Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (8): 1065-1077.DOI: 10.17521/cjpe.2023.0229 cstr: 32100.14.cjpe.2023.0229
• Research Articles • Previous Articles Next Articles
MA Xu-Han1, HUANG Ju-Ying1,*()(
), YU Hai-Long2, HAN Cui1, LI Bing1
Received:
2023-08-09
Accepted:
2024-05-06
Online:
2024-08-20
Published:
2024-05-07
Contact:
*HUANG Ju-Ying(juyinghuang@163.com), ORCID:0000-0002-1351-7282
Supported by:
MA Xu-Han, HUANG Ju-Ying, YU Hai-Long, HAN Cui, LI Bing. Soil organic carbon and its easily decomposed components under precipitation change and nitrogen addition in a desert steppe in northwest China[J]. Chin J Plant Ecol, 2024, 48(8): 1065-1077.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0229
Fig. 1 Monthly dynamics of meteorological factors in Yanchi County, Ningxia during 2018-2022. The meteorological data are obtained from China Meteorological Data Network (https://data.cma.cn/).
Fig. 2 Precipitation change and nitrogen addition experiment layout in Yanchi County, Ningxia. (random block split zone design). See abbreviations in Table 1.
氮添加处理 Nitrogen addition treatment (N·m-2·a-1) | 降水量减少50% 50% reduction in precipitation | 降水量减少30% 30% reduction in precipitation | 自然降水量 Natural precipitation | 降水量增加30% 30% increase in precipitation | 降水量增加50% 50% increase in precipitation |
---|---|---|---|---|---|
0 | W1N0 | W2N0 | W3N0 | W4N0 | W5N0 |
5 | W1N5 | W2N5 | W3N5 | W4N5 | W5N5 |
Table 1 Experimental treatments and their abbreviations in the text in Yanchi County, Ningxia
氮添加处理 Nitrogen addition treatment (N·m-2·a-1) | 降水量减少50% 50% reduction in precipitation | 降水量减少30% 30% reduction in precipitation | 自然降水量 Natural precipitation | 降水量增加30% 30% increase in precipitation | 降水量增加50% 50% increase in precipitation |
---|---|---|---|---|---|
0 | W1N0 | W2N0 | W3N0 | W4N0 | W5N0 |
5 | W1N5 | W2N5 | W3N5 | W4N5 | W5N5 |
变异来源 Source of variation | 自由度 Degree of freedom (df) | SOC | EOC | DOC | POC | LFOC | MBC | SOCS |
---|---|---|---|---|---|---|---|---|
α | 4 | 1.033* | 4.864 | 4.566 | 2.669** | 5.009 | 5.800** | 2.428 |
β | 1 | 2.832 | 1.174 | 0.010 | 9.313 | 5.411 | 14.317 | 2.923 |
γ | 3/1/21) | 114.396** | 35.593** | 265.927* | 24.062* | 19.692* | 1 861.216* | 48.817* |
α × β | 4 | 1.838 | 19.222* | 4.555* | 6.332 | 0.200 | 5.107 | 0.773 |
α × γ | 12/4/81) | 2.001 | 7.463 | 5.117 | 10.147* | 10.809 | 2.406 | 3.042 |
β × γ | 3/1/21) | 6.961 | 4.411 | 21.818* | 2.376 | 0.168 | 84.427* | 36.539** |
α × β × γ | 12/4/81) | 4.980 | 12.955* | 5.835 | 7.800* | 0.924 | 4.033 | 1.730 |
Table 2 Effects of precipitation (α), nitrogen addition (β) and soil depth (γ) on soil organic carbon and its components in desert steppe of Yanchi County, Ningxia
变异来源 Source of variation | 自由度 Degree of freedom (df) | SOC | EOC | DOC | POC | LFOC | MBC | SOCS |
---|---|---|---|---|---|---|---|---|
α | 4 | 1.033* | 4.864 | 4.566 | 2.669** | 5.009 | 5.800** | 2.428 |
β | 1 | 2.832 | 1.174 | 0.010 | 9.313 | 5.411 | 14.317 | 2.923 |
γ | 3/1/21) | 114.396** | 35.593** | 265.927* | 24.062* | 19.692* | 1 861.216* | 48.817* |
α × β | 4 | 1.838 | 19.222* | 4.555* | 6.332 | 0.200 | 5.107 | 0.773 |
α × γ | 12/4/81) | 2.001 | 7.463 | 5.117 | 10.147* | 10.809 | 2.406 | 3.042 |
β × γ | 3/1/21) | 6.961 | 4.411 | 21.818* | 2.376 | 0.168 | 84.427* | 36.539** |
α × β × γ | 12/4/81) | 4.980 | 12.955* | 5.835 | 7.800* | 0.924 | 4.033 | 1.730 |
Fig. 3 Effects of precipitation and nitrogen addition on 0-60 cm soil organic carbon content in desert steppe of Yanchi County, Ningxia (mean ± SE). See abbreviations in Table 1. Different uppercase and lowercase letters indicate significant differences among the precipitation treatments under 0 and 5 g N·m-2·a-1 (p < 0.05), respectively. * represents significant differences between nitrogen treatments under the same precipitation condition (p < 0.05).
Fig. 4 Effects of precipitation and nitrogen addition on 0-60 cm soil organic carbon (C) and its components contents in desert steppe of Yanchi County, Ningxia (mean ± SE). See abbreviations in Table 1. Different uppercase and lowercase letters indicate significant differences among the precipitation treatments under 0 and 5 g N·m-2·a-1 (p < 0.05), respectively. * represents significant differences between nitrogen treatments under the same precipitation condition (p < 0.05).
Fig. 5 Effects of precipitation and nitrogen addition on 0-60 cm soil organic carbon (C) storage in desert steppe of Yanchi County, Ningxia (mean ± SE). See abbreviations in Table 1. Different uppercase and lowercase letters indicate significant differences among the precipitation treatments under 0 and 5 g N·m-2·a-1 (p < 0.05), respectively. * represents significant differences between nitrogen treatments under the same precipitation condition (p < 0.05).
因子 Factor | NO3--N | CBH | AKP | STP | SWC | NH4+-N | MBP | EC | BG | NAG |
---|---|---|---|---|---|---|---|---|---|---|
贡献率 Contribution (%) | 40.7 | 25.7 | 21.3 | 20.2 | 16.1 | 14.7 | 7.7 | 7.6 | 5.9 | 5.6 |
F | 14.600 | 7.800 | 6.100 | 5.700 | 4.400 | 4.000 | 2.000 | 1.900 | 1.500 | 1.400 |
p | 0.004* | 0.016* | 0.008* | 0.030* | 0.042* | 0.064 | 0.146 | 0.154 | 0.258 | 0.262 |
Table 3 Conditional effects of environmental factors in redundancy analysis of soil organic carbon content and its storage in desert steppe of Yanchi County, Ningxia
因子 Factor | NO3--N | CBH | AKP | STP | SWC | NH4+-N | MBP | EC | BG | NAG |
---|---|---|---|---|---|---|---|---|---|---|
贡献率 Contribution (%) | 40.7 | 25.7 | 21.3 | 20.2 | 16.1 | 14.7 | 7.7 | 7.6 | 5.9 | 5.6 |
F | 14.600 | 7.800 | 6.100 | 5.700 | 4.400 | 4.000 | 2.000 | 1.900 | 1.500 | 1.400 |
p | 0.004* | 0.016* | 0.008* | 0.030* | 0.042* | 0.064 | 0.146 | 0.154 | 0.258 | 0.262 |
Fig. 6 Redundancy analysis of soil organic carbon and its storage and environmental factors under precipitation change and nitrogen addition in desert steppe of Yanchi County, Ningxia. AKP, soil alkaline phosphatase activity; CBH, soil cellobiohydrolase activity; NO3--N, soil nitrate nitrogen content; SOC, soil organic carbon content; SOCS, soil organic carbon storage; STP, soil total porosity; SWC, soil water content.
因子 Factor | MBN | LAP | D | NH4+-N | EC | E | ST | MBP | R | SWC |
---|---|---|---|---|---|---|---|---|---|---|
贡献率 Contribution (%) | 26.9 | 20.9 | 15.7 | 9.2 | 7.5 | 7.0 | 5.8 | 2.4 | 2.2 | 1.9 |
F | 8.400 | 6.100 | 4.300 | 2.400 | 1.900 | 1.800 | 1.500 | 0.600 | 0.500 | 0.500 |
p | 0.006* | 0.014* | 0.034* | 0.118 | 0.170 | 0.192 | 0.264 | 0.496 | 0.484 | 0.518 |
Table 4 Conditional effects of environmental factors in redundancy analysis of soil organic carbon components in desert steppe of Yanchi County, Ningxia
因子 Factor | MBN | LAP | D | NH4+-N | EC | E | ST | MBP | R | SWC |
---|---|---|---|---|---|---|---|---|---|---|
贡献率 Contribution (%) | 26.9 | 20.9 | 15.7 | 9.2 | 7.5 | 7.0 | 5.8 | 2.4 | 2.2 | 1.9 |
F | 8.400 | 6.100 | 4.300 | 2.400 | 1.900 | 1.800 | 1.500 | 0.600 | 0.500 | 0.500 |
p | 0.006* | 0.014* | 0.034* | 0.118 | 0.170 | 0.192 | 0.264 | 0.496 | 0.484 | 0.518 |
Fig. 7 Redundancy analysis of soil organic carbon components and environmental factors under precipitation change and nitrogen addition in desert steppe of Yanchi County, Ningxia. D, Simpson dominance index; DOC, soil dissolved organic carbon content; EOC, soil easily oxidized organic carbon content; LAP, soil leucine aminopeptidase activity; LFOC, soil light group organic carbon content; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; POC, soil particulate organic carbon content.
[1] | Ackerman D, Millet DB, Chen X (2019). Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 33, 100-107. |
[2] | Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2010). Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. Soil Biology, 22, 229-243. |
[3] | Chai JL, Xu CL, Zhang DG, Xiao H, Pan TT, Yu XJ (2019). Effects of simulated trampling and rainfall on soil nutrients and enzyme activity in an alpine meadow. Acta Ecologica Sinica, 39, 333-344. |
[柴锦隆, 徐长林, 张德罡, 肖红, 潘涛涛, 鱼小军 (2019). 模拟践踏和降水对高寒草甸土壤养分和酶活性的影响. 生态学报, 39, 333-344.] | |
[4] | Chao QC, Yan ZW, Sun Y, Jiang ZH, Liao H, Jia GS, Cai RS (2020). A recent scientific understanding of climate change in China. China Population, Resources and Environment, 30(3), 1-9. |
[巢清尘, 严中伟, 孙颖, 江志红, 廖宏, 贾根锁, 蔡榕硕 (2020). 中国气候变化的科学新认知. 中国人口·资源与环境, 30(3), 1-9.] | |
[5] | Chen QY, Lei TZ, Wu YQ, Si GC, Xi CW, Zhang GX (2019). Comparison of soil organic matter transformation processes in different alpine ecosystems in the Qinghai-Tibet Plateau. Journal of Geophysical Research: Biogeosciences, 124, 33-45. |
[6] | Dai LL, Zhou LL, Wu LH, Liu L, Huang Y, Peng TT, Qiu JW, He ZM, Cao GQ (2022). Carbon density and vertical spatial distribution characteristics of Cunninghamia lanceolata forest ecosystem with different stand density. Acta Ecologica Sinica, 42, 710-719. |
[代林利, 周丽丽, 伍丽华, 刘丽, 黄樱, 彭婷婷, 邱静雯, 何宗明, 曹光球 (2022). 不同林分密度杉木林生态系统碳密度及其垂直空间分配特征. 生态学报, 42, 710-719.] | |
[7] | Dai SJ, Duan F, Fang JP, Long CL, Zhou CN (2020). Relationship between decomposition characteristics of litters and soil nutrients in Tibetan fir forest under different habitat conditions. Bulletin of Soil and Water Conservation, 40(3), 56-63. |
[代松家, 段斐, 方江平, 龙春林, 周晨霓 (2020). 不同生境条件下西藏原始冷杉林凋落物分解特征与土壤养分的关系. 水土保持通报, 40(3), 56-63.] | |
[8] | Deng L, Peng CH, Zhu GY, Chen L, Liu YL, Shangguan ZP (2018). Positive responses of belowground C dynamics to nitrogen enrichment in China. Science of the Total Environment, 616- 617, 1035-1044. |
[9] | Diao HJ, Chen XP, Zhao X, Dong KH, Wang CH (2022). Effects of nitrogen addition and precipitation alteration on soil respiration and its components in a saline-alkaline grassland. Geoderma, 406, 115541. DOI: 10.1016/j.geoderma.2021.115541. |
[10] | Ding JM, Wang WZ, Mi WB, Hou KY, Zhang XW, Zhao YN, Wen Q (2023). Spatial characteristics of soil organic carbon in grassland of Ningxia and its influencing factors. Acta Ecologica Sinica, 43, 1913-1922. |
[丁金梅, 王维珍, 米文宝, 侯凯元, 张喜旺, 赵亚楠, 文琦 (2023). 宁夏草地土壤有机碳空间特征及其影响因素分析. 生态学报, 43, 1913-1922.] | |
[11] |
Du YH, Guo P, Liu JQ, Wang CY, Yang N, Jiao ZX (2014). Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests. Global Change Biology, 20, 3222-3228.
DOI PMID |
[12] | Garten CT, Post WM, Hanson PJ, Cooper LW (1999). Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains. Biogeochemistry, 45(2), 115-145. |
[13] | Geisen S, Hu S, dela Cruz TEE, Veen GF (2020). Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes. The ISME Journal, 15, 618-621. |
[14] | Gu FX, Huang M, Zhang YD, Yan HM, Li J, Guo R, Zhong XL (2016). Modeling the temporal-spatial patterns of atmospheric nitrogen deposition in China during 1961-2010. Acta Ecologica Sinica, 36, 3591-3600. |
[顾峰雪, 黄玫, 张远东, 闫慧敏, 李洁, 郭瑞, 钟秀丽 (2016). 1961-2010年中国区域氮沉降时空格局模拟研究. 生态学报, 36, 3591-3600.] | |
[15] |
Guan B, Xie BH, Yang SS, Hou AX, Chen M, Han GX (2019). Effects of five years’ nitrogen deposition on soil properties and plant growth in a salinized reed wetland of the Yellow River Delta. Ecological Engineering, 136, 160-166.
DOI |
[16] | Hao LY, Zhang LH, Xie ZK, Zhao RF, Wang JF, Guo YF, Gao JP (2021). Influence of precipitation change on soil respiration in desert grassland. Environmental Science, 42, 4527-4537. |
[蒿廉伊, 张丽华, 谢忠奎, 赵锐锋, 王军锋, 郭亚飞, 高江平 (2021). 降水变化对荒漠草原土壤呼吸的影响. 环境科学, 42, 4527-4537.] | |
[17] | IPCC (Intergovernmental Panel on Climate Change) (2021). Climate change:the physical science basis//IPCC. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. |
[18] | Kivlin SN, Treseder KK (2014). Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition. Biogeochemistry, 117, 23-37. |
[19] | Li C, Wang RH, Li ZZ, Xu Y (2021). Spatial variation and influencing factors of soil organic carbon density in typical farmland in China. Environmental Science, 42, 2432-2439. |
[李成, 王让会, 李兆哲, 徐扬 (2021). 中国典型农田土壤有机碳密度的空间分异及影响因素. 环境科学, 42, 2432-2439.] | |
[20] | Liu F, Zeng YN (2021). Analysis of the spatio-temporal variation of vegetation carbon source/sink in Qinghai Plateau from 2000-2015. Acta Ecologica Sinica, 41, 5792-5803. |
[刘凤, 曾永年 (2021). 2000-2015年青海高原植被碳源/汇时空格局及变化. 生态学报, 41, 5792-5803.] | |
[21] | Liu L, Greaver TL (2009). A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecology Letters, 12, 1103-1117. |
[22] | Liu WX, Qiao CL, Yang S, Bai WM, Liu LL (2018). Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition. Geoderma, 332, 37-44. |
[23] | Lu X, Vitousek PM, Mao Q, Gilliam FS, Luo Y, Turner BL, Zhou G, Mo J (2021). Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 118, e2020790118. DOI: 10.1073/pnas.2020790118. |
[24] | Lü XT, Han XG (2010). Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant and Soil, 327, 481-491. |
[25] | Moran KK, Six J, Horwath WR, van Kessel C (2005). Role of mineral-nitrogen in residue decomposition and stable soil organic matter formation. Soil Science Society of America Journal, 69, 1730-1736. |
[26] | Pei ZF, Hong M, Wu ZD, Lu JY, Zhang YX, Shen QG (2022). Responses of soil organic carbon content and its chemical structure of different components to long-term nitrogen input in meadow steppe. Soils, 54, 481-489. |
[裴志福, 红梅, 武振丹, 卢俊艳, 张月鲜, 沈钦国 (2022). 草甸草原土壤不同组分有机碳含量及化学结构对长期氮输入的响应. 土壤, 54, 481-489.] | |
[27] | Piao SL, He Y, Wang XH, Chen FH (2022). Estimation of China’s terrestrial ecosystem carbon sink: methods, progress and prospects. Science China Earth Sciences, 65, 641-651. |
[朴世龙, 何悦, 王旭辉, 陈发虎 (2022). 中国陆地生态系统碳汇估算: 方法、进展、展望. 中国科学: 地球科学, 52, 1010-1020.] | |
[28] | Qi RM, Li J, Lin ZA, Li ZJ, Li YT, Yang XD, Zhang JJ, Zhao BQ (2016). Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Applied Soil Ecology, 102, 36-45. |
[29] | Rappe-George MO, Choma M, Čapek P, Börjesson G, Kaštovská E, Šantrůčková H, Gärdenäs AI (2017). Indications that long-term nitrogen loading limits carbon resources for soil microbes. Soil Biology & Biochemistry, 115, 310-321. |
[30] |
Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, Iwasaki A, Roy J, Yang GW (2019). The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366, 886-890.
DOI PMID |
[31] | Sarker TC, Incerti G, Spaccini R, Piccolo A, Mazzoleni S, Bonanomi G (2018). Linking organic matter chemistry with soil aggregate stability: insight from 13C NMR spectroscopy. Soil Biology & Biochemistry, 117, 175-184. |
[32] |
Shen RN, Zhang YJ, Zhu JT, Chen N, Chen Y, Zhao G, Zhu YX, Tang Z, Li WY (2022). The interactive effects of nitrogen addition and increased precipitation on gross ecosystem productivity in an alpine meadow. Journal of Plant Ecology, 15, 168-179.
DOI |
[33] | Song B, Niu SL, Zhang Z, Yang HJ, Li LH, Wan SQ (2012). Light and heavy fractions of soil organic matter in response to climate warming and increased precipitation in a temperate steppe. PLoS ONE, 7, e33217. DOI: 10.1371/journal.pone.0033217. |
[34] |
Sternberg M, Yakir D (2015). Coordinated approaches for studying long-term ecosystem responses to global change. Oecologia, 177, 921-924.
DOI PMID |
[35] | Tang S, Cheng W, Hu R, Guigue J, Hattori S, Tawaraya K, Tokida T, Fukuoka M, Yoshimoto M, Sakai H, Usui Y, Xu X, Hasegawa T (2021). Five-year soil warming changes soil C and N dynamics in a single rice paddy field in Japan. Science of the Total Environment, 756, 143845. DOI: 10.1016/j.scitotenv.2020.143845. |
[36] | Tang ZS, Deng L, An H, Yan WM, Shangguan ZP (2017). The effect of nitrogen addition on community structure and productivity in grasslands: a meta-analysis. Ecological Engineering, 99, 31-38. |
[37] | Tian DS, Niu SL (2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 024019. DOI: 10.1088/1748-9326/10/2/024019. |
[38] | Tong YP, Long YJ, Yang ZA (2023). Effects of warming and isolation from precipitation on the soil carbon, nitrogen, and phosphorus, and their stoichiometries in an alpine meadow in the Qinghai-Tibet Plateau: a greenhouse warming study. Frontiers in Ecology and Evolution, 11, 1149240. DOI: 10.3389/fevo.2023.1149240. |
[39] | Wang J, Li G, Xiu WM, Song XL, Zhao JN, Yang DL (2014). Effects of nitrogen and water on soil enzyme activity and soil microbial biomass in Stipa baicalensis steppe, Inner Mongolia of North China. Journal of Agricultural Resources and Environment, 31, 237-245. |
[王杰, 李刚, 修伟明, 宋晓龙, 赵建宁, 杨殿林 (2014). 氮素和水分对贝加尔针茅草原土壤酶活性和微生物量碳氮的影响. 农业资源与环境学报, 31, 237-245.] | |
[40] |
Wang P, Zhu WW, Niu YB, Fan J, Yu HL, Lai JS, Huang JY (2019). Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China. Chinese Journal of Plant Ecology, 43, 427-436.
DOI |
[王攀, 朱湾湾, 牛玉斌, 樊瑾, 余海龙, 赖江山, 黄菊莹 (2019). 氮添加对荒漠草原植物群落组成与微生物生物量生态化学计量特征的影响. 植物生态学报, 43, 427-436.]
DOI |
|
[41] | Wang X, Xu ZW, Lü XT, Wang RZ, Cai JP, Yang S, Li MH, Jiang Y (2017). Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland. Plant and Soil, 418, 241-253. |
[42] | Wang X, Zhong ZK, Zhu YF, Wang JY, Yang GH, Ren CJ, Han XH (2022). Effects of warming and increased precipitation on soil respiration of abandoned grassland in the loess-hilly regions. Environmental Science, 43, 1657-1667. |
[王兴, 钟泽坤, 朱玉帆, 王佳懿, 杨改河, 任成杰, 韩新辉 (2022). 增温和增雨对黄土丘陵区撂荒草地土壤呼吸的影响. 环境科学, 43, 1657-1667.] | |
[43] | Wang XY, Xu YX, Li CH, Yu HL, Huang JY (2023). Changes of plant biomass, species diversity, and their influencing factors in a desert steppe of northwestern China under long-term changing precipitation. Chinese Journal of Plant Ecology, 47, 479-490. |
[王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹 (2023). 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素. 植物生态学报, 47, 479-490.]
DOI |
|
[44] | Wu JG, Zhang XQ, Wang YH, Xu DY (2002). The effects of land use changes on the distribution of soil organic carbon in physical fractionation of soil. Scientia Silvae Sinicae, 38(4), 19-29. |
[吴建国, 张小全, 王彦辉, 徐德应 (2002). 土地利用变化对土壤物理组分中有机碳分配的影响. 林业科学, 38(4), 19-29.] | |
[45] | Wu ZD, Ma SF, Lu JY, Yang DL, Hong M (2023). Responses of soil organic carbon components to long-term nitrogen addition in the Stipa baicalensis meadow steppe. Acta Pedologica Sinica, 60, 1520-1530. |
[武振丹, 马尚飞, 卢俊艳, 杨殿林, 红梅 (2023). 贝加尔针茅草甸草原土壤有机碳组分对长期氮素添加的响应. 土壤学报, 60, 1520-1530.] | |
[46] | Xiao W, Chen X, Jing X, Zhu B (2018). A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biology & Biochemistry, 123, 21-32. |
[47] | Xue XX, Ren CQ, Luo XH, Wang WB, Zhao CM, Zhang YF (2024). Effects of experimental nitrogen deposition and litter manipulation on soil organic components and enzyme activity of latosol in tropical rubber plantations. Environmental Science, 45, 354-363. |
[薛欣欣, 任常琦, 罗雪华, 王文斌, 赵春梅, 张永发 (2024). 氮添加与凋落物处理对橡胶林砖红壤有机碳组分及酶活性的影响. 环境科学, 45, 354-363.] | |
[48] | Yang YH, Zhang DY, Wei B, Liu Y, Feng XH, Mao C, Xu WJ, He M, Wang L, Zheng ZH, Wang YY, Chen LY, Peng YF (2023). Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input. Chinese Journal of Plant Ecology, 47, 1-24. |
[杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰 (2023). 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制. 植物生态学报, 47, 1-24.]
DOI |
|
[49] |
Ye CL, Chen DM, Hall SJ, Pan S, Yan XB, Bai TS, Guo H, Zhang Y, Bai YF, Hu SJ (2018). Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls. Ecology Letters, 21, 1162-1173.
DOI PMID |
[50] | Zhang CY, Cheng L, Han M, Yang LM, Xu HY (2017). Effect of different water treatments on soil microbial functional diversity and soil conditions in albic soil of Panax ginseng. Northern Horticulture, 6(17), 132-138. |
[张超宇, 程林, 韩梅, 杨利民, 徐怀友 (2017). 不同水分处理对白浆参地土壤微生物群落功能多样性和土壤状况的影响. 北方园艺, 6(17), 132-138.] | |
[51] | Zhang J, Zhou J, Lambers H, Li Y, Li Y, Qin G, Wang M, Wang J, Li Z, Wang F (2022). Nitrogen and phosphorus addition exerted different influences on litter and soil carbon release in a tropical forest. Science of the Total Environment, 832, 155049-155049.. |
[52] | Zhang XL, Zhai PH, Huang JH (2018). Advances in the influences of precipitation and nitrogen deposition change on the carbon cycle of grassland ecosystem. Acta Agrestia Sinica, 26, 284-288. |
[张晓琳, 翟鹏辉, 黄建辉 (2018). 降水和氮沉降对草地生态系统碳循环影响研究进展. 草地学报, 26, 284-288.]
DOI |
|
[53] | Zhou XH, Zhou LY, Nie YY, Fu YL, Du ZG, Shao JJ, Zheng ZM, Wang XH (2016). Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms: a meta-analysis. Agriculture, Ecosystems & Environment, 228, 70-81. |
[54] | Zhu WW, Wang P, Xu YX, Li CH, Yu HL, Huang JY (2021). Soil enzyme activities and their influencing factors in a desert steppe of northwestern China under changing precipitation regimes and nitrogen addition. Chinese Journal of Plant Ecology, 45, 309-320. |
[朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹 (2021). 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素. 植物生态学报, 45, 309-320.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn