Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (6): 617-625.DOI: 10.17521/cjpe.2020.0253
• Research Articles • Previous Articles Next Articles
JI Yu-He1,2, ZHOU Guang-Sheng1,2,*(), WANG Shu-Dong3, WANG Li-Xia4, ZHOU Meng-Zi1
Received:
2020-07-28
Accepted:
2021-03-15
Online:
2021-06-20
Published:
2021-09-09
Contact:
ZHOU Guang-Sheng
Supported by:
JI Yu-He, ZHOU Guang-Sheng, WANG Shu-Dong, WANG Li-Xia, ZHOU Meng-Zi. Evolution characteristics and its driving forces analysis of vegetation ecological quality in Qinling Mountains region from 2000 to 2019[J]. Chin J Plant Ecol, 2021, 45(6): 617-625.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0253
Fig. 2 Annual vegetation net primary productivity (NPP)(A), average vegetation coverage (VFC)(B), their change trends (C, D) at spatial resolution of 1 km × 1 km, and the average change trends from all grids (E, F) in Qinling Mountains region from 2000 to 2019.
Fig. 3 Change trends of mean annual temperature (A) at spatial resolution of 1 km × 1 km, and the average trend from all grids over Qinling Mountains region from 2000 to 2019 (B).
Fig. 4 Change trends of annual precipitation (A) at spatial resolution of 1 km × 1 km, and the average trend from all grids over Qinling Mountains region from 2000 to 2019 (B).
植被变量 Vegetation variables | 年降水量 Annual precipitation | 年平均气温 Annual mean air temperature | ||||
---|---|---|---|---|---|---|
相关系数 Correlation coefficient | 显著性 Significance (Two-tailed) | 自由度 df | 相关系数 Correlation coefficient | 显著性 Significance (Two-tailed) | 自由度 df | |
净初级生产力 Net primary productivity | 0.603 | 0.006 | 17 | 0.360 | 0.130 | 17 |
覆盖度 Coverage | 0.291 | 0.226 | 17 | 0.393 | 0.096 | 17 |
Table 1 Partial correlations between climate variables (annual precipitation and annual mean air temperature) and vegetation variables (net primary productivity and coverage) from 1 km × 1 km spatial accuracy over Qinling Mountains region from 2000 to 2019
植被变量 Vegetation variables | 年降水量 Annual precipitation | 年平均气温 Annual mean air temperature | ||||
---|---|---|---|---|---|---|
相关系数 Correlation coefficient | 显著性 Significance (Two-tailed) | 自由度 df | 相关系数 Correlation coefficient | 显著性 Significance (Two-tailed) | 自由度 df | |
净初级生产力 Net primary productivity | 0.603 | 0.006 | 17 | 0.360 | 0.130 | 17 |
覆盖度 Coverage | 0.291 | 0.226 | 17 | 0.393 | 0.096 | 17 |
土地利用变化 Land use change | 农田 Farmland | 林地 Forest land | 草地 Grassland | 水域 Body of water | 建设用地 Construction land |
---|---|---|---|---|---|
2000年面积 Area in 2000 (hm2) | 3 243 955 | 4 902 716 | 3 652 886 | 107 819 | 187 831 |
2015年面积 Area in 2015 (hm2) | 3 092 793 | 4 928 172 | 3 671 340 | 118 299 | 282 880 |
增减面积 Increase or decrease area (hm2) | -151 162 | 25 456 | 18 454 | 10 480 | 95 049 |
增减幅度 Range of increase or decrease (%) | -4.66 | 0.52 | 0.51 | 9.72 | 50.60 |
Table 2 Land use types and their change in Qinling Mountains region from 2000 to 2015
土地利用变化 Land use change | 农田 Farmland | 林地 Forest land | 草地 Grassland | 水域 Body of water | 建设用地 Construction land |
---|---|---|---|---|---|
2000年面积 Area in 2000 (hm2) | 3 243 955 | 4 902 716 | 3 652 886 | 107 819 | 187 831 |
2015年面积 Area in 2015 (hm2) | 3 092 793 | 4 928 172 | 3 671 340 | 118 299 | 282 880 |
增减面积 Increase or decrease area (hm2) | -151 162 | 25 456 | 18 454 | 10 480 | 95 049 |
增减幅度 Range of increase or decrease (%) | -4.66 | 0.52 | 0.51 | 9.72 | 50.60 |
[1] | Chen XN, Jiang HC(2019). Climate response of NDVI index on Qinling Mountains in 25 years. Bulletin of Surveying and Mapping, (3), 103-107. |
[ 陈晓宁, 蒋好忱(2019). 25年来秦岭NDVI指数的气候响应. 测绘通报, (3), 103-107.] | |
[2] | Deng CH, Bai HY, Gao S, Liu RJ, Ma XP, Huang XY, Meng Q(2018). Spatial-temporal variation of the vegetation coverage in Qinling Mountains and its dual response to climate change and human activities. Journal of Natural Resources, 33, 425-438. |
[ 邓晨晖, 白红英, 高山, 刘荣娟, 马新萍, 黄晓月, 孟清(2018). 秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应. 自然资源学报, 33, 425-438.] | |
[3] |
Deng CH, Bai HY, Gao S, Zhao T, Ma XP (2019a). Differences and variations in the elevation-dependent climatic growing season of the northern and southern slopes of the Qinling Mountains of China from 1985 to 2015. Theoretical and Applied Climatology, 137, 1159-1169.
DOI URL |
[4] |
Deng CH, Bai HY, Ma XP, Zhao T, Gao S, Huang XY (2019b). Spatiotemporal differences in the climatic growing season in the Qinling Mountains of China under the influence of global warming from 1964 to 2015. Theoretical and Applied Climatology, 138, 1899-1911.
DOI URL |
[5] | Fang JY, Song YC, Liu HY, Piao SL (2002). Vegetation- climate relationship and its application in the division of vegetation zone in China. Acta Botanica Sinica, 44, 1105-1122. |
[6] |
Feng X, Liu G, Chen JM, Chen M, Liu J, Ju WM, Sun R, Zhou W (2007). Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. Journal of Environmental Management, 85, 563-573.
PMID |
[7] | Huang JJ(2015). Control of Qinling tectonic zone on climate and eco-environment in Shaanxi. Journal of Earth Sciences and Environment, 37(3), 81-86. |
[ 黄建军(2015). 秦岭构造带对陕西气候和生态环境的控制作用. 地球科学与环境学报, 37(3), 81-86.] | |
[8] | IPCC (2018). Summary for policymakers//Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, et al. Global Warming of 1.5 °C. World Meteorological Organization, Geneva, Switzerland. |
[9] |
Ji YH, Zhou GS, Luo TX, Dan Y, Zhou L, Lv XM (2020). Variation of net primary productivity and its drivers in China’s forests during 2000-2018. Forest Ecosystems, 7, 15. DOI: 10.1186/s40663-020-00229-0.
DOI URL |
[10] | Jia K, Yao YJ, Wei XQ, Gao S, Jiang B, Zhao X(2013). A review on fractional vegetation cover estimation using remote sensing. Advances in Earth Science, 28, 774-782. |
[ 贾坤, 姚云军, 魏香琴, 高帅, 江波, 赵祥(2013). 植被覆盖度遥感估算研究进展. 地球科学进展, 28, 774-782.] | |
[11] |
Jiang C, Mu XM, Wang F, Zhao GJ (2016). Analysis of extreme temperature events in the Qinling Mountains and surrounding area during 1960-2012. Quaternary International, 392, 155-167.
DOI URL |
[12] |
Li CX, Gao X, Xi ZL (2019). Characteristics, hazards, and control of illegal villa (houses): evidence from the Northern Piedmont of Qinling Mountains, Shaanxi Province, China. Environmental Science and Pollution Research, 26, 21059-21064.
DOI URL |
[13] | Li WZ, Huang CP, Ji WL(2000). A Study on the problems of implementing natural forests conservation programme in Qinling forest area. Journal of Northwest Forestry University, 15(1), 80-84. |
[ 李卫忠, 黄春萍, 吉文丽(2000). 秦岭林区实施天然林保护工程若干问题的思考. 西北林学院学报, 15(1), 80-84.] | |
[14] |
Li Y, Viña A, Yang W, Chen XD, Zhang JD, Ouyang ZY, Liang Z, Liu JG (2013). Effects of conservation policies on forest cover change in giant panda habitat regions, China. Land Use Policy, 33, 42-53.
DOI URL |
[15] | Liu HY, Zhang MY, Lin ZS, Xu XJ (2018). Spatial heterogeneity of the relationship between vegetation dynamics and climate change and their driving forces at multiple time scales in Southwest China. Agricultural and Forest Meteorology, 256-257, 10-21. |
[16] | Pi WQ, Du JM, Chen C, Zhu XB, Liu H(2018). Identification of vegetation in high-spectral images of desertification grassland based on normalized vegetation index. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 39(4), 75-79. |
[ 皮伟强, 杜健民, 陈程, 朱相兵, 刘浩(2018). 基于归一化植被指数对荒漠化草原地面高光谱影像中植被的识别. 内蒙古农业大学学报(自然科学版), 39(4), 75-79.] | |
[17] |
Shao YT, Mu XM, He Y, Sun WY, Zhao GJ, Gao P (2019). Spatiotemporal variations of extreme precipitation events at multi-time scales in the Qinling-Daba mountains region, China. Quaternary International, 525, 89-102.
DOI URL |
[18] | Sun YL, Yang YL, Zhang L, Wang ZL (2015). The relative roles of climate variations and human activities in vegetation change in North China. Physics and Chemistry of the Earth, 87-88, 67-78. |
[19] | Wang J, Zhou WQ, Xu KP, Yan JL, Li WF, Han LJ(2017). Quantitative assessment of ecological quality in Beijing- Tianjin-Hebei urban megaregion, China. Chinese Journal of Applied Ecology, 28, 2667-2676. |
[ 王静, 周伟奇, 许开鹏, 颜景理, 李伟峰, 韩立建(2017). 京津冀地区的生态质量定量评价. 应用生态学报, 28, 2667-2676.] | |
[20] |
Xu B, Yang XC, Tao WG, Qin ZH, Liu HQ, Miao JM(2007). Remote sensing monitoring upon the grass production in China. Acta Ecologica Sinica, 27, 405-413.
DOI URL |
[ 徐斌, 杨秀春, 陶伟国, 覃志豪, 刘海启, 缪建明(2007). 中国草原产草量遥感监测. 生态学报, 27, 405-413.] | |
[21] |
Xu WH, Viña A, Qi ZX, Ouyang ZY, Liu JG, Liu W, Wan H (2014). Evaluating conservation effectiveness of nature reserves established for surrogate species: case of a giant panda nature reserve in Qinling Mountains, China. Chinese Geographical Science, 24(1), 60-70.
DOI URL |
[22] | Xu ZX(2015). Grain for Green, full of green Qinling Mountains. Environmental Economy, (21), 33. |
[ 徐祯霞(2015). 退耕还林, 绿满秦岭. 环境经济, (21), 33.] | |
[23] |
Zhang HJ, Gao Y, Hua YW, Zhang Y, Liu K (2019). Assessing and mapping recreationists’ perceived social values for ecosystem services in the Qinling Mountains, China. Ecosystem Services, 39, 101006. DOI: 10.1016/j.ecoser.2019.101006.
DOI URL |
[24] |
Zhang W, Wang LC, Xiang FF, Qin WM, Jiang WX (2020). Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China. Ecological Indicators, 110, 105892. DOI: 10.1016/j.ecolind.2019.105892.
DOI URL |
[25] |
Zhang YB, Wang YZ, Phillips N, Ma KP, Li JS, Wang W (2017). Integrated maps of biodiversity in the Qinling Mountains of China for expanding protected areas. Biological Conservation, 210, 64-71.
DOI URL |
[26] | Zhang ZW, Cui YW(1963). Vegetation regionalization in Qinling Mountains (draft). Acta Phytoecologia et Geobotanica Sinica, 1, 161-162. |
[ 张珍萬, 崔友文(1963). 秦岭地区的植被区划(草案). 植物生态学与地植物学丛刊, 1, 161-162.] | |
[27] | Zhou GS, Zhang XS(1996). Study on NPP of natural vegetation in China under global climate change. Acta Phytoecologica Sinica, 20, 11-19. |
[ 周广胜, 张新时(1996). 全球气候变化的中国自然植被的净第一性生产力研究. 植物生态学报, 20, 11-19.] | |
[28] |
Zhou ZX, Li MT (2017). Spatial-temporal change in urban agricultural land use efficiency from the perspective of agricultural multi-functionality: a case study of the Xi’an metropolitan zone. Journal of Geographical Sciences, 27, 1499-1520.
DOI URL |
[1] | Yi-Heng Chen Yusupjan Rusul 吾斯曼 阿卜杜热合曼. Analysis of spatial and temporal variation in grassland vegetation cover in the Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[2] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[3] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[4] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[5] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[6] | ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(3): 341-348. |
[7] | YUAN Ya-Ni, ZHOU Zhe, CHEN Bin-Zhou, GUO Yao-Xin, YUE Ming. Differential ecological strategies in functional traits among coexisting tree species in a Quercus aliena var. acuteserrata forest [J]. Chin J Plant Ecol, 2023, 47(9): 1270-1277. |
[8] | CHEN Xue-Ping, ZHAO Xue-Yong, ZHANG Jing, WANG Rui-Xiong, LU Jian-Nan. Variation of NDVI spatio-temporal characteristics and its driving factors based on geodetector model in Horqin Sandy Land, China [J]. Chin J Plant Ecol, 2023, 47(8): 1082-1093. |
[9] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[10] | HE Jie, HE Liang, LÜ Du, CHENG Zhuo, XUE Fan, LIU Bao-Yuan, ZHANG Xiao-Ping. Spatiotemporal variation and its driving mechanism of photosynthetic vegetation in the Loess Plateau from 2001 to 2020 [J]. Chin J Plant Ecol, 2023, 47(3): 306-318. |
[11] | ZHANG Yao, CHEN Lan, WANG Jie-Ying, LI Yi, WANG Jun, GUO Yao-Xin, REN Cheng-Jie, BAI Hong-Ying, SUN Hao-Tian, ZHAO Fa-Zhu. Differences and influencing factors of microbial carbon use efficiency in forest rhizosphere soils at different altitudes in Taibai Mountain, China [J]. Chin J Plant Ecol, 2023, 47(2): 275-288. |
[12] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[13] | MIAO Li-Juan, ZHANG Yu-Yang, CHUAI Xiao-Wei, BAO Gang, HE Yu, ZHU Jing-Wen. Effects of climatic factors and their time-lag on grassland NDVI in Asian drylands [J]. Chin J Plant Ecol, 2023, 47(10): 1375-1385. |
[14] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[15] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn