Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (10): 853-862.DOI: 10.17521/cjpe.2018.0288
Special Issue: 全球变化与生态系统; 青藏高原植物生态学:群落生态学
• Research Articles • Previous Articles Next Articles
WU Hong-Bao1,GAO Qing-Zhu1,Ganjurjav Hasbagan1,*(),LI Yu2,YAN Yu-Long3,HU Guo-Zheng1,WANG Xue-Xia1,YAN Jun4,HE Shi-Cheng4
Received:
2018-11-14
Accepted:
2019-09-05
Online:
2019-10-20
Published:
2020-02-24
Contact:
Ganjurjav Hasbagan
Supported by:
WU Hong-Bao, GAO Qing-Zhu, Ganjurjav Hasbagan, LI Yu, YAN Yu-Long, HU Guo-Zheng, WANG Xue-Xia, YAN Jun, HE Shi-Cheng. Effects of grazing and simulated warming on plant community structure and productivity of alpine grassland in Northern Xizang, China[J]. Chin J Plant Ecol, 2019, 43(10): 853-862.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0288
Fig. 3 Mean air temperature, temperature and moisture of the soil (from April to August in 2016 and 2017) in control (CK), warming (W), grazing (G) and warming + grazing (WG) plots.
因子 Factor | 高度 Height | 盖度 Coverage | 物种重要值 Species important value | 净初级生产力 Net primary productivity | 物种多样性指数 Species diversity index | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
莎草类 Sedges | 禾草类 Grasses | 杂类草 Forbs | 莎草类 Sedges | 禾草类 Grasses | 杂类草 Forbs | Species richness index | Shannon- Weiner index | Pielou index | |||
Y | 0.061 | 0.032 | 0.480 | 0.481 | 0.052 | 0.412 | 0.446 | 0.074 | 0.209 | 0.907 | 0.078 |
W | <0.001 | <0.001 | 0.001 | <0.001 | 0.055 | 0.773 | 0.174 | 0.618 | 1.000 | 0.543 | 0.331 |
G | <0.001 | <0.001 | <0.001 | 0.004 | 0.008 | 0.445 | 0.003 | 0.503 | 0.396 | 0.872 | 0.236 |
Y × W | 0.065 | 0.055 | 0.396 | 0.444 | 0.716 | 0.191 | 0.199 | 0.158 | 0.668 | 0.523 | 0.511 |
Y × G | 0.380 | 0.283 | 0.143 | 0.092 | 0.482 | 0.177 | 0.290 | 0.122 | 0.001 | 0.019 | 0.470 |
W × G | 0.003 | 0.001 | 0.001 | 0.376 | 0.882 | 0.103 | 0.066 | 0.048 | 1.000 | 0.617 | 0.347 |
Y × W × G | 0.903 | 0.103 | 0.587 | 0.926 | 0.169 | 0.201 | 0.708 | 0.145 | 0.209 | 0.332 | 0.904 |
Table 1 Results (p value) of the three way ANOVA of year, warming, grazing and their interaction effects on height, coverage, species important value, net primary productivity and species diversity index of alpine grassland in Northern Xizang
因子 Factor | 高度 Height | 盖度 Coverage | 物种重要值 Species important value | 净初级生产力 Net primary productivity | 物种多样性指数 Species diversity index | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
莎草类 Sedges | 禾草类 Grasses | 杂类草 Forbs | 莎草类 Sedges | 禾草类 Grasses | 杂类草 Forbs | Species richness index | Shannon- Weiner index | Pielou index | |||
Y | 0.061 | 0.032 | 0.480 | 0.481 | 0.052 | 0.412 | 0.446 | 0.074 | 0.209 | 0.907 | 0.078 |
W | <0.001 | <0.001 | 0.001 | <0.001 | 0.055 | 0.773 | 0.174 | 0.618 | 1.000 | 0.543 | 0.331 |
G | <0.001 | <0.001 | <0.001 | 0.004 | 0.008 | 0.445 | 0.003 | 0.503 | 0.396 | 0.872 | 0.236 |
Y × W | 0.065 | 0.055 | 0.396 | 0.444 | 0.716 | 0.191 | 0.199 | 0.158 | 0.668 | 0.523 | 0.511 |
Y × G | 0.380 | 0.283 | 0.143 | 0.092 | 0.482 | 0.177 | 0.290 | 0.122 | 0.001 | 0.019 | 0.470 |
W × G | 0.003 | 0.001 | 0.001 | 0.376 | 0.882 | 0.103 | 0.066 | 0.048 | 1.000 | 0.617 | 0.347 |
Y × W × G | 0.903 | 0.103 | 0.587 | 0.926 | 0.169 | 0.201 | 0.708 | 0.145 | 0.209 | 0.332 | 0.904 |
Fig. 4 Mean vegetation height (mean ± SE) in the control (CK), warming (W), grazing (G) and warming + grazing (WG) plots of alpine meadow in Northern Xizang. Different lowercase letters indicate significant differences in height in group plant (p < 0.05).
植物类群 Plant group | 物种 Species | CK | W | G | WG |
---|---|---|---|---|---|
莎草类 Sedges | 高山嵩草 Kobresia pygmaea | 0.420 | 0.354 | 0.475 | 0.448 |
青藏薹草 Carex moorcroftii | 0.109 | 0.118 | - | - | |
矮生嵩草 Kobresia humilis | 0.028 | - | - | - | |
禾草类 Grasses | 紫花针茅 Stipa purpurea | - | - | 0.113 | 0.179 |
草地早熟禾 Poa pratensis | 0.197 | 0.238 | - | - | |
杂类草 Forbs | 垫状点地梅 Androsace tapete | 0.003 | 0.002 | - | - |
星状雪兔子 Saussurea stella | - | - | 0.064 | 0.033 | |
矮火绒草 Leontopodium nanum | - | - | 0.040 | - | |
蓝花棘豆 Oxytropis caerulea | 0.032 | 0.041 | 0.058 | - | |
藏豆 Stracheya tibetica | - | 0.019 | - | 0.064 | |
蒲公英 Taraxacum mongolicum | - | - | 0.014 | 0.025 | |
肉果草 Lancea tibetica | 0.052 | 0.034 | - | 0.007 | |
短穗兔耳草 Lagotis brachystachya | 0.008 | 0.030 | 0.034 | 0.024 | |
二裂委陵菜 Potentilla bifurca | 0.043 | 0.069 | 0.068 | 0.071 | |
钉柱委陵菜 Potentilla saundersiana | 0.047 | 0.061 | 0.073 | 0.075 | |
多裂委陵菜 Potentilla multifida | 0.047 | 0.034 | 0.061 | 0.074 | |
山莓草 Sibbaldia procumbens | 0.014 | - | - | - |
Table 2 Species composition and their important values of alpine grassland communities under treatments of control, warming, grazing and the combination of warming and grazing in Northern Xizang in 2017
植物类群 Plant group | 物种 Species | CK | W | G | WG |
---|---|---|---|---|---|
莎草类 Sedges | 高山嵩草 Kobresia pygmaea | 0.420 | 0.354 | 0.475 | 0.448 |
青藏薹草 Carex moorcroftii | 0.109 | 0.118 | - | - | |
矮生嵩草 Kobresia humilis | 0.028 | - | - | - | |
禾草类 Grasses | 紫花针茅 Stipa purpurea | - | - | 0.113 | 0.179 |
草地早熟禾 Poa pratensis | 0.197 | 0.238 | - | - | |
杂类草 Forbs | 垫状点地梅 Androsace tapete | 0.003 | 0.002 | - | - |
星状雪兔子 Saussurea stella | - | - | 0.064 | 0.033 | |
矮火绒草 Leontopodium nanum | - | - | 0.040 | - | |
蓝花棘豆 Oxytropis caerulea | 0.032 | 0.041 | 0.058 | - | |
藏豆 Stracheya tibetica | - | 0.019 | - | 0.064 | |
蒲公英 Taraxacum mongolicum | - | - | 0.014 | 0.025 | |
肉果草 Lancea tibetica | 0.052 | 0.034 | - | 0.007 | |
短穗兔耳草 Lagotis brachystachya | 0.008 | 0.030 | 0.034 | 0.024 | |
二裂委陵菜 Potentilla bifurca | 0.043 | 0.069 | 0.068 | 0.071 | |
钉柱委陵菜 Potentilla saundersiana | 0.047 | 0.061 | 0.073 | 0.075 | |
多裂委陵菜 Potentilla multifida | 0.047 | 0.034 | 0.061 | 0.074 | |
山莓草 Sibbaldia procumbens | 0.014 | - | - | - |
Fig. 5 Mean species important values in control (CK), warming (W), grazing (G) and warming + grazing (WG) plots of alpine grassland in Northern Xizang.
Fig. 6 Mean vegetation coverage and net primary production (mean + SE) in control (CK), warming (W), grazing (G) and warming + grazing (WG) plots of alpine grassland in Northern Xizang. Different lowercase letters indicate significant differences in coverage and net primary production in different treatments (p < 0.05).
Fig. 7 Mean species diversity (mean + SE) in control (CK), warming (W), grazing (G) and warming + grazing (WG) plots of alpine grassland in Northern Xizang. Different lowercase letters indicate significant differences in species diversity in different treatments (p < 0.05)
Fig. 8 Community structure, species diversity and productivity (mean + SE) in warming (W), grazing (G) and warming + grazing (WG) plots of alpine grassland in Northern Xizang. Different lowercase letters indicate differences in treatment effect (p < 0.05); **, indicate differences between treatment effect and zero (p < 0.01).
[1] |
.Brown JH, Valone TJ, Curtin CG (1997). Reorganization of an arid ecosystem in response to recent climate change.Proceedings of the National Academy of Sciences of the United States of America, 94, 9729-9733.
DOI URL PMID |
[2] |
.Cao XJ, Ganjurjav H, Liang Y, Gao QZ, Zhang Y, Li YE, Wan YF, Danjiu LB (2016). Temporal and spatial distribution of grassland degradation in northern Tibet based on NDVI.Acta Prataculturae Sinica, 25(3), 1-8.
DOI URL |
[曹旭娟, 干珠扎布, 梁艳, 高清竹, 张勇, 李玉娥, 万运帆, 旦久罗布 (2016). 基于NDVI的藏北地区草地退化时空分布特征分析. 草业学报, 25(3), 1-8.]
DOI URL |
|
[3] |
.Chen H, Zhu QA, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, Jiang H, Song XZ, Zhang Y, Yu GR, Zhao XQ, Gong P, Yao TD, Wu JH (2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau.Global Change Biology, 19, 2940-2955.
DOI URL |
[4] | .National Development and Reform Commission (2007). China’s National Climate Change Programme. Environmental Policy Collection, 1-62. |
[5] | .Duan MJ, Gao QZ, Wan YF, Li YE, Guo YQ, Danjiu LB, Luosang JC (2010). Effect of grazing on community characteristics and species diversity ofStipa purpurea alpine grassland in Northern Tibet. Acta Ecologica Sinica, 30, 3892-3900. |
[段敏杰, 高清竹, 万运帆, 李玉娥, 郭亚奇, 旦久罗布, 洛桑嘉措 (2010). 放牧对藏北紫花针茅高寒草原植物群落特征的影响. 生态学报, 30, 3892-3900.] | |
[6] |
.Fu G, Shen ZX, Zhang XZ (2018). Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the Northern Tibetan Plateau. Agricultural and Forest Meteorology, 249, 11-21.
DOI URL |
[7] |
.Fu G, Sun W, Yu CQ, Zhang XZ, Shen ZX, Li YL, Yang PW, Zhou N (2015). Clipping alters the response of biomass production to experimental warming: A case study in an alpine meadow on the Tibetan Plateau, China.Journal of Mountain Science, 12, 935-942.
DOI URL |
[8] | .Fu G, Zhang XZ, Zhang YJ, Shi PL, Li YL, Zhou YT, Yang PW, Shen ZX (2013). Experimental warming does not enhance gross primary production and above-ground biomass in the alpine meadow of Tibet.Journal of Applied Remote Sensing, 7, 6451-6465. |
[9] |
.Ganjurjav H, Gao QZ, Gornish ES, Schwartz MW, Liang Y, Cao XJ, Zhang WN, Zhang Y, Li WH, Wan YF, Li YE, Danjiu LB, Guo HB, Lin ED (2016). Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau.Agricultural and Forest Meteorology, 223, 233-240.
DOI URL |
[10] |
.Ganjurjav H, Guo YQ, Gao QZ, Duan MJ, Wan YF, Li YE, Danjiu LB (2013). A study on optimal grazing rates in Stipa purpurea alpine grassland in Northern Tibet. Acta Prataculturae Sinica, 22(1), 130-137.
DOI URL |
[干珠扎布, 郭亚奇, 高清竹, 段敏杰, 万运帆, 李玉娥, 旦久罗布 (2013). 藏北紫花针茅高寒草原适宜放牧率研究. 草业学报, 22(1), 130-137.]
DOI URL |
|
[11] | .Gao QZ, Jiangcun WZ, Li YE, Wan YF (2006). Remote Sensing Monitoring of Grassland and Eco-functional Regionalization in Northern Xizang. Meteorological Press, Beijing. 12. |
[高清竹, 江村旺扎, 李玉娥, 万运帆 (2006). 藏北地区草地退化遥感监测与生态功能区划. 气象出版社, 北京. 12.] | |
[12] | .He T (2015). Effect of Grazing Rates on Plant Diversity and Productivity in Northwest Sichuan Alpine Meadow. Master degree dissertation, Sichuan Agricultural University, Chengdu. 29-33. |
[何婷 (2015). 放牧率对川西北高寒草地植物多样性和生产力的影响. 硕士学位论文, 四川农业大学, 成都. 29-33.] | |
[13] |
.Hopping KA, Knapp AK, Dorji T, Klein JA (2018). Warming and land use change concurrently erode ecosystem services in Tibet. Global Change Biology, 24, 5534-5548.
DOI URL PMID |
[14] | .IPCC (2013). Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK. 1535. |
[15] | .Jiang YB, Fan M, Zhang YJ (2017). Effect of short-term warming on plant community features of alpine meadow in Northern Tibet.Chinese Journal of Ecology, 36, 616-622. |
[姜炎彬, 范苗, 张扬建 (2017). 短期增温对藏北高寒草甸植物群落特征的影响. 生态学杂志, 36, 616-622.] | |
[16] |
.Klein JA, Harte J, Zhao XQ (2005). Dynamic and complex microclimate responses to warming and grazing manipulations.Global Change Biology, 11, 1440-1451.
DOI URL |
[17] |
.Klein JA, Harte J, Zhao XQ (2008). Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau.Ecosystems, 11, 775-789.
DOI URL |
[18] | .Kurz I, O’Reilly CD, Tunney H (2006). Impact of cattle on soil physical properties and nutrient concentrations in overland flow from pasture in Ireland.Agriculture Ecosystems & Environment, 113, 378-390. |
[19] |
.Liu HY, Mi ZR, Lin L, Wang YH, Zhang ZH, Zhang FW, Wang H, Liu LL, Zhu B, Cao GM, Zhao XQ, Sanders NJ, Classen AT, Reich PB, He JS (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production.Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056.
DOI URL PMID |
[20] |
.Ma WJ, Zhang Q, Niu JM, Kang S, Liu PT, He X, Yang Y, Zhang YN, Wu JG (2013). Relationship of ecosystem primary productivity to species diversity and functional group diversity: Evidence from Stipa breviflora grassland in Nei Mongol. Chinese Journal of Plant Ecology, 37, 620-630.
DOI URL |
[马文静, 张庆, 牛建明, 康萨如拉, 刘朋涛, 何欣, 杨艳, 张艳楠, 邬建国 (2013). 物种多样性和功能群多样性与生态系统生产力的关系——以内蒙古短花针茅草原为例. 植物生态学报, 37, 620-630.]
DOI URL |
|
[21] |
.Marion B, Bonis A, Bouzillé JB (2010). How much does grazing- induced heterogeneity impact plant diversity in wet grasslands?Écoscience, 17, 229-239.
DOI URL |
[22] |
.McNaughton SJ (1979). Grazing as an optimization process: Grass-ungulate relationships in the Serengeti.The American Naturalist, 113, 691-703.
DOI URL |
[23] |
.Niu SL, Xing XR, Zhang Z, Xia JY, Zhou XH, Song B, Li LH, Wan SQ (2011). Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe.Global Change Biology, 17, 1073-1082.
DOI URL |
[24] |
.Polley HW, Derner JD, Jackson RB, Wilsey BJ, Fay PA (2014). Impacts of climate change drivers on C4 grassland productivity: Scaling driver effects through the plant community.Journal of Experimental Botany, 65, 3415-3424.
DOI URL |
[25] |
.Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001). Diversity and productivity in a long-term grassland experiment.Science, 294, 843-845.
DOI URL PMID |
[26] | .Wang SP, Duan JC, Xu GP, Wang YF, Zhang ZH, Rui YC, Luo CY, Xu B, Zhu XX, Chang XF, Cui XY, Niu HS, Zhao XQ, Wang WY (2012). Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 93, 2365-2376. |
[27] | .Wang SP, Li YH, Chen ZZ (1999). The optimal stocking rate on grazing system in Inner Mongolia steppe II. Based on relationship between stocking rate and aboveground net primary productivity.Acta Agrestia Sinica, 7, 192-197. |
[汪诗平, 李永宏, 陈佐忠 (1999). 内蒙古典型草原草畜系统适宜放牧率的研究II. 以牧草地上现存量和净初级生产力为管理目标. 草地学报, 7, 192-197.] | |
[28] |
.Wang XM, Chen FH, Dong ZB (2006). The relative role of climatic and human factors in desertification in semiarid China.Global Environmental Change, 16, 48-57.
DOI URL |
[29] | .Wu Q, Han GD, Wang RZ, Liu F, Qin J (2016). Effects of simulated warming on grassland plants, soil and ecosystem carbon exchange.Chinese Journal of Grassland, 38, 105-114. |
[武倩, 韩国栋, 王瑞珍, 刘芳, 秦洁 (2016). 模拟增温对草地植物、土壤和生态系统碳交换的影响. 中国草地学报, 38, 105-114.] | |
[30] |
.Wu ZT, Dijkstra P, Koch GW, Peñuelas J, Hungate BA (2011). Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation.Global Change Biology, 17, 927-942.
DOI URL |
[31] | .Xu MH, Liu M, Xue X, Zhai DT, Peng F, You QG, Liu Y (2015). Effects of warming and clipping on the growth of aboveground vegetation in an alpine meadow.Ecology and Environmental Sciences, 24, 231-236. |
[徐满厚, 刘敏, 薛娴, 翟大彤, 彭飞, 尤全刚, 刘洋 (2015). 增温、刈割对高寒草甸地上植被生长的影响. 生态环境学报, 24, 231-236.] | |
[32] |
.Yu CQ, Han FS, Fu G (2019). Effects of 7 years experimental warming on soil bacterial and fungal community structure in the Northern Tibet alpine meadow at three elevations.Science of the Total Environment, 655, 814-822.
DOI URL PMID |
[33] |
.Yu CQ, Shen ZX, Zhang XZ, Sun W, Fu G (2014). Response of soil C and N, dissolved organic C and N, and inorganic N to short-term experimental warming in an alpine meadow on the Tibetan Plateau.The Scientific World Journal, 2014, 152576. DOI: 10.1155/2014/152576.
DOI URL PMID |
[34] | .Yuan JL, Jiang XL, Huang WB, Wang G (2004). Effects of grazing intensity and grazing season on plant species diversity in alpine meadow.Acta Prataculturae Sinica, 13(3), 16-21. |
[袁建立, 江小蕾, 黄文冰, 王刚 (2004). 放牧季节及放牧强度对高寒草地植物多样性的影响. 草业学报, 13(3), 16-21.] | |
[35] |
.Zhao W, Chen SP, Lin GH (2008). Compensatory growth responses to clipping defoliation in Leymus chinensis (Poaceae) under nutrient addition and water deficiency conditions. Plant Ecology,196, 85-99.
DOI URL |
[36] | .Zheng W, Dong QM, Li SX, Li HT, Liu Y, Yang SH (2012). Impact of grazing intensities on community biodiversity and productivity of alpine grassland in Qinghai Lake region.Acta Agrestia Sinica, 20, 1033-1038. |
[郑伟, 董全民, 李世雄, 李红涛, 刘玉, 杨时海 (2012). 放牧强度对环青海湖高寒草原群落物种多样性和生产力的影响. 草地学报, 20, 1033-1038.] | |
[37] |
.Zhou XH, Wan SQ, Luo YQ (2007). Source components and interannual variability of soil CO2, efflux under experimental warming and clipping in a grassland ecosystem.Global Change Biology, 13, 761-775.
DOI URL PMID |
[1] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[3] | SACHURA , ZHANG Xia, ZHU Lin, KANG Saruul. Leaf anatomical changes of Cleistogenes songorica under long-term grazing with different intensities in a desert steppe [J]. Chin J Plant Ecol, 2024, 48(3): 331-340. |
[4] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[5] | NIU Yi-Di, CAI Ti-Jiu. Changes in species diversity and influencing factors in secondary forest succession in northern Da Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 349-363. |
[6] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[7] | SUONAN Ji, LI Bo-Wen, LÜ Wang-Wang, WANG Wen-Ying, LA Ben, LU Xu-Wei, SONGZHA Cuo, CHEN Cheng-Hao, MIAO Qi, SUN Fang-Hui, WANG Shi-Ping. Changes of phenological sequence of Potentilla saundersiana and its frost resistance under the scenarios of warming and increasing precipitation [J]. Chin J Plant Ecol, 2024, 48(2): 158-170. |
[8] | DU Xu-Long, HUANG Jin-Xue, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on oxidative damage and defense characteristics and their correlation in leaf and fine root of plants: a review [J]. Chin J Plant Ecol, 2024, 48(2): 135-146. |
[9] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[10] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[11] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[12] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[13] | YANG Xin, REN Ming-Xun. Species distribution pattern and formation mechanism of mangrove plants around the South China Sea [J]. Chin J Plant Ecol, 2023, 47(8): 1105-1115. |
[14] | BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate [J]. Chin J Plant Ecol, 2023, 47(8): 1144-1158. |
[15] | YU Xiao, JI Ruo-Xuan, REN Tian-Meng, XIA Xin-Li, YIN Wei-Lun, LIU Chao. Distribution, characteristics and classification of Caryopteris mongholica communities in northern China [J]. Chin J Plant Ecol, 2023, 47(8): 1182-1192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn