Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (11): 1422-1431.DOI: 10.17521/cjpe.2022.0082
Special Issue: 生态化学计量; 青藏高原植物生态学:植物-土壤-微生物
• Research Articles • Previous Articles
MOU Wen-Bo1, XU Dang-Hui1,*(), WANG Xie-Jun1, JING Wen-Mao2, ZHANG Rui-Ying1, GU Yu-Ling1, YAO Guang-Qian1, QI Shi-Hua1, ZHANG Long1, GOU Ya-Fei1
Received:
2022-03-07
Accepted:
2022-07-01
Online:
2022-11-20
Published:
2022-09-06
Contact:
*XU Dang-Hui(dhxu@lzu.edu.cn)
Supported by:
MOU Wen-Bo, XU Dang-Hui, WANG Xie-Jun, JING Wen-Mao, ZHANG Rui-Ying, GU Yu-Ling, YAO Guang-Qian, QI Shi-Hua, ZHANG Long, GOU Ya-Fei. Soil carbon, nitrogen, and phosphorus stoichiometry along an altitude gradient in shrublands in Pailugou watershed, China[J]. Chin J Plant Ecol, 2022, 46(11): 1422-1431.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0082
样地 Sampling plot | 海拔 Altitude (m) | 坡度 Slope (°) | 坡向 Slope aspect (°) | 生长季总降水量 Total precipitation of the growing season (mm) | 生长季平均气温 Mean air temperature of the growing season (℃) | 灌丛地上生物量(平均值±标准误) Aboveground biomass of shrublands (mean ± SE, g·m-2) |
---|---|---|---|---|---|---|
1 | 3 100 | 21 | 27 | 425.05 | 9.80 | 41.61 ± 5.96 |
2 | 3 200 | 34 | 15 | 418.97 | 9.60 | 51.37 ± 3.92 |
3 | 3 300 | 36 | 9 | 411.47 | 8.83 | 73.20 ± 5.06 |
4 | 3 400 | 33 | 41 | 406.21 | 8.97 | 80.94 ± 12.15 |
5 | 3 500 | 36 | 56 | 388.11 | 8.26 | 75.98 ± 8.62 |
6 | 3 600 | 35 | 10 | 374.89 | 7.39 | 62.76 ± 5.40 |
7 | 3 700 | 33 | 34 | 358.00 | 6.99 | 44.23 ± 4.38 |
Table 1 Basic information of the sampling plots in Pailugou watershed at different altitudes
样地 Sampling plot | 海拔 Altitude (m) | 坡度 Slope (°) | 坡向 Slope aspect (°) | 生长季总降水量 Total precipitation of the growing season (mm) | 生长季平均气温 Mean air temperature of the growing season (℃) | 灌丛地上生物量(平均值±标准误) Aboveground biomass of shrublands (mean ± SE, g·m-2) |
---|---|---|---|---|---|---|
1 | 3 100 | 21 | 27 | 425.05 | 9.80 | 41.61 ± 5.96 |
2 | 3 200 | 34 | 15 | 418.97 | 9.60 | 51.37 ± 3.92 |
3 | 3 300 | 36 | 9 | 411.47 | 8.83 | 73.20 ± 5.06 |
4 | 3 400 | 33 | 41 | 406.21 | 8.97 | 80.94 ± 12.15 |
5 | 3 500 | 36 | 56 | 388.11 | 8.26 | 75.98 ± 8.62 |
6 | 3 600 | 35 | 10 | 374.89 | 7.39 | 62.76 ± 5.40 |
7 | 3 700 | 33 | 34 | 358.00 | 6.99 | 44.23 ± 4.38 |
Fig. 1 Variations of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) contents and stoichiometry for the 0-10 cm (A-F) and 10-20 cm (G-L) soil layer across the altitude gradient (mean ± SE) in Pailugou watershed. Different lowercase letters indicate significant difference of the same indicator among different altitudes (p < 0.05).
因素 Factor | SOC | TN | TP | SOC:TP | TN:TP | SOC:TN | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | |
土层 Soil layer | 38.143 | 0.000 | 51.785 | 0.000 | 24.710 | 0.000 | 12.338 | 0.002 | 6.329 | 0.018 | 0.426 | 0.519 |
海拔 Altitude | 24.538 | 0.000 | 21.395 | 0.000 | 48.513 | 0.000 | 113.000 | 0.000 | 52.962 | 0.000 | 11.022 | 0.000 |
土层×海拔 Soil layer × altitude | 0.377 | 0.887 | 0.899 | 0.509 | 0.411 | 0.865 | 0.695 | 0.656 | 0.408 | 0.868 | 1.025 | 0.430 |
Table 2 Effects of altitude and soil layer on the contents and stoichiometry of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) in Pailugou watershed
因素 Factor | SOC | TN | TP | SOC:TP | TN:TP | SOC:TN | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | |
土层 Soil layer | 38.143 | 0.000 | 51.785 | 0.000 | 24.710 | 0.000 | 12.338 | 0.002 | 6.329 | 0.018 | 0.426 | 0.519 |
海拔 Altitude | 24.538 | 0.000 | 21.395 | 0.000 | 48.513 | 0.000 | 113.000 | 0.000 | 52.962 | 0.000 | 11.022 | 0.000 |
土层×海拔 Soil layer × altitude | 0.377 | 0.887 | 0.899 | 0.509 | 0.411 | 0.865 | 0.695 | 0.656 | 0.408 | 0.868 | 1.025 | 0.430 |
Fig. 2 Correlations between soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) contents and their stoichiometry in Pailugou watershed. Dashed line and solid line represents the nutrient indicator fitting line of 0-10 cm and 10-20 cm, respectively.
土壤养分 Soil nutrient | 土层 Soil layer (cm) | SOC | TN | TP | SOC:TP | TN:TP | SOC:TN |
---|---|---|---|---|---|---|---|
TN | 0-10 | 0.734*** | |||||
10-20 | 0.570** | ||||||
TP | 0-10 | -0.568** | -0.140 | ||||
10-20 | -0.581** | -0.277 | |||||
SOC:TP | 0-10 | 0.901*** | 0.516* | -0.846*** | |||
10-20 | 0.911*** | 0.457* | -0.857*** | ||||
TN:TP | 0-10 | 0.866*** | 0.746*** | -0.758*** | 0.915*** | ||
10-20 | 0.730*** | 0.728*** | -0.846*** | 0.864*** | |||
SOC:TN | 0-10 | 0.591** | -0.065 | -0.684** | 0.755*** | 0.438* | |
10-20 | 0.734*** | -0.123 | -0.520* | 0.739*** | 0.305 | ||
pH | 0-10 | 0.183 | -0.154 | -0.661** | 0.419 | 0.331 | 0.410 |
10-20 | 0.342 | 0.187 | -0.696*** | 0.561** | 0.601** | 0.259 | |
生长季总降水量 Total precipitation of the growing season | 0-10 | 0.660** | 0.271 | -0.943*** | 0.885*** | 0.798*** | 0.717*** |
10-20 | 0.666** | 0.280 | -0.957*** | 0.893*** | 0.823*** | 0.625** | |
生长季平均气温 Mean air temperature of the growing season | 0-10 | 0.600** | 0.202 | -0.929*** | 0.838*** | 0.742*** | 0.709*** |
10-20 | 0.581** | 0.250 | -0.933*** | 0.829*** | 0.792*** | 0.553** | |
灌丛地上生物量 Aboveground biomass of shrubs | 0-10 | 0.509* | 0.786*** | 0.064 | 0.245 | 0.452* | -0.201 |
10-20 | 0.383 | 0.590** | -0.042 | 0.214 | 0.338 | -0.060 |
Table 3 Correlation analysis between soil nutrient stoichiometry and environmental factors for both 0-10 cm and 10-20 cm soil layers in Pailugou watershed
土壤养分 Soil nutrient | 土层 Soil layer (cm) | SOC | TN | TP | SOC:TP | TN:TP | SOC:TN |
---|---|---|---|---|---|---|---|
TN | 0-10 | 0.734*** | |||||
10-20 | 0.570** | ||||||
TP | 0-10 | -0.568** | -0.140 | ||||
10-20 | -0.581** | -0.277 | |||||
SOC:TP | 0-10 | 0.901*** | 0.516* | -0.846*** | |||
10-20 | 0.911*** | 0.457* | -0.857*** | ||||
TN:TP | 0-10 | 0.866*** | 0.746*** | -0.758*** | 0.915*** | ||
10-20 | 0.730*** | 0.728*** | -0.846*** | 0.864*** | |||
SOC:TN | 0-10 | 0.591** | -0.065 | -0.684** | 0.755*** | 0.438* | |
10-20 | 0.734*** | -0.123 | -0.520* | 0.739*** | 0.305 | ||
pH | 0-10 | 0.183 | -0.154 | -0.661** | 0.419 | 0.331 | 0.410 |
10-20 | 0.342 | 0.187 | -0.696*** | 0.561** | 0.601** | 0.259 | |
生长季总降水量 Total precipitation of the growing season | 0-10 | 0.660** | 0.271 | -0.943*** | 0.885*** | 0.798*** | 0.717*** |
10-20 | 0.666** | 0.280 | -0.957*** | 0.893*** | 0.823*** | 0.625** | |
生长季平均气温 Mean air temperature of the growing season | 0-10 | 0.600** | 0.202 | -0.929*** | 0.838*** | 0.742*** | 0.709*** |
10-20 | 0.581** | 0.250 | -0.933*** | 0.829*** | 0.792*** | 0.553** | |
灌丛地上生物量 Aboveground biomass of shrubs | 0-10 | 0.509* | 0.786*** | 0.064 | 0.245 | 0.452* | -0.201 |
10-20 | 0.383 | 0.590** | -0.042 | 0.214 | 0.338 | -0.060 |
[1] |
Aponte C, Marañón T, García LV (2010). Microbial C, N and P in soils of Mediterranean oak forests: influence of season, canopy cover and soil depth. Biogeochemistry, 101, 77-92.
DOI URL |
[2] |
Bui EN, Henderson BL (2013). C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant and Soil, 373, 553-568.
DOI URL |
[3] | Dong TF (2021). Soil nutrients and their ecological stoichiometry of Pinus yunnanensis forest along an elevation gradient. Chinese Journal of Ecology, 40, 672-679. |
[ 董廷发 (2021). 不同海拔云南松林土壤养分及其生态化学计量特征. 生态学杂志, 40, 672-679.] | |
[4] |
Famiglietti JS, Rudnicki JW, Rodell M (1998). Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of Hydrology, 210, 259-281.
DOI URL |
[5] |
Feng XY, Lin PF, Zhao WZ (2022). The physiological constraints of alpine treeline in Qilian Mountains. Forest Ecology and Management, 503, 119761. DOI: 10.1016/j.foreco.2021. 119761.
DOI |
[6] | Gao HN, Li CX, Sun XM, Zhang Y, Chen NL (2021). Stoichiometry characteristics of soil at different altitudes in the Qilian Mountains. Journal of Desert Research, 41, 219-227. |
[ 高海宁, 李彩霞, 孙小妹, 张勇, 陈年来 (2021). 祁连山北麓不同海拔土壤化学计量特征. 中国沙漠, 41, 219-227.] | |
[7] |
He XJ, Hou EQ, Liu Y, Wen DZ (2016). Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China. Scientific Reports, 6, 24261. DOI: 10.1038/srep24261.
DOI |
[8] |
Hobbie SE, Gough L (2002). Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia, 131, 453-462.
DOI PMID |
[9] |
Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000). Controls over carbon storage and turnover in high-latitude soils. Global Change Biology, 6, 196-210.
DOI PMID |
[10] |
Hou EQ, Chen CR, Wen DZ, Liu X (2014). Relationships of phosphorus fractions to organic carbon content in surface soils in mature subtropical forests, Dinghushan, China. Soil Research, 52, 55-63.
DOI URL |
[11] |
Hu L, Xiang ZY, Wang GX, Rafique R, Liu W, Wang CT (2016). Changes in soil physicochemical and microbial properties along elevation gradients in two forest soils. Scandinavian Journal of Forest Research, 31, 242-253.
DOI URL |
[12] |
Jiang L, He ZS, Liu JF, Xing C, Gu XG, Wei CS, Zhu J, Wang XL (2019). Elevation gradient altered soil C, N, and P stoichiometry of Pinus taiwanensis forest on Daiyun Mountain. Forests, 10, 1089. DOI: 10.3390/f10121089.
DOI |
[13] | Jiang ZH, Zhou Z, Chen JZ, Zhang DG, Chen JG, Liu XN (2019). Soil nutrient and stoichiometry of alpine steppe under different altitudes in the Three-River Headwaters Region. Acta Agrestia Sinica, 27, 1029-1036. |
[ 姜哲浩, 周泽, 陈建忠, 张德罡, 陈建纲, 柳小妮 (2019). 三江源区不同海拔高寒草原土壤养分及化学计量特征. 草地学报, 27, 1029-1036.]
DOI |
|
[14] |
Lal R (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627.
DOI PMID |
[15] | Li DW, Wang ZQ, Tian HX, He WX, Geng ZC (2017). Carbon, nitrogen and phosphorus contents in soils on Taibai Mountain and their ecological stoichiometry relative to elevation. Acta Pedologica Sinica, 54, 160-170. |
[ 李丹维, 王紫泉, 田海霞, 和文祥, 耿增超 (2017). 太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征. 土壤学报, 54, 160-170.] | |
[16] | Ma J, Liu XD, Jin M, Zhao WJ, Jing WM, Wang RX (2021). Soil ecological stoichiometry of five typical shrubs in Qilian Mountain. Acta Botanica Boreali-Occidentalia Sinica, 41, 1391-1400. |
[ 马剑, 刘贤德, 金铭, 赵维俊, 敬文茂, 王荣新 (2021). 祁连山5种典型灌丛土壤生态化学计量特征. 西北植物学报, 41, 1391-1400.] | |
[17] |
Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80, 89-106.
DOI URL |
[18] |
Miki T (2012). Microbe-mediated plant-soil feedback and its roles in a changing world. Ecological Research, 27, 509-520.
DOI URL |
[19] |
Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A (2014). Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology, 5, 22. DOI: 10.3389/fmicb. 2014.00022.
DOI |
[20] |
Müller M, Oelmann Y, Schickhoff U, Böhner J, Scholten T (2017). Himalayan treeline soil and foliar C:N:P stoichiometry indicate nutrient shortage with elevation. Geoderma, 291, 21-32.
DOI URL |
[21] | Niu RL, Gao X, Xu FL, Wang WL, Wang LL, Sun PY, Bai XF (2016). Carbon, nitrogen, and phosphorus stoichiometric characteristics of soil and leaves from young and middle aged Larix principis-rupprechtii growing in a Qinling Mountain plantation. Acta Ecologica Sinica, 36, 7384-7392. |
[ 牛瑞龙, 高星, 徐福利, 王渭玲, 王玲玲, 孙鹏跃, 白小芳 (2016). 秦岭中幼林龄华北落叶松针叶与土壤的碳氮磷生态化学计量特征. 生态学报, 36, 7384-7392.] | |
[22] |
Nottingham AT, Turner BL, Whitaker J, Ostle NJ, McNamara NP, Bardgett RD, Salinas N, Meir P (2015). Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences, 12, 6071-6083.
DOI URL |
[23] | Qiu XC, Peng DL, Li WL, Jiang HC (2018). Soil physicochemical properties of Pinus tabuliformis plantations of different ages in Yanqing, Beijing. Chinese Journal of Applied and Environmental Biology, 24, 221-229. |
[ 邱新彩, 彭道黎, 李伟丽, 姜昊辰 (2018). 北京延庆区不同林龄油松人工林土壤理化性质. 应用与环境生物学报, 24, 221-229.] | |
[24] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI PMID |
[25] | Ren CJ, Zhang W, Zhong ZK, Han XH, Yang GH, Feng YZ, Ren GX (2018). Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Science of the Total Environment, 610- 611, 750-758. |
[26] |
Ren CJ, Zhao FZ, Shi Z, Chen J, Han XH, Yang GH, Feng YZ, Ren GX (2017). Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation. Soil Biology & Biochemistry, 115, 1-10.
DOI URL |
[27] | Shan S, Coleman M, Kimsey Jr M (2014). Soil soluble nitrogen availability across an elevation gradient in a cold- temperate forest ecosystem. Soil Science Society of America Journal, 78, S217-S224. |
[28] |
Su YQ, Wu ZL, Xie PY, Zhang L, Chen H (2020). Warming effects on topsoil organic carbon and C:N:P stoichiometry in a subtropical forested landscape. Forests, 11, 66. DOI: 10.3390/f11010066.
DOI |
[29] |
Tan QQ, Wang GA (2016). Decoupling of nutrient element cycles in soil and plants across an altitude gradient. Scientific Reports, 6, 34875. DOI: 10.1038/srep34875.
DOI |
[30] |
Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534.
DOI URL |
[31] |
Tian H, Chen G, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in Chinaʼs soils: a synthesis of observational data. Biogeochemistry, 98, 139-151.
DOI URL |
[32] |
Tsunoda T, Kachi N, Suzuki JI (2014). Interactive effects of soil nutrient heterogeneity and belowground herbivory on the growth of plants with different root foraging traits. Plant and Soil, 384, 327-334.
DOI URL |
[33] | Wang J, Zhou WJ, Shang GD, Tan J, Tang D, Cao S (2022). Comprehensive evaluation of soil nutrient characteristics and fertility of citrus orchard with different parent materials. Chinese Journal of Ecology, 41, 933-940. |
[ 王珏, 周卫军, 商贵铎, 谭洁, 唐豆, 曹胜 (2022). 不同母质柑橘园土壤养分特征及肥力综合评价. 生态学杂志, 41, 933-940.] | |
[34] | Wang XN, Xu DH, Wang XJ, Fang XW (2022). Changes of shrub community structure with altitudinal gradient and longitude in Qilian Mountains. Ecology and Environmental Sciences, 31, 231-238. |
[ 王小娜, 徐当会, 王谢军, 方向文 (2022). 祁连山灌丛群落结构特征随海拔梯度和经度的变化. 生态环境学报, 31, 231-238.] | |
[35] | Wu H, Zou MR, Wang SQ, Wan HX (2019). Eco-stoichiometry characteristics of soil within pine and oak mixed forest and theirs responses to elevation gradient in Qinling Mountains. Ecology and Environmental Sciences, 28, 2323-2331. |
[ 吴昊, 邹梦茹, 王思芊, 万洪秀 (2019). 秦岭松栎林土壤生态化学计量特征及其对海拔梯度的响应. 生态环境学报, 28, 2323-2331.] | |
[36] | Wu JX, Wang YX, Chen QB, Tong ZL (2013). Soil improvement of Pinus yunnanensis forest at different age in central Yunnan Plateau. Advanced Materials Research, 864- 867, 2565-2568. |
[37] | Wu W, He XD, Zhou QX (2010). Review on N:P stoichiometry in eco-system. Journal of Desert Research, 30, 296-302. |
[ 邬畏, 何兴东, 周启星 (2010). 生态系统氮磷比化学计量特征研究进展. 中国沙漠, 30, 296-302.] | |
[38] |
Wu YH, Zhou J, Yu D, Sun SQ, Luo J, Bing HJ, Sun HY (2013). Phosphorus biogeochemical cycle research in mountainous ecosystems. Journal of Mountain Science, 10, 43-53.
DOI URL |
[39] |
Xiao L, Li P, Shi P, Liu Y (2019). Soil nutrient stoichiometries and enzymatic activities along an elevational gradient in the dry-hot valley region of southwestern China. Archives of Agronomy and Soil Science, 65, 322-333.
DOI |
[40] | Xiao Y, Shang LN, Huang ZG, Zhang WG, Xue ZS, Zhang ZS, Lü XG (2014). Ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in mountain swamps of eastern Jilin Province. Scientia Geographica Sinica, 34, 994-1001. |
[ 肖烨, 商丽娜, 黄志刚, 张文广, 薛振山, 张仲胜, 吕宪国 (2014). 吉林东部山地沼泽湿地土壤碳、氮、磷含量及其生态化学计量学特征. 地理科学, 34, 994-1001.]
DOI |
|
[41] | Xie J, Chang SL, Zhang YT, Wang HJ, Song CC, He P, Sun XJ (2016). Plant and soil ecological stoichiometry with vertical zonality on the northern slope of the middle Tianshan Mountains. Acta Ecologica Sinica, 36, 4363-4372. |
[ 谢锦, 常顺利, 张毓涛, 王慧杰, 宋成程, 何平, 孙雪娇 (2016). 天山北坡植物土壤生态化学计量特征的垂直地带性. 生态学报, 36, 4363-4372.] | |
[42] |
Yu YH, Chi YK (2020). Ecological stoichiometric characteristics of soil at different depths in a karst plateau mountain area of China. Polish Journal of Environmental Studies, 29, 969-978.
DOI URL |
[43] |
Zeng ZX, Wang KL, Liu XL, Zeng FP, Song TQ, Peng WX, Zhang H, Du H (2015). Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi. Chinese Journal of Plant Ecology, 39, 682-693.
DOI URL |
[ 曾昭霞, 王克林, 刘孝利, 曾馥平, 宋同清, 彭晚霞, 张浩, 杜虎 (2015). 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征. 植物生态学报, 39, 682-693.]
DOI |
|
[44] |
Zhang AL, Li XY, Wu SX, Li L, Jiang Y, Wang RZ, Ahmed Z, Zeng FJ, Lin LS, Li L (2021). Spatial pattern of C:N:P stoichiometry characteristics of alpine grassland in the Altunshan Nature Reserve at North Qinghai-Tibet Plateau. CATENA, 207, 105691. DOI: 10.1016/j.catena.2021. 105691.
DOI |
[45] | Zhang GS, Deng HJ, Du K, Lin YM, Ma RF, Yu W, Wang DJ, Wu CZ, Hong W (2016). Soil stoichiometry characteristics at different elevation gradients of a mountain in an area with high frequency debris flow: a case study in Xiaojiang Watershed, Yunnan. Acta Ecologica Sinica, 36, 675-687. |
[ 张广帅, 邓浩俊, 杜锟, 林勇明, 马瑞丰, 俞伟, 王道杰, 吴承祯, 洪伟 (2016). 泥石流频发区山地不同海拔土壤化学计量特征——以云南省小江流域为例. 生态学报, 36, 675-687.] | |
[46] | Zhang SS, Li AQ, Wang HR, Wang JJ, Xu XN (2020). Ecological stoichiometry of soil carbon, nitrogen and phosphorus in Cunninghamia lanceolata plantation across an elevation gradient. Ecology and Environmental Sciences, 29, 97-104. |
[ 张莎莎, 李爱琴, 王会荣, 王晶晶, 徐小牛 (2020). 不同海拔杉木人工林土壤碳氮磷生态化学计量特征. 生态环境学报, 29, 97-104.] | |
[47] |
Zhang Y, Li C, Wang ML (2019). Linkages of C:N:P stoichiometry between soil and leaf and their response to climatic factors along altitudinal gradients. Journal of Soils and Sediments, 19, 1820-1829.
DOI |
[48] | Zhao WJ, Liu XD, Jin M, Zhang XL, Che ZX, Jing WM, Wang SL, Niu Y, Qi P, Li WJ (2016). Ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in leaf- litter-soil system of Picea crassifolia forest in the Qilian Mountains. Acta Pedologica Sinica, 53, 477-489. |
[ 赵维俊, 刘贤德, 金铭, 张学龙, 车宗玺, 敬文茂, 王顺利, 牛赟, 齐鹏, 李雯靖 (2016). 祁连山青海云杉林叶片-枯落物-土壤的碳氮磷生态化学计量特征. 土壤学报, 53, 477-489.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn