β-D-xylopyranoside |
β-1,4-葡萄糖苷酶 β-1,4-glucosidase | BG | 3.2.1.21 | 4-甲基伞形酮酰-β-D-吡喃葡糖酸苷 4-Methylumbelliferyl-β-D-glucoside |
碱性磷酸酶 Alkaline phosphatase | AKP | 3.1.3.1 | 4-甲基伞形酮磷酸酯 4-Methylumbelliferyl-phosphate |
乙酰基氨基葡萄糖苷酶 β-1,4-N-acetylglucosaminidase | NAG | 3.2.1.14 | 4-甲基香豆素-2-乙酰氨基-2-脱氧-β-D-吡喃葡萄糖苷 4-Methylumbelliferyl-2-acetamido-2-deoxy-beta-D-glucopyranoside |
亮氨酸氨基肽酶 Leucine aminopeptidase | LAP | 3.4.11.1 | L-亮氨酰-7-氨基-4-甲基香豆素盐酸盐 L-Leucine-7-amino-4-methylcoumarin hydrochloride |
Table 1 Basic information of soil extracellular enzymes
酶 Enzyme | 缩写 Abbreviation | 酶编号 Enzyme number | 底物 Substrate |
---|---|---|---|
纤维二糖水解酶 Cellobiohydrolase | CBH | 3.2.1.91 | 4-甲基伞形酮-β-D-纤维素二糖苷 4-Methylumbelliferyl-β-D-cellobioside |
β-1,4-木糖苷酶 β-1,4-xylosidase | BX | 3.2.1.37 | 4-甲基伞形酮酰-β-D-吡喃木糖苷 4-Methylumbelliferyl-β-D-xylopyranoside |
β-1,4-葡萄糖苷酶 β-1,4-glucosidase | BG | 3.2.1.21 | 4-甲基伞形酮酰-β-D-吡喃葡糖酸苷 4-Methylumbelliferyl-β-D-glucoside |
碱性磷酸酶 Alkaline phosphatase | AKP | 3.1.3.1 | 4-甲基伞形酮磷酸酯 4-Methylumbelliferyl-phosphate |
乙酰基氨基葡萄糖苷酶 β-1,4-N-acetylglucosaminidase | NAG | 3.2.1.14 | 4-甲基香豆素-2-乙酰氨基-2-脱氧-β-D-吡喃葡萄糖苷 4-Methylumbelliferyl-2-acetamido-2-deoxy-beta-D-glucopyranoside |
亮氨酸氨基肽酶 Leucine aminopeptidase | LAP | 3.4.11.1 | L-亮氨酰-7-氨基-4-甲基香豆素盐酸盐 L-Leucine-7-amino-4-methylcoumarin hydrochloride |
Fig. 1 Physical and chemical properties of rhizosphere soil at different altitudes in Taibai Mountain (mean ± SE). DOC, dissolved organic carbon; DON, dissolved organic nitrogen; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; MBP, microbial biomass phosphorus; NH4+-N, ammonium nitrogen; NO3--N, nitrate nitrogen; SM, soil moisture; SOC, soil organic carbon; ST, soil temperature; TN, total nitrogen; TP, total phosphorus. Different lowercase letters indicate significant difference (p < 0.05).
海拔 Altitude (m) | α多样性 α diversity | β多样性 β diversity | ||
---|---|---|---|---|
细菌 Bacteria | 真菌 Fungi | 细菌 Bacteria | 真菌 Fungi | |
1 308 | 1.37 ± 0.01d | 0.52 ± 0.01c | 0.00 ± 0.00e | 0.00 ± 0.00c |
1 603 | 1.39 ± 0.01d | 0.60 ± 0.05bc | 0.04 ± 0.01d | 0.05 ± 0.01bc |
1 915 | 1.57 ± 0.01a | 0.99 ± 0.01a | 0.14 ± 0.01a | 0.38 ± 0.04a |
2 292 | 1.42 ± 0.00c | 0.32 ± 0.00d | 0.06 ± 0.00c | 0.10 ± 0.01b |
2 405 | 1.44 ± 0.00bc | 0.62 ± 0.02b | 0.08 ± 0.01b | 0.06 ± 0.03bc |
2 600 | 1.46 ± 0.01b | 0.61 ± 0.04b | 0.14 ± 0.01a | 0.06 ± 0.00bc |
Table 2 Microbial diversity in rhizosphere soil at different altitudes in Taibai Mountain (mean ± SE)
海拔 Altitude (m) | α多样性 α diversity | β多样性 β diversity | ||
---|---|---|---|---|
细菌 Bacteria | 真菌 Fungi | 细菌 Bacteria | 真菌 Fungi | |
1 308 | 1.37 ± 0.01d | 0.52 ± 0.01c | 0.00 ± 0.00e | 0.00 ± 0.00c |
1 603 | 1.39 ± 0.01d | 0.60 ± 0.05bc | 0.04 ± 0.01d | 0.05 ± 0.01bc |
1 915 | 1.57 ± 0.01a | 0.99 ± 0.01a | 0.14 ± 0.01a | 0.38 ± 0.04a |
2 292 | 1.42 ± 0.00c | 0.32 ± 0.00d | 0.06 ± 0.00c | 0.10 ± 0.01b |
2 405 | 1.44 ± 0.00bc | 0.62 ± 0.02b | 0.08 ± 0.01b | 0.06 ± 0.03bc |
2 600 | 1.46 ± 0.01b | 0.61 ± 0.04b | 0.14 ± 0.01a | 0.06 ± 0.00bc |
Fig. 2 Extracellular enzyme activity in rhizosphere soil at different altitudes in Taibai Mountain (mean ± SE). AKP, alkaline phosphatase; BG, β-1,4-glucosidase; BX, β-1,4-xylosidase; CBH, cellobiohydrolase; LAP, leucine aminopeptidase; NAG, β-1,4-N-acetylglucosaminidase. Different lowercase letters indicate significant difference (p < 0.05).
Fig. 3 Plant community diversity characteristics at different altitudes in Taibai Mountain (mean ± SE). Different uppercase letters indicate significant differences between different life forms at the same altitude (p < 0.05), and different lowercase letters indicate significant differences at different altitudes for the same life form (p < 0.05).
Fig. 4 Altitudinal variation of rhizosphere soil microbial carbon use efficiency in Taibai Mountain (mean ± SE). Different lowercase letters indicate significant difference (p < 0.05).
分类 Classification | 相关变量 Relevant variable | 参数 Parameter | ||
---|---|---|---|---|
Mantel分析 Mantel statistic (r) | p | |||
海拔 Altitude | SM, ST | 0.17 | 0.05 | |
土壤基质 Soil substrate | Soil density, pH, DOC, DON, NH4+-N, NO3--N, SOC, TN, TP | 0.34 | <0.01** | |
植物多样性 Plant diversity | 乔木(丰富度、Simpson多样性、Shannon-Wiener多样性) Tree (richness, Simpson diversity, Shannon-Wiener diversity) | |||
灌木(丰富度、Simpson多样性、Shannon-Wiener多样性) Shrub (richness, Simpson diversity, Shannon-Wiener diversity) | 0.29 | 0.01* | ||
草本(丰富度、Simpson多样性、Shannon-Wiener多样性) Herb (richness, Simpson diversity, Shannon-Wiener diversity) | ||||
微生物多样性 Microorganism diversity | α多样性, β多样性 α diversity, β diversity | 0.14 | 0.10 |
Table 3 Relationship between rhizosphere soil carbon use efficiency and environmental factors in Taibai Mountain
分类 Classification | 相关变量 Relevant variable | 参数 Parameter | ||
---|---|---|---|---|
Mantel分析 Mantel statistic (r) | p | |||
海拔 Altitude | SM, ST | 0.17 | 0.05 | |
土壤基质 Soil substrate | Soil density, pH, DOC, DON, NH4+-N, NO3--N, SOC, TN, TP | 0.34 | <0.01** | |
植物多样性 Plant diversity | 乔木(丰富度、Simpson多样性、Shannon-Wiener多样性) Tree (richness, Simpson diversity, Shannon-Wiener diversity) | |||
灌木(丰富度、Simpson多样性、Shannon-Wiener多样性) Shrub (richness, Simpson diversity, Shannon-Wiener diversity) | 0.29 | 0.01* | ||
草本(丰富度、Simpson多样性、Shannon-Wiener多样性) Herb (richness, Simpson diversity, Shannon-Wiener diversity) | ||||
微生物多样性 Microorganism diversity | α多样性, β多样性 α diversity, β diversity | 0.14 | 0.10 |
Fig. 6 Linear fitting analysis of soil microbial carbon use efficiency (CUE) and soil matrix in Taibai Mountain. DOC, dissolved organic carbon; DON, dissolved organic nitrogen; NH4+-N, ammonium nitrogen; NO3--N, nitrate nitrogen; SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus.
Fig. 7 Linear fitting analysis of soil microbial carbon use efficiency and α diversity of plant communities in Taibai Mountain. R2 is corrected, represents the fitting dagree of linear fitting analysis, and its negative value represents poor fitting degree.
[1] |
Allison SD, Wallenstein MD, Bradford MA (2010). Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 3, 336-340.
DOI |
[2] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.] | |
[3] |
Bever JD (2003). Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 157, 465-473.
DOI PMID |
[4] |
Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008). Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proceedings of the National Academy of Sciences of the United States of America, 105, 10583-10588.
DOI PMID |
[5] | Cao CY, Shao JF, Jiang DM, Cui ZB (2011). Effects of fence enclosure on soil nutrients and biological activities in highly degraded grasslands. Journal of Northeastern University (Natural Science), 32, 427-430. |
[曹成有, 邵建飞, 蒋德明, 崔振波 (2011). 围栏封育对重度退化草地土壤养分和生物活性的影响. 东北大学学报(自然科学版), 32, 427-430.] | |
[6] |
Cao R, Wu FZ, Yang WQ, Xu ZF, Tan B, Wang B, Li J, Chang CH (2016). Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions. Chinese Journal of Applied Ecology, 27, 1257-1264.
DOI |
[曹瑞, 吴福忠, 杨万勤, 徐振锋, 谭波, 王滨, 李俊, 常晨晖 (2016). 海拔对高山峡谷区土壤微生物生物量和酶活性的影响. 应用生态学报, 27, 1257-1264.]
DOI |
|
[7] | Chen Z, Yu GR (2020). Advances in the soil microbial carbon use efficiency. Acta Ecologica Sinica, 40, 756-767. |
[陈智, 于贵瑞 (2020). 土壤微生物碳素利用效率研究进展. 生态学报, 40, 756-767.] | |
[8] | Chu HY, Wang YF, Shi Y, Lyu XT, Zhu YG, Han XG (2017). Current status and development trend of soil microbial biogeography. Bulletin of Chinese Academy of Sciences, 32, 585-592. |
[褚海燕, 王艳芬, 时玉, 吕晓涛, 朱永官, 韩兴国 (2017). 土壤微生物生物地理学研究现状与发展态势. 中国科学院院刊, 32, 585-592.] | |
[9] |
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
DOI PMID |
[10] |
Cui YX, Wang X, Zhang XC, Ju WL, Duan CJ, Guo XB, Wang YQ, Fang LC (2020). Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biology & Biochemistry, 147, 107814. DOI: 10.1016/j.soilbio.2020.107814.
DOI |
[11] | Curl EA, Truelove B (1986). The Rhizosphere. Springer, Berlin. |
[12] |
del Giorgio PA, Cole JJ (1998). Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics, 29, 503-541.
DOI URL |
[13] |
Dijkstra P, Thomas SC, Heinrich PL, Heinrich PL, Koch GW, Schwartz E, Hungate BA (2011). Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biology & Biochemistry, 43, 2023-2031.
DOI URL |
[14] | Fang JY, Shen ZH, Tang ZY, Wang ZH (2004). The protocol for the survey plan for plant species diversity of China’s Mountains. Chinese Biodiversity, 12, 5-9. |
[方精云, 沈泽昊, 唐志尧, 王志恒 (2004). “中国山地植物物种多样性调查计划”及若干技术规范. 生物多样性, 12, 5-9.]
DOI |
|
[15] | Guo ZM, Zhang XY, Li DD, Dong WT, Li ML (2017). Characteristics of soil organic carbon and related exo-enzyme activities at different altitudes in temperate forests. Chinese Journal of Applied Ecology, 28, 2888-2896. |
[郭志明, 张心昱, 李丹丹, 董文亭, 李美玲 (2017). 温带森林不同海拔土壤有机碳及相关胞外酶活性特征. 应用生态学报, 28, 2888-2896.]
DOI |
|
[16] |
Hagerty SB, van Groenigen KJ, Allison SD, Hungate BA, Schwartz E, Koch GW, Kolka RK, Dijkstra P (2014). Accelerated microbial turnover but constant growth efficiency with warming in soil. Nature Climate Change, 4, 903-906.
DOI |
[17] | Han XM, Huang ZY, Cheng F, Yang M (2020). Physiochemical properties and microbial community characteristics of rhizosphere soil in Parashorea chinensis plantation. Chinese Journal of Applied Ecology, 31, 3365-3375. |
[韩小美, 黄则月, 程飞, 杨梅 (2020). 望天树人工林根际土壤理化性质及微生物群落特征. 应用生态学报, 31, 3365-3375.]
DOI |
|
[18] | He H (2014). Study on Response of Taibai Mountain High Altitude Timberline to Temperature Change Based on RS and DEM. Master degree dissertation, Northwest University, Xi’an. |
[何红 (2014). 基于RS和DEM的太白山高山林线对气温变化响应的研究. 硕士学位论文, 西北大学, 西安.] | |
[19] |
Herron PM, Stark JM, Holt C, Hooker T, Cardon ZG (2009). Microbial growth efficiencies across a soil moisture gradient assessed using 13C-acetic acid vapor and 15N-ammonia gas. Soil Biology & Biochemistry, 41, 1262-1269.
DOI URL |
[20] |
Hu ZY, Wang GX, Sun XY, Wang J, Chen XP, Song CL, Song XY, Lin S (2019). Variations in belowground carbon use strategies under different climatic conditions. Agricultural and Forest Meteorology, 268, 32-39.
DOI URL |
[21] |
Jones DL, Hill PW, Smith AR, Farrell M, Ge T, Banning NC, Murphy DV (2018). Role of substrate supply on microbial carbon use efficiency and its role in interpreting soil microbial community-level physiological profiles (CLPP). Soil Biology & Biochemistry, 123, 1-6.
DOI URL |
[22] |
Keiblinger KM, Hall EK, Wanek W, Szukics U, Hämmerle I, Ellersdorfer G, Böck S, Strauss J, Sterflinger K, Richter A, Zechmeister-Boltenstern S (2010). The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiology Ecology, 73, 430-440.
DOI PMID |
[23] |
Lee ZM, Schmidt TM (2014). Bacterial growth efficiency varies in soils under different land management practices. Soil Biology & Biochemistry, 69, 282-290.
DOI URL |
[24] | Li DW (2016). Spatial Variation Pattern of Soil Microorganism and Soil Enzyme Activity in Different Altitude at Taibai Mountain. Master degree dissertation, Northwest A&F University, Yangling, Shaanxi. |
[李丹维 (2016). 太白山不同海拔土壤微生物及酶活性的空间变异特征. 硕士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[25] | Liang C, Zhu XF (2021). The soil microbial carbon pump as a new concept for terrestrial carbon sequestration. Scientia Sinica (Terrae), 51, 680-695. |
[梁超, 朱雪峰 (2021). 土壤微生物碳泵储碳机制概论. 中国科学: 地球科学, 51, 680-695.] | |
[26] | Liu YJ, Fan DD, Li XZ, Zhao WQ, Kou YP (2021). Diversity and network features of fungal community in the soils of planted and natural Picea asperata forests. Chinese Journal of Applied Ecology, 32, 1441-1451. |
[刘艳娇, 樊丹丹, 李香真, 赵文强, 寇涌苹 (2021). 人工与天然云杉林土壤真菌群落多样性及菌群网络关系特征. 应用生态学报, 32, 1441-1451.]
DOI |
|
[27] | Liu ZX, Zhu TH, Zhang J (2005). Research advances in root exudates and rhizosphere microorganisms of forest trees. World Forestry Research, 18, 25-31. |
[刘子雄, 朱天辉, 张建 (2005). 林木根系分泌物与根际微生物研究进展. 世界林业研究, 18, 25-31.] | |
[28] | Lü K, Wang JJ, Wu GP, Lin SN, Su YG, Huang G (2022). Elevational pattern and control factors of soil microbial carbon use efficiency in the Daiyun Mountain. Environmental Science, 43, 4364-4371. |
[吕坤, 王晶晶, 吴国朋, 林思诺, 苏延桂, 黄刚 (2022). 戴云山土壤微生物碳源利用效率的海拔变异规律及影响因素. 环境科学, 43, 4364-4371.] | |
[29] | Lu YH, Zhang FS (2006). The advances in rhizosphere microbiology. Soils, 38, 113-121. |
[陆雅海, 张福锁 (2006). 根际微生物研究进展. 土壤, 38, 113-121.] | |
[30] |
Luo Z, Feng W, Luo Y, Baldock J, Wang E (2017). Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Global Change Biology, 23, 4430-4439.
DOI PMID |
[31] | Ma ZL, Zhao WQ, Liu M (2019). Responses of polyphenoloxidase and catalase activities of rhizosphere and bulk soils to warming during the growing season in an alpine scrub ecosystem. Chinese Journal of Applied Ecology, 30, 3681-3688. |
[马志良, 赵文强, 刘美 (2019). 高寒灌丛生长季根际和非根际土壤多酚氧化酶和过氧化氢酶活性对增温的响应. 应用生态学报, 30, 3681-3688.]
DOI |
|
[32] |
Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist, 196, 79-91.
DOI PMID |
[33] |
Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE, Jurevic R, Salata RA, Lederman MM, Gillevet PM, Ghannoum MA (2014). Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathogens, 10, e1003996. DOI: 10.1371/journal.ppat.1003996.
DOI |
[34] |
Qiao Y, Wang J, Liang GP, Du ZG, Zhou J, Zhu C, Huang K, Zhou XH, Luo YQ, Yan LM, Xia JY (2019). Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply. Scientific Reports, 9, 5621. DOI: 10.1038/S41598-019-42145-6.
DOI |
[35] | Ren CJ (2018). Effects of Plant-Soil Collaborative Recovery and Microbial Responses in the Loess Plateau. PhD dissertation, Northwest A&F University, Yangling, Shaanxi. |
[任成杰 (2018). 黄土高原植被-土壤协同恢复效应及微生物响应机理. 博士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[36] |
Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315.
DOI URL |
[37] | Shao YH, Zhang WX, Liu SJ, Wang XL, Fu SL (2015). Diversity and function of soil fauna. Acta Ecologica Sinica, 35, 6614-6625. |
[邵元虎, 张卫信, 刘胜杰, 王晓丽, 傅声雷 (2015). 土壤动物多样性及其生态功能. 生态学报, 35, 6614-6625.] | |
[38] |
Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013). Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecology Letters, 16, 930-939.
DOI PMID |
[39] |
Sinsabaugh RL, Turner BL, Talbot JM, Waring BG, Powers JS, Kuske CR, Moorhead DL, Follstad Shah JJ(2016). Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs, 86, 172-189.
DOI URL |
[40] |
Soares M, Rousk J (2019). Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biology & Biochemistry, 131, 195-205.
DOI URL |
[41] | Su SF, Lin ZP, Wang XY, Chen ZL, Xue Y (2020). Vegetation survey and species diversity analysis of waste titanium mining area in Wenchang. Chinese Journal of Tropical Agriculture, 40(1), 59-66. |
[宿少锋, 林之盼, 王小燕, 陈珠琳, 薛杨 (2020). 海南文昌废弃钛矿区植被调查与物种多样性分析. 热带农业科学, 40(1), 59-66.] | |
[42] |
Takriti M, Wild B, Schnecker J, Mooshammer M, Knoltsch A, Lashchinskiy N, Eloy Alves RJ, Gentsch N, Gittel A, Mikutta R, Wanek W, Richter A (2018). Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect. Soil Biology & Biochemistry, 121, 212-220.
DOI URL |
[43] |
Tiemann LK, Billings SA (2011). Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biology & Biochemistry, 43, 1837-1847.
DOI URL |
[44] |
Tucker CL, Jennifer B, Elise P, Kiona O (2013). Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Global Change Biology, 19, 252-263.
DOI PMID |
[45] |
Wang C, Qu L, Yang L, Liu D, Morrissey E, Miao R, Liu Z, Wang Q, Fang Y, Bai E (2021). Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology, 27, 2039-2048.
DOI PMID |
[46] | Wang Q, Geng ZC, Xu CY, Guo JY, Li QQ, Liu LL, Zhao HH, Du XG (2020). Effects of biochar application on soil microbial nutrient limitations and carbon use efficiency in Lou soil. Environmental Science, 41, 2425-2433. |
[王强, 耿增超, 许晨阳, 郭靖宇, 李倩倩, 刘莉丽, 赵汉红, 杜旭光 (2020). 施用生物炭对塿土土壤微生物代谢养分限制和碳利用效率的影响. 环境科学, 41, 2425-2433.] | |
[47] | Wang Y, Zong N, He NP, Zhang JJ, Tian J, Li LT (2018). Soil microbial functional diversity patterns and drivers along an elevation gradient on Qinghai-Tibet, China. Acta Ecologica Sinica, 38, 5837-5845. |
[王颖, 宗宁, 何念鹏, 张晋京, 田静, 李良涛 (2018). 青藏高原高寒草甸不同海拔梯度下土壤微生物群落碳代谢多样性. 生态学报, 38, 5837-5845.] | |
[48] |
Widdig M, Schleuss PM, Biederman LA, Borer ET, Crawley MJ, Kirkman KP, Seabloom EW, Wragg PD, Spohn M (2020). Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions. Soil Biology & Biochemistry, 146, 107815. DOI: 10.1016/j.soilbio.2020.107815.
DOI |
[49] |
Zheng Q, Hu Y, Zhang S, Noll L, Böckle T, Richter A, Wanek W (2019). Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biology & Biochemistry, 128, 45-55.
DOI URL |
[50] | Zhou WJ, Lü DG, Qin SJ (2016). Research progress in interaction between plant and rhizosphere microorganism. Journal of Jilin Agricultural University, 38, 253-260. |
[周文杰, 吕德国, 秦嗣军 (2016). 植物与根际微生物相互作用关系研究进展. 吉林农业大学学报, 38, 253-260.] | |
[51] |
Zhou ZH, Wang CK (2016). Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry. Chinese Journal of Plant Ecology, 40, 620-630.
DOI URL |
[周正虎, 王传宽 (2016). 微生物对分解底物碳氮磷化学计量的响应和调节机制. 植物生态学报, 40, 620-630.]
DOI |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition [J]. Chin J Plant Ecol, 2023, 47(9): 1234-1244. |
[3] | YUAN Ya-Ni, ZHOU Zhe, CHEN Bin-Zhou, GUO Yao-Xin, YUE Ming. Differential ecological strategies in functional traits among coexisting tree species in a Quercus aliena var. acuteserrata forest [J]. Chin J Plant Ecol, 2023, 47(9): 1270-1277. |
[4] | ZHANG Zhong-Yang, SONG Xi-Qiang, REN Ming-Xun, ZHANG Zhe. Ecological functions of vascular epiphytes in habitat construction [J]. Chin J Plant Ecol, 2023, 47(7): 895-911. |
[5] | LU Jing, MA Zong-Qi, GAO Peng-Fei, FAN Bao-Li, SUN Kun. Changes in the Hippophae tibetana population structure and dynamics, a pioneer species of succession, to altitudinal gradients in the Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(5): 569-579. |
[6] | MOU Wen-Bo, XU Dang-Hui, WANG Xie-Jun, JING Wen-Mao, ZHANG Rui-Ying, GU Yu-Ling, YAO Guang-Qian, QI Shi-Hua, ZHANG Long, GOU Ya-Fei. Soil carbon, nitrogen, and phosphorus stoichiometry along an altitude gradient in shrublands in Pailugou watershed, China [J]. Chin J Plant Ecol, 2022, 46(11): 1422-1431. |
[7] | WANG Jia-Tong, NIU Chun-Yue, HU Tian-Yu, LI Wen-Kai, LIU Ling-Li, GUO Qing-Hua, SU Yan-Jun. Three-dimensional radiative transfer modeling of forest: recent progress, applications, and future opportunities [J]. Chin J Plant Ecol, 2022, 46(10): 1200-1218. |
[8] | JI Yu-He, ZHOU Guang-Sheng, WANG Shu-Dong, WANG Li-Xia, ZHOU Meng-Zi. Evolution characteristics and its driving forces analysis of vegetation ecological quality in Qinling Mountains region from 2000 to 2019 [J]. Chin J Plant Ecol, 2021, 45(6): 617-625. |
[9] | HU Qi-Juan, SHENG Mao-Yin, YIN Jie, BAI Yi-Xin. Stoichiometric characteristics of fine roots and rhizosphere soil of Broussonetia papyrifera adapted to the karst rocky desertification environment in southwest China [J]. Chin J Plant Ecol, 2020, 44(9): 962-972. |
[10] | HU Ming-Yuan, YUAN Ye, DAI Xiao-Qin, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil nitrogen mineralization in the rhizosphere of trees, shrubs, and herbs in subtropical forest plantations [J]. Chin J Plant Ecol, 2020, 44(12): 1285-1295. |
[11] | YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(4): 352-364. |
[12] | FENG Chan-Ying, ZHENG Cheng-Yang, TIAN Di. Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(3): 185-196. |
[13] | ZOU Zan, CHEN Jin-Song, LI Yang, SONG Hui-Xing. Effects of transportation direction of photosynthate on soil microbial processes in the rhizosphere of Phyllostachys bissetii [J]. Chin J Plant Ecol, 2018, 42(8): 863-872. |
[14] | ZHOU Tian-Yang, NARAYAN Prasad Gaire, LIAO Li-Bin, ZHENG Li-Li, WANG Jin-Niu, SUN Jian, WEI Yan-Qiang, XIE Yu, WU Yan. Spatio-temporal dynamics of two alpine treeline ecotones and ecological characteristics of their dominate species at the eastern margin of Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42(11): 1082-1093. |
[15] | YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China [J]. Chin J Plan Ecolo, 2017, 41(12): 1228-1238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn