Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (12): 1285-1295.DOI: 10.17521/cjpe.2020.0225
• Research Articles • Previous Articles Next Articles
HU Ming-Yuan1,2, YUAN Ye3, DAI Xiao-Qin1,2,*(), FU Xiao-Li1,2, KOU Liang1,2, WANG Hui-Min1,2
Received:
2020-07-06
Accepted:
2020-09-27
Online:
2020-12-20
Published:
2021-04-01
Contact:
DAI Xiao-Qin
Supported by:
HU Ming-Yuan, YUAN Ye, DAI Xiao-Qin, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil nitrogen mineralization in the rhizosphere of trees, shrubs, and herbs in subtropical forest plantations[J]. Chin J Plant Ecol, 2020, 44(12): 1285-1295.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0225
Fig. 1 Net mineralization rate (Nmin), net ammonification rate (Namm), and net nitrification rate (Nnit) of the rhizosphere soil of overstory trees, understory shrubs, and herbs in subtropical plantations. AM, Adinandra millettii; CL, Cunninghamia lanceolata; DA, Dryopteris atrata; EM, Eurya muricate; LC, Loropetalum chinense; PE, Pinus elliottii; PM, Pinus massoniana; WJ, Woodwardia japonica. Different lowercase letters denote significant difference among species of each plantation in the same season (p < 0.05), while unmarked lowercase letters denote inapparent difference. Different uppercase letters denote significant difference among plantations in the same season (April is in the bracket, July is outside the bracket; p < 0.05). *denotes significant difference between the different seasons for the same species in each plantation (p < 0.05).
Fig. 2 Principal component analysis (PCA) of net nitrogen mineralization rate, net ammonification rate, and net nitrification rate of the rhizosphere soil of trees, understory shrubs, and herbs within subtropical plantations. A, April. B, July. AM, Adinandra millettii; CL, Cunninghamia lanceolata; DA, Dryopteris atrata; EM, Eurya muricate; LC, Loropetalum chinense; PE, Pinus elliottii; PM, Pinus massoniana; WJ, Woodwardia japonica.
Fig. 3 Redundancy analysis (RDA) of the relationship between net nitrogen mineralization rate (Nmin), net ammonification rate (Namm), and net nitrification rate (Nnit) of the rhizosphere soil and soil chemical properties and soil microbial properties in subtropical plantations. MBN, microbial biomass nitrogen concentration; NH4+-N, ammonium nitrogen concentration; NO3--N, nitrate nitrogen concentration; TN, soil total N concentration.
Fig. 4 Relative importance of soil chemical and soil microbial properties in determining the variation in net nitrogen mineralization rate, net ammonification rate, and net nitrification rate of the rhizosphere soil in subtropical forest plantations. Each ellipse represents the percentage of the variations explained by soil chemical properties or soil microbial properties. The overlap of two ellipses represents the variation jointly explained by soil chemical and microbial properties. *indicates a significant effect (p < 0.05), ** indicates a highly significant effect (p < 0.01).
变异来源 Source of variation | NH4+-N | NO3--N | TN | MBN |
---|---|---|---|---|
物种 Specise (S) | <0.001** | 0.082 | <0.001** | 0.136 |
林型 Forest type (F) | 0.002** | <0.000** | 0.303 | 0.695 |
季节 Time (T) | <0.001** | <0.001** | 0.725 | 0.002** |
S × F | 0.773 | 0.590 | 0.769 | 0.901 |
S × T | 0.928 | 0.626 | 0.929 | 0.931 |
F × T | 0.026 | 0.061 | 0.516 | 0.086 |
S × F × T | 0.581 | 0.854 | 0.655 | 0.727 |
Table 1 Mixed linear model analysis of the effects of species, forest types, and seasons on four main soil chemical and microbial properties in subtropical forest plantations (p value)
变异来源 Source of variation | NH4+-N | NO3--N | TN | MBN |
---|---|---|---|---|
物种 Specise (S) | <0.001** | 0.082 | <0.001** | 0.136 |
林型 Forest type (F) | 0.002** | <0.000** | 0.303 | 0.695 |
季节 Time (T) | <0.001** | <0.001** | 0.725 | 0.002** |
S × F | 0.773 | 0.590 | 0.769 | 0.901 |
S × T | 0.928 | 0.626 | 0.929 | 0.931 |
F × T | 0.026 | 0.061 | 0.516 | 0.086 |
S × F × T | 0.581 | 0.854 | 0.655 | 0.727 |
Fig. 5 Multiple comparison of soil ammonium nitrogen (NH4+-N) and total soil nitrogen concentrations (TN) in the rhizosphere soil of different species in subtropical forest plantations (mean ± SE). AM, Adinandra millettii; CL, Cunninghamia lanceolata; DA, Dryopteris atrata; EM, Eurya muricate; LC, Loropetalum chinense; PE, Pinus elliottii; PM, Pinus massoniana; WJ, Woodwardia japonica. Different lowercase letters showed significant differences among species (p < 0.05).
[1] | Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989). Nitrogen saturation in northern forest ecosystems. BioScience, 39, 378-386. |
[2] | Bell CW, Asao S, Calderon F, Wolk B, Wallenstein MD (2015). Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biology & Biochemistry, 85, 170-182. |
[3] |
Blagodatskaya E, Blagodatsky S, Anderson TH, Kuzyakov Y (2014). Microbial growth and carbon use efficiency in the rhizosphere and root-free soil. PLOS ONE, 9, e93282. DOI: 10.1371/journal.pone.0093282.
URL PMID |
[4] |
Booth MS, Stark JM, Rastetter E (2005). Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecological Monographs, 75, 139-157.
DOI URL |
[5] | Borcard D, Gillet F, Legendre P (2011). Numerical Ecology with R. Springer, New York. |
[6] |
Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry, 58, 216-234.
DOI URL |
[7] | Chen FS, Zeng DH, He XY (2004). Soil nitrogen transformation and cycling in forest ecosystem. Chinese Journal of Ecology, 23(5), 126-133. |
[ 陈伏生, 曾德慧, 何兴元 (2004). 森林土壤氮素的转化与循环. 生态学杂志, 23(5), 126-133.] | |
[8] |
Chen J, Xiao G, Kuzyakov Y, Jenerette GD, Ma Y, Liu W, Wang Z, Shen W (2017). Soil nitrogen transformation responses to seasonal precipitation changes are regulated by changes in functional microbial abundance in a subtropical forest. Biogeosciences, 14, 2513-2525.
DOI URL |
[9] | Chen LY, Liu L, Qin SQ, Yang GB, Fang K, Zhu B, Kuzyakov Y, Chen PD, Xu YP, Yang YH (2019). Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nature Communication, 10, 5112. DOI: 10.1038/s41467-019-13119-z. |
[10] | Dai X, Fu X, Kou L, Wang H, Shock CC (2018). C, N, P stoichiometry of rhizosphere soils differed significantly among overstory trees and understory shrubs in plantations in subtropical China. Canadian Journal of Forest Research, 48, 1398-1405. |
[11] |
Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015). Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biology, 21, 2082-2094.
URL PMID |
[12] |
Fu XL, Wang JL, Di YB, Wang HM (2015 a). Differences in fine-root biomass of trees and understory vegetation among stand types in subtropical forests. PLOS ONE, 10, e0128894. DOI: 10.1371/journal.pone.0128894.
DOI URL PMID |
[13] | Fu XL, Yang FT, Wang JL, Di YB, Dai XQ, Zhang XY, Wang HM (2015b). Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Science of the Total Environment, 502, 280-286. |
[14] |
Gao YQ, Dai XQ, Wang JL, Fu XL, Kou L, Wang HM (2019). Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations. Chinese Journal of Plant Ecology, 43, 258-272.
DOI URL |
[ 高雨秋, 戴晓琴, 王建雷, 付晓莉, 寇亮, 王辉民 (2019). 亚热带人工林下植被根际土壤酶化学计量特征. 植物生态学报, 43, 258-272.] | |
[15] | Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31. |
[16] |
Gilliam FS, Yurish BM, Adams MB (2001). Temporal and spatial variation of nitrogen transformations in nitrogen- saturated soils of a central Appalachian hardwood forest. Canadian Journal of Forest Research, 31, 1768-1785.
DOI URL |
[17] | He JZ, Zhang LM (2013). Key processes and microbial mechanisms of soil nitrogen transformation. Microbiology China, 40, 98-108. |
[ 贺纪正, 张丽梅 (2013). 土壤氮素转化的关键微生物过程及机制. 微生物学通报, 40, 98-108.] | |
[18] | Hishi T, Urakawa R, Tashiro N, Maeda Y, Shibata H (2014). Seasonality of factors controlling N mineralization rates among slope positions and aspects in cool-temperate deciduous natural forests and larch plantations. Biology and Fertility of Soils, 50, 343-356. |
[19] | Hodge A (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24. |
[20] |
Jiang PP, Wang HM, Fu XL, Dai XQ, Kou L, Wang JL (2018). Elaborate differences between trees and understory plants in the deployment of fine roots. Plant and Soil, 431, 433-447.
DOI URL |
[21] | Kuzyakov Y, Blagodatskaya E (2015). Microbial hotspots and hot moments in soil: concept & review. Soil Biology & Biochemistry, 83, 184-199. |
[22] | Li CC, Li QR, Xu XL, Ouyang H (2016). Nitrogen acquisition strategies of Cunninghamia lanceolata at different ages. Acta Ecologica Sinica, 36, 2620-2625. |
[ 李常诚, 李倩茹, 徐兴良, 欧阳华 (2016). 不同林龄杉木氮素的获取策略. 生态学报, 36, 2620-2625.] | |
[23] | Li HX, Hu F, Liu MQ, Cai GX, Fan XH (2000). Mineralization and nitrification of nitrogen in red soil. Soils, 4, 194-197. |
[ 李辉信, 胡锋, 刘满强, 蔡贵信, 范晓晖 (2000). 红壤氮素的矿化和硝化作用特征. 土壤, 4, 194-197.] | |
[24] | Li Y, Xu XH, Sun W, Shen Y, Ren TT, Huang JH, Wang CH (2019). Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China. Chinese Journal of Plant Ecology, 43, 174-184. |
[ 李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧 (2019). 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 43, 174-184.] | |
[25] |
Li ZL, Tian DS, Wang BX, Wang JS, Wang S, Chen HYH, Xu XF, Wang CH, He NP, Niu SL (2019). Microbes drive global soil nitrogen mineralization and availability. Global Change Biology, 25, 1078-1088.
DOI URL PMID |
[26] | Li ZW, Xiao HB, Tang ZH, Huang JQ, Nie XD, Huang B, Ma WM, Lu YM, Zeng GM (2015). Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China. European Journal of Soil Biology, 71, 37-44. |
[27] | Lin GG, Guo DL, Li L, Ma CG, Zeng DH (2018). Contrasting effects of ectomycorrhizal and arbuscular mycorrhizal tropical tree species on soil nitrogen cycling: the potential mechanisms and corresponding adaptive strategies. Oikos, 127, 518-530. |
[28] | Liu Y, He NP, Wen XF, Yu GR, Gao Y, Jia YL (2016). Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems. Agriculture Ecosystems & Environment, 215, 40-46. |
[29] |
Liu Y, Wang CH, He NP, Wen XF, Gao Y, Li SG, Niu SL, Butterbach-Bahl K, Luo YQ, Yu GR (2017). A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Global Change Biology, 23, 455-464.
URL PMID |
[30] | Lu YH, Zhang FS (2006). The advances in rhizosphere microorganisms. Soils, 38(2), 113-121. |
[ 陆雅海, 张福锁 (2006). 根际微生物研究进展. 土壤, 38(2), 113-121.] | |
[31] | Ma JM, Li K (2004). Current situation of research and prospects on forest ecosystem stability. World Forestry Research, 17(1), 15-19. |
[ 马姜明, 李昆 (2004). 森林生态系统稳定性研究的现状与趋势. 世界林业研究, 17(1), 15-19.] | |
[32] | Mo XL, Dai XQ, Wang HM, Fu XL, Kou L (2018). Rhizosphere effects of overstory tree and understory shrub species in central subtropical plantations—A case study at Qianyanzhou, Taihe, Jiangxi, China. Chinese Journal of Plant Ecology, 42, 723-733. |
[ 莫雪丽, 戴晓琴, 王辉民, 付晓莉, 寇亮 (2018). 中亚热带典型人工林常见乔灌木根际效应——以江西泰和千烟洲为例. 植物生态学报, 42, 723-733.] | |
[33] | Moreau D, Bardgett RD, Finlay RD, Jones DL, Philippot L (2019). A plant perspective on nitrogen cycling in the rhizosphere. Functional Ecology, 33, 540-552. |
[34] | Nilsson MC, Wardle DA (2005). Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Frontiers in Ecology and the Environment, 3, 421-428. |
[35] | Parker SS, Schimel JP (2011). Soil nitrogen availability and transformations differ between the summer and the growing season in a California grassland. Applied Soil Ecology, 48, 185-192. |
[36] | Phillips RP, Brzostek E, Midgley MG (2013). The mycorrhizal- associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist, 199, 41-51. |
[37] | Phillips RP, Erlitz Y, Bier R, Bernhardt ES (2008). New approach for capturing soluble root exudates in forest soils. Functional Ecology, 22, 990-999. |
[38] |
Phillips RP, Fahey TJ (2006). Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology, 87, 1302-1313.
DOI URL PMID |
[39] | Ribbons RR, Levy-Booth DJ, Masse J, Grayston SJ, McDonald MA, Vesterdal L, Prescott CE (2016). Linking microbial communities, functional genes and nitrogen-cycling processes in forest floors under four tree species. Soil Biology & Biochemistry, 103, 181-191. |
[40] | Sha LQ, Meng Y, Feng ZL, Zheng Z, Cao M, Liu HM (2000). Nitrification and net N mineralization rate of soils under different tropical forests in Xishuangbanna, southwest China. Acta Phytoecologica Sinica, 24, 152-156. |
[ 沙丽清, 孟盈, 冯志立, 郑征, 曹敏, 刘宏茂 (2000). 西双版纳不同热带森林土壤氮矿化和硝化作用研究. 植物生态学报, 24, 152-156.] | |
[41] | Sinsabaugh RL, Follstad Shah JJ (2012). Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 43, 313-343. |
[42] |
Spohn M, Carminati A, Kuzyakov Y (2013). Soil zymography—A novel in situ method for mapping distribution of enzyme activity in soil. Soil Biology & Biochemistry, 58, 275-280.
DOI URL |
[43] | Su LY, Cheng AX, Yu AL, Fu WQ, Zheng PY (1992). Investigation on mycorrhizae of forest trees in natural reserve of Mount Tianmu. Journal of Zhejiang Forestry College, 9(3), 263-276. |
[ 苏琍英, 程爱兴, 喻爱林, 傅卫庆, 郑平谣 (1992). 天目山自然保护区林木菌根调查. 浙江林学院学报, 9(3), 263-276.] | |
[44] |
Subbarao GV, Wang HY, Ito O, Nakahara K, Berry WL (2007). NH4+ triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola roots. Plant and Soil, 290, 245-257.
DOI URL |
[45] |
Talbot JM, Allison SD, Treseder KK (2008). Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology, 22, 955-963.
DOI URL |
[46] | Urakawa R, Ohte N, Shibata H, Isobe K, Tateno R, Oda T, Hishi T, Fukushima K, Inagaki Y, Hirai K, Oyanagi N, Nakata M, Toda H, Kenta T, Kuroiwa M, et al. (2016). Factors contributing to soil nitrogen mineralization and nitrification rates of forest soils in the Japanese archipelago. Forest Ecology and Management, 361, 382-396. |
[47] | van der Wal A, van Veen JA, Smant W, Boschker HTS, Bloem J, Kardol P, van der Putten WH, de Boer W (2006). Fungal biomass development in a chronosequence of land abandonment. Soil Biology & Biochemistry, 38, 51-60. |
[48] | Vance ED, Brookes PC, Jenkinson DS (1987). Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biology & Biochemistry, 19, 697-702. |
[49] | Wang FM, Zou B, Li HF, Li ZA (2014). The effect of understory removal on microclimate and soil properties in two subtropical lumber plantations. Journal of Forest Research, 19, 238-243. |
[50] | Wang GJ, Tian DL, Zhu F, Yan WD, Li SZ (2009). Net nitrogen mineralization in soils under four forest communities in Hunan Province. Acta Ecologica Sinica, 29, 1607-1615. |
[ 王光军, 田大伦, 朱凡, 闫文德, 李树战 (2009). 湖南省4种森林群落土壤氮的矿化作用. 生态学报, 29, 1607-1615.] | |
[51] | Wang XZ, Hu ZL, Du YX, Liu YZ, Li LQ, Pan GX (2010). Comparison of microbial biomass and community structure of rhizosphere soil between forest and shrubbery in karst ecosystems. Soils, 42, 224-229. |
[ 王新洲, 胡忠良, 杜有新, 刘永卓, 李恋卿, 潘根兴 (2010). 喀斯特生态系统中乔木和灌木林根际土壤微生物生物量及其多样性的比较. 土壤, 42, 224-229.] | |
[52] |
Wu LK, Lin XM, Lin WX (2014). Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 38, 298-310.
DOI URL |
[ 吴林坤, 林向民, 林文雄 (2014). 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 38, 298-310.] | |
[53] |
Xiao HY, Liu B, Yu ZP, Wan XH, Sang CP, Zhou FW, Huang ZQ (2017). Seasonal dynamics of soil mineral nitrogen pools and nitrogen mineralization rate in different forests in subtropical China. Chinese Journal of Applied Ecology, 28, 730-738.
DOI URL PMID |
[ 肖好燕, 刘宝, 余再鹏, 万晓华, 桑昌鹏, 周富伟, 黄志群 (2017). 亚热带不同林分土壤矿质氮库及氮矿化速率的季节动态. 应用生态学报, 28, 730-738.]
PMID |
|
[54] |
Yin HJ, Xu ZF, Chen Z, Wei YY, Liu Q (2012). Nitrogen transformation in the rhizospheres of two subalpine coniferous species under experimental warming. Applied Soil Ecology, 59, 60-67.
DOI URL |
[55] |
York LM, Carminati A, Mooney SJ, Ritz K, Bennett MJ (2016). The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. Journal of Experimental Botany, 67, 3629-3643.
URL PMID |
[56] |
Zhang JB, Cai ZC, Zhu TB, Yang WY, Müller C (2013a). Mechanisms for the retention of inorganic N in acidic forest soils of southern China. Scientific Reports, 3, 2342. DOI: 10.1038/srep02342.
DOI URL PMID |
[57] |
Zhang JB, Zhu TB, Cai ZC, Muller C (2011). Nitrogen cycling in forest soils across climate gradients in Eastern China. Plant and Soil, 342, 419-432.
DOI URL |
[58] |
Zhang YC, Zhang JB, Meng TZ, Zhu TB, Muller C, Cai ZC (2013b). Heterotrophic nitrification is the predominant NO3- production pathway in acid coniferous forest soil in subtropical China. Biology and Fertility of Soils, 49, 955-957.
DOI URL |
[59] | Zhao Q, Zeng DH, Fan ZP (2010). Nitrogen and phosphorus transformations in the rhizospheres of three tree species in a nutrient-poor sandy soil. Applied Soil Ecology, 46, 341-346. |
[60] | Zhao QG (1995). Degradation of red soil in China. Soils, 38, 281-285. |
[ 赵其国 (1995). 我国红壤的退化问题. 土壤, 38, 281-285.] | |
[61] | Zhu B, Gutknecht JLM, Herman DJ, Keck DC, Firestone MK, Cheng W (2014). Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biology & Biochemistry, 76, 183-192. |
[62] | Zulkarnaen N, Cheng Y, Zhang JB (2019). Effects of land use on soil nitrogen mineralization and nitrification transformation in red soil in subtropical region of China. Chinese Journal of Soil Science, 50, 1210-1217. |
[ Zulkarnaen N, 程谊, 张金波 (2019). 土地利用方式对红壤氮素矿化和硝化作用的影响. 土壤通报, 50, 1210-1217.] |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | YANG Shang-Jin, FAN Yun-Xiang, ZHANG Yu-Wen, HAN Qiao-Ling, ZHAO Yue, DUAN Jie, DI Nan, XI Ben-Ye. Comparison of methods for dividing nighttime sap flow components in Populus tomentosa trees [J]. Chin J Plant Ecol, 2024, 48(4): 496-507. |
[3] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
[4] | LIN Shao-Ying, ZENG Yu, YANG Wen-Wen, CHEN Bin, RUAN Min-Min, YIN Xiao-Lei, YANG Xiang, WANG Wei-Qi. Effects of straw and biochar addition on carbon, nitrogen and phosphorus ecological stoichiometry in Jasminum sambac plant and soil [J]. Chin J Plant Ecol, 2023, 47(4): 530-545. |
[5] | FAN Yun-Xiang, DI Nan, LIU Yang, ZHANG Yu-Wen, DUAN Jie, LI Xin, WANG Hai-Hong, XI Ben-Ye. Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors [J]. Chin J Plant Ecol, 2023, 47(2): 262-274. |
[6] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[7] | LI Wan-Nian, LUO Yi-Min, HUANG Ze-Yue, YANG Mei. Effects of mixed young plantations of Parashorea chinensis on soil microbial functional diversity and carbon source utilization [J]. Chin J Plant Ecol, 2022, 46(9): 1109-1124. |
[8] | LIU Pei-Rong, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, ZHANG Jing-Ru, YU Pei-Yang, ZHOU Yu. Effect of diffuse radiation on gross primary productivity of typical planted forests in eastern China [J]. Chin J Plant Ecol, 2022, 46(8): 904-918. |
[9] | HUANG Dong-Liu, XIANG Wei, LI Zhong-Guo, ZHU Shi-Dan. Hydraulic architecture and safety margin in ten afforestation species in a lower subtropical region [J]. Chin J Plant Ecol, 2022, 46(5): 602-612. |
[10] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[11] | YIN Xiao-Lei, LIU Xu-Yang, JIN Qiang, LI Xian-De, LIN Shao-Ying, YANG Xiang, WANG Wei-Qi, ZHANG Yong-Xun. Effects of different management methods on carbon, nitrogen, and phosphorus contents and their stoichiometric ratios in tea plants [J]. Chin J Plant Ecol, 2021, 45(7): 749-759. |
[12] | DING Kai, ZHANG Yu-Ting, ZHANG Jun-Hong, CHAI Xiong, ZHOU Shi-Shui, TONG Zai-Kang. Effects of Chinese fir plantations with different densities on understory vegetation and soil microbial community structure [J]. Chin J Plant Ecol, 2021, 45(1): 62-73. |
[13] | LUO Lin, HUANG Yan, LIANG Jin, WANG En-Tao, HU Jun, HE He-Liang, ZHAO Chun-Zhang. Effects of plant interspecific interaction and warming on soil microbial community in root zone soil of two dominant tree species in the subalpine coniferous forest in southwestern China [J]. Chin J Plant Ecol, 2020, 44(8): 875-884. |
[14] | DENG Meng-Da, YOU Jian-Rong, LI Jia-Xiang, LI Xiong, YANG Jing, DENG Chuang-Fa, LIU Ang, LIU Wen-Jian, DING Cong, XIE Yong, ZHOU Guo-Hui, YU Xun-Lin. Community characteristics of main vegetation types in the ecological “green-core” area of Changzhutan urban cluster [J]. Chin J Plant Ecol, 2020, 44(12): 1296-1304. |
[15] | LÜ Zhong-Cheng, KANG Wen-Xing, HUANG Zhi-Hong, ZHAO Zhong-Hui, DENG Xiang-Wen. Reuse of retranslocated nutrients in tissues of Chinese fir in plantations of different ages [J]. Chin J Plant Ecol, 2019, 43(5): 458-470. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn