Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (10): 1069-1080.doi: 10.17521/cjpe.2017.0048

• Research Articles • Previous Articles     Next Articles

Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land

Zhi-Ying NING1,2, Yu-Lin LI1,*(), Hong-Ling YANG1,2, Dian-Chao SUN2,3, Jing-Dong BI1   

  1. 1Northwest Institute of Eco-Environment and Resource, Chinese Academy of Sciences, Lanzhou 730000, China

    2University of Chinese Academy of Sciences, Beijing 100049, China
    3Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
  • Online:2017-12-24 Published:2017-10-10
  • Contact: Yu-Lin LI


Aims The stoichiometric characteristics of carbon (C), nitrogen (N) and phosphorus (P) in plant organism is vital to understand plant adaptation to environment. In particular, the correlations of elemental stoichiometric characteristics between leaf and fine root could provide insights into the interaction and balance among the plant elements, nutrient use strategies and plant response to global change.Methods We measured C, N, P contents and C:N, C:P, N:P in leaves and fine roots of 60 dominant plants in Horqin sandy land. The 60 plant species were classified into five life forms and two categories such as perennial forb, annual forb, perennial grass, annual grass, shrub, legume, and non-legume. We statistically analyzed the differences and correlations of C, N and P stoichiometry either between fine root and leaf or among five life forms.Important findings The average C, N and P concentrations in leaves of 60 plant species in Horqin sandy land are 424.20 mg·g-1, 25.60 mg·g-1 and 2.10 mg·g-1, respectively. In fine roots, the corresponding element concentrations are 434.03 mg·g-1, 13.54 mg·g-1, 1.13 mg·g-1. N and P concentrations in leaf are approximately twice as high as averages in fine root. Furthermore, similar N:P between leaf and fine root indicates conservative characteristic of elemental stoichiometry in plant organism, suggesting that nutrients distribution is proportional between aboveground and underground of plants. There are significant difference of C, N, P, C:N, C:P and N:P in leaf and root among five life forms. N and P in forb and C:N and C:P in grass are averagely higher than those in other life forms. N:P in annual forb and grass, however, are lower than those in other life forms. C, N in legume are higher than those in non-legume, while C:N in legume is lower than in non-legume. These results imply that nutrient use strategies are significantly different among plant life forms. Correlations analysis showed that N and P in leaf or fine root positively correlated, but C and N, C and P in fine root negatively correlated, suggesting coupling relationship among C, N and P in leaf and fine root. Subsequently, we detected positively significant correlations in C, N, P and their ratios between leaf and fine root, suggesting proportional distribution of photosynthate and nutrient between aboveground and underground during plant growth. Generally, these results supplied fundamental data to understand mass turnover and nutrients cycling of leaves and roots in sand land.

Key words: sandy grassland, ecological stoichiometry, life form, roots, nutrient

Table 1

60 kinds of species list in Horqin sandy land"

Latin name
Life form
Latin name
Life form
Artemisia argyi AF NL 尖头叶藜 Chenopodium acuminatum AF NL
白草 Pennisetum centrasiaticum PG NL 苦参 Sophora flavescens PF L
火媒草 Olgaea leucophylla AF NL 苦苣菜 Sonchus oleraceus AF NL
花苜蓿 Medicago ruthenica PF L 赖草 Leymus secalinus PG NL
苍耳 Xanthium sibiricum AF NL 冷蒿 Artemisia frigida SH NL
糙隐子草 Cleistogenes squarrosa PG NL 芦苇 Phragmites australis PG NL
叉枝蓼 Polygonum tortuosum SH NL 草麻黄 Ephedra sinica PF NL
盐蒿 Arternisia halodendron SH NL 马齿苋 Portulaca oleracea AF NL
刺藜 Chenopodium aristatum AF NL 牻牛儿苗 Erodium stephaniamum AF NL
寸草 Carex duriuscula PF NL 毛马唐 Digitaria chrysoblephara AG NL
胡枝子 Lespedeza bicolor PF L 乳浆大戟 Euphorbia esula AF NL
大果虫实 Corispermum macrocarpum AF NL 三芒草 Aristida adscensionis AG NL
飞燕草 Consolida ajacis AF NL 蒙古韭 Allium mongolicum AF NL
大籽蒿 Artemisia sieversiana AF NL 蓼子朴 Inula salsoloides AF NL
地锦草 Euphorbia humifusa AF NL 沙蓬 Agriophyllum squarrosum AF NL
地梢瓜 Cynanchum thesioides AF NL 沙生冰草 Agropyron desertorum PG NL
鹅绒藤 Cynanchum chinense AF NL 砂蓝刺头 Echinops gmelini AF NL
二裂委陵菜 Potentilla bifurca PF NL 砂引草 Messerschmidia sibirica AF NL
防风 Saposhnikovia divaricata PF NL 少花蒺藜草 Cenchrus pauciflorus AG NL
杠柳 Periploca sepium SH NL 唐松草 Thalictrum aquilegifolium PF NL
狗尾草 Setarria viridis AG NL 碱菀 Tripolium vulgare PF NL
鹤虱 Lappula myosotis AF NL 雾冰藜 Bassia dasyphylla AF NL
华北驼绒藜 Ceratoides arborescens SH NL 尖叶铁扫帚 Lespedeza hedysaroides PF L
画眉草 Eragrostis pilosa AG NL 细叶小苦荬 Ixeridium gracile AF NL
密毛白莲蒿 Artemisia sacrorum AF NL 小叶锦鸡儿 Caragana microphylla SH L
草木犀 Melilotus officinalis PF L 塔落岩黄耆 Hedysarum fruticosum PF L
黄柳 Salix gordejevii SH NL 益母草 Leonurus artemisia AF NL
似棘豆 Oxytropis ambigua AF L 斜茎黄耆 Astragalus adsurgens PF L
蒺藜 Tribulus terrester PF NL 猪毛菜 Salsola collina AF NL
假苇拂子茅 Calamagrositis pseudophragmites PG NL 紫苜蓿 Medicago sativa PF L

Fig. 1

Carbon (C), nitrogen (N) and phosphorus (P) stoichiometry in leaves and fine roots of plants in Horqin sandy land. p < 0.001 represent significant differences between leaves and fine roots (p < 0.001)."

Table 2

Plant leaves and fine roots carbon (C), nitrogen (N) and phosphorus (P) stoichiometry of different life forms (mean ± SE)"

Life form
Sample number
C (mg·g-1) N (mg·g-1) P (mg·g-1) C:N C:P N:P
Perennial forb
93 438.4 ± 2.2a 30.3 ± 0.6a 2.2 ± 0.06ab 15.1 ± 0.4e 216.4 ± 7.2cd 14.5 ± 0.4ab
Annual forb
185 411.4 ± 2.4b 26.0 ± 0.5b 2.3 ± 0.06a 16.8 ± 0.3d 200.5 ± 5.3d 11.9 ± 0.2c
Perennial grass
41 438.5 ± 2.0a 19.3 ± 0.7d 1.5 ± 0.06c 23.7 ± 0.7a 300.3 ± 10.2a 12.8 ± 0.3bc
Annual grass
33 423.6 ± 2.7ab 20.7 ± 1.0cd 1.9 ± 0.09bc 21.9 ± 1.0ab 248.3 ± 17.3bc 11.5 ± 0.6c
灌木 Shrub 43 435.5 ± 4.3a 23.7 ± 0.9bc 1.6 ± 0.08c 19.6 ± 0.8bc 292.6 ± 14.3ab 15.8 ± 0.9a
FF value 22.10 32.06 17.63 38.93 24.23 17.33
pp-value 0.000 0.000 0.000 0.000 0.000 0.000
Fine roots
Perennial forb
93 444.1 ± 2.2a 15.2 ± 0.4a 1.2 ± 0.03ab 31.8 ± 1.0b 425.3 ± 15.5b 13.9 ± 0.4ab
Annual forb
185 433.1 ± 1.4bc 13.7 ± 0.2b 1.2 ± 0.03a 33.2 ± 0.6b 416.1 ± 14.5b 12.5 ± 0.3b
Perennial grass
41 414.8 ± 5.3d 10.7 ± 0.4d 1.0 ± 0.04b 41.7 ± 2.0a 489.5 ± 36.9ab 11.7 ± 0.5b
Annual grass
33 423.8 ± 2.7cd 11.8 ± 0.5cd 0.9 ± 0.05b 39.0 ± 2.2a 482.8 ± 21.3ab 12.8 ± 0.5ab
灌木 Shrub 43 442.1 ± 3.7ab 13.3 ± 0.8bc 1.0 ± 0.07b 38.8 ± 2.5a 530.3 ± 40.2a 14.9 ± 1.0a
F F value 16.07 13.08 6.61 10.39 4.15 4.22
pp-value 0.000 0.000 0.000 0.000 0.003 0.002

Table 3

Comparisons of plant leaves and fine roots carbon (C), nitrogen (N) and phosphorus (P) stoichiometry between legume and non-legume (mean ± SE)"

类别 Category 样本数
Sample number
C (mg·g-1) N (mg·g-1) P (mg·g-1) C:N C:P N:P
豆科植物 Legume 63 441.5 ± 3.2a 31.2 ± 0.7a 1.8 ± 0.06b 14.6 ± 0.3b 266.8 ± 10.3a 17.9 ± 0.4a
非豆科植物 Non-legume 332 420.7 ± 1.6b 24.5 ± 0.4b 2.2 ± 0.04a 18.5 ± 0.3a 226.2 ± 4.6b 12.1 ± 0.2b
FF value 28.27 55.01 11.00 33.03 12.47 188.76
Pp-value 0.000 0.000 0.001 0.000 0.000 0.000
豆科植物 Legume 63 446.1 ± 3.0a 18.3 ± 0.5a 1.1 ± 0.04a 25.5 ± 0.8b 441.6 ± 21.8a 17.2 ± 0.6a
非豆科植物 Non-legume 332 430.4 ± 1.4b 11.3 ± 0.2b 1.1 ± 0.03a 41.8 ± 0.8a 443.2 ± 11.2a 10.8 ± 0.2b
FF value 19.98 231.09 0.01 77.27 0.001 152.96
pp-value 0.000 0.000 0.938 0.000 0.953 0.000

Fig. 2

Correlation of carbon (C), nitrogen (N) and phosphorus (P) concentrations in leaf and fine root in Horqin sandy land. AF, annual forb; AG , annual grass; PF, perennial forb; PG , perennial grass; SH, shrub. *, p < 0.05; **, p < 0.01; ***, p < 0.001."

Fig. 3

Correlation of leaf and fine root in carbon (C), nitrogen (N), phosphorus (P) and their stoichiometric ratio in Horqin sandy land. AF, annual forb; AG , annual grass; PF, perennial forb; PG , perennial grass; SH, shrub. *, p < 0.05; **, p < 0.01; ***, p < 0.001。"

[1] Aerts R (1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns?Journal of Ecology, 84, 597-608.
[2] Aerts R, Chapin FS III (1999). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns.Advances in Ecological Research, 30, 1-67.
doi: 10.1016/S0065-2504(08)60016-1
[3] Bai YF, Li LH, Huang JH, Cheng ZZ (2001). The influence of plant diversity and functional composition on ecosystem stability of fourStipa communities in the Inner Mongolia Plateau. Acta Botanica Sinica, 43, 280-287.[白永飞, 李凌浩, 黄建辉, 陈佐忠 (2001). 内蒙古高原针茅草原植物多样性与植物功能群组成对群落初级生产力稳定性的影响. 植物学报, 43, 280-287.]
doi: 10.3321/j.issn:1672-9072.2001.03.011
[4] Chapin FS III (1980). The mineral nutrition of wild plants.Annual Review of Ecology and Systematics, 11, 233-260.
doi: 10.1146/
[5] Chen FS, Niklas KJ, Zeng DH (2011). Important foliar traits depend on species-grouping: Analysis of a remnant temperate forest at the Keerqin Sandy Lands, China.Plant and Soil, 340, 337-345.
doi: 10.1007/s11104-010-0606-9
[6] Craine JM, Lee WG (2003). Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand.Oecologia, 134, 471-478.
doi: 10.1007/s00442-002-1155-6 pmid: 12647118
[7] Daufresne T, Loreau M (2001). Ecological stoichiometry, primary producer-decomposer interactions, and ecosystem persistence.Ecology, 82, 3069-3082.
doi: 10.1890/0012-9658(2001)082[3069:ESPPDI]2.0.CO;2
[8] Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs.Nature, 408, 578-580.
doi: 10.1038/35046058 pmid: 11117743
[9] Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010). Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change.New Phytologist, 186, 593-608.
doi: 10.1111/j.1469-8137.2010.03214.x pmid: 20298486
[10] Elser JJ, Hayakawa K, Urabe J (2001). Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment.Ecology, 82, 898-903.
doi: 10.1890/0012-9658(2001)082[0898:NLRFQF]2.0.CO;2
[11] Eviner VT, Chapin FS III (2003). Functional Matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes.Annual Review of Ecology, Evolution, and Systematics, 34, 455-485.
[12] Gusewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266.
[13] Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist, 168, 377-385.
doi: 10.1111/j.1469-8137.2005.01530.x pmid: 16219077
[14] Han WX, Wu Y, Tang LY, Cheng YH, Li LP, He JS, Fang JY (2009). Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in Beijing and its periphery.Acta Scientiarum Naturalium Universitatis Pekinensis, 45, 855-860. (in Chinese with English abstract)[韩文轩, 吴漪, 汤璐瑛, 陈雅涵, 李利平, 贺金生, 方精云 (2009). 北京及周边地区植物叶的碳氮磷元素计量特征. 北京大学学报(自然科学版), 45, 855-860.]
[15] He JS, Fang J, Wang Z, Guo D, Flynn DF, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China.Oecologia, 149, 115-122.
doi: 10.1007/s00442-006-0425-0 pmid: 16639565
[16] Hessen DO, Agren GI, Anderson TR, Elser JJ, de Ruiter PC (2004). Carbon, sequestration in ecosystems: The role of stoichiometry.Ecology, 85, 1179-1192.
[17] Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants.The American Naturalist, 168, E103-E122.
doi: 10.1086/507879 pmid: 17004214
[18] Koerselman W, Meuleman AF (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450.
doi: 10.2307/2404783
[19] Li YL, Cui JH, Su YZ (2005). Specific leaf area and leaf dry matter content of some plants in different dune habitats.Acta Ecologica Sinica, 25, 304-311. (in Chinese with English abstract)[李玉霖, 崔建垣, 苏永中 (2005). 不同沙丘生境主要植物比叶面积和叶干物质含量的比较. 生态学报, 25, 304-311.]
[20] Li YL, Mao W, Zhao XY, Zhang TH (2010). Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, north China.Environmental Sciences, 31, 1716-1725. (in Chinese with English abstract)[李玉霖, 毛伟, 赵学勇, 张铜会 (2010). 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究. 环境科学, 31, 1716-1725.]
[21] Liu G, Freschet GT, Pan X, Cornelissen JH, Li Y, Dong M (2010). Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems.New Phytologist, 188, 543-553.
doi: 10.1111/j.1469-8137.2010.03388.x pmid: 20649915
[22] Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen/ phosphorus leaf stoichiometry and the scaling of plant growth.Ecology Letters, 8, 636-642.
doi: 10.1111/j.1461-0248.2005.00759.x
[23] Niu DC, Dong XY, Fu H (2011). Seasonal dynamics of carbon, nitrogen and phosphorus stoichiometry inStipa bungeana. Pratacultural Science, 28, 915-920. (in Chinese with English abstract)[牛得草, 董晓玉, 傅华 (2011). 长芒草不同季节碳氮磷生态化学计量特征. 草业科学, 28, 915-920.]
[24] Qi DH, Wen ZM, Wang HX, Guo R, Yang SS (2016). Stoichiometry traits of carbon, nitrogen, and phosphorus in plants of different functional groups and their responses to micro-topographical variations in the hilly and gully region of the Loess Plateau, China.Acta Ecologica Sinica, 36, 1-10. (in Chinese with English abstract)[戚德辉, 温仲明, 王红霞, 郭茹, 杨士梭 (2016). 黄土丘陵区不同功能群植物碳氮磷生态化学计量特征及其对微地形的响应. 生态学报, 36, 1-10.]
[25] Reich PB, Tilman D, Craine J, Ellsworth D, Tjoelker MG, Knops J, Wedin D, Naeem S, Bahauddin D, Goth J, Bengtson W, Lee TD (2001). Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species.New Phytologist, 150, 435-448.
doi: 10.1046/j.1469-8137.2001.00114.x
[26] Su YZ, Zhao HL, Cui JY (2004). Spatial heterogeneity of soil properties in the desertification process of rainfed farmland in Horqin Sandy Land.Acta Pedologica Sinica, 41, 210-217. (in Chinese with English abstract)[苏永中, 赵哈林, 崔建垣 (2004). 农田沙漠化演变中土壤性状特征及其空间变异性分析. 土壤学报, 41, 210-217.]
doi: 10.11766/trxb200208240208
[27] Tian CY, Shi ZY, Cheng ZC, Fen G (2006). The study of arbuscular mycorrhizal fungi at Gurbantunggut Desert.Chinese Science Bulletin, 51, 115-120. (in Chinese)[田长彦, 石兆勇, 陈志超, 冯固 (2006). 古尔班通古特沙漠丛枝菌根共生体研究. 科学通报, 51, 115-120.]
doi: 10.3321/j.issn:0023-074X.2006.z1.018
[28] Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species.New Phytologist, 167, 493-508.
doi: 10.1111/j.1469-8137.2005.01428.x pmid: 15998401
[29] Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JP (2003). Co-existing grass species have distinctive arbuscular mycorrhizal communities.Molecular Ecology, 12, 3085-3095.
doi: 10.1046/j.1365-294X.2003.01967.x pmid: 14629388
[30] Wang T, Yang YH, Ma WH (2008). Storage, patterns and environmental controls of soil phosphorus in China.Acta Scientiarum Naturalium Universitatis Pekinensis, 44, 945-952. (in Chinese with English abstract)[汪涛, 杨元合, 马文红 (2008). 中国土壤磷库的大小、分布及其影响因素. 北京大学学报(自然科学版), 44, 945-952.]
[31] Wang XJ, Xiao D, Zhang K, Hou JH (2015). Leaf and root N:P stoichiometry for common plants in a natural broadleaved Korean pine forest in Northeast China.Chinese Journal of Ecology, 34, 3283-3288. (in Chinese with English abstract)[王晓洁, 肖迪, 张凯, 侯继华 (2015). 凉水天然阔叶红松林植物叶片与细根的N:P化学计量特征. 生态学杂志, 34, 3283-3288.]
[32] Westheimer FH (1987). Why nature chose phosphates.Science, 235, 1173.
[33] Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees.Ecological Monographs, 76, 381-397.
doi: 10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2
[34] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker M, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827.
[35] Wu TG, Wu M, Liu L, Xiao JH (2010). Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands.Chinese Journal of Plant Ecology, 34, 23-28. (in Chinese with English abstract)[吴统贵, 吴明, 刘丽, 萧江华 (2010). 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化. 植物生态学报, 34, 23-28.]
doi: 10.3773/j.issn.1005-264x.2010.01.005
[36] Xu B, Cheng YX, Gan HJ, Zhou WJ, He JS (2010). Correlations between leaf and fine root traits among and within species of typical temperate grassland in Xilin River Basin, Inner Mongolia, China.Chinese Journal of Plant Ecology, 34, 29-38. (in Chinese with English abstract)[徐冰, 程雨曦, 甘慧洁, 周文嘉, 贺金生 (2010). 内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联. 植物生态学报, 34, 29-38.]
doi: 10.3773/j.issn.1005-264x.2010.01.006
[37] Yang HM, Wang DM (2011). Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors.Acta Prataculturae Sinica, 20, 244-252. (in Chinese with English abstract)[杨惠敏, 王冬梅 (2011). 草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展. 草业学报, 20, 244-252.]
[38] Yu Q (2009). Ecological Stoichiometric Study on Vascular Plants in the Inner Mongolia Steppe. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract)[庾强 (2009). 内蒙古草原植物化学计量生态学研究. 博士学位论文, 中国科学院植物研究所, 北京.]
[39] Yuan ZY, Chen HY, Reich PB (2011). Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus.Nature Communications, 2, 344.
doi: 10.1038/ncomms1346 pmid: 21673665
[40] Zeng DH, Cheng GS (2005). Ecological stoichiometry: A science to explore the complexity of living systems.Acta Phytoecologica Sinica, 29, 141-153. (in Chinese with English abstract)[曾德慧, 陈广生 (2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 141-153.]
doi: 10.17521/cjpe.2005.0120
[41] Zhang K, He MZ, Li XR, Tan HJ, Gao YH, Li G, Han GJ, Wu YY (2014). Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert.Acta Ecologica Sinica, 34, 6538-6547. (in Chinese with English abstract)[张珂, 何明珠, 李新荣, 谭会娟, 高艳红, 李刚, 韩国君, 吴杨杨 (2014). 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征. 生态学报, 34, 6538-6547.]
doi: 10.5846/stxb201302270310
[42] Zhao HY, Li YL, Wang XY, Mao W, Zhao XY, Zhang TH (2010). Variations in leaf traits of 52 plants in Horqin Sandy Land.Journal of Desert Research, 30, 1292-1298. (in Chinese with English abstract)[赵红洋, 李玉霖, 王新源, 毛伟, 赵学勇, 张铜会 (2010). 科尔沁沙地52种植物叶片性状变异特征研究. 中国沙漠, 30, 1292-1298.]
[43] Zhou X, Zuo XA, Zhao XY, Lui C, Luo YQ, Yue XF, Lü P (2015). Ecological stoichiometry of plant and leaf carbon and nitrogen in different habitats of Horqin Sandy Land.Arid Land Geograph, 38, 565-575. (in Chinese with English abstract)[周欣, 左小安, 赵学勇, 刘川, 罗永清, 岳祥飞, 吕朋 (2015). 科尔沁沙地不同生境植物及叶片的C、N元素计量特征. 干旱区地理, 38, 565-575.]
[44] Zhu JT, Li XY, Zhang XM, Lin LS, Yang SG (2010). Nitrogen allocation and partitioning within a leguminous and two non-leguminous plant species growing at the southern fringe of China’s Taklamakan Desert.Chinese Journal of Plant Ecology, 34, 1025-1032. (in Chinese with English abstract)[朱军涛, 李向义, 张希明, 林丽莎, 杨尚功 (2010). 塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配. 植物生态学报, 34, 1025-1032.]
doi: 10.3773/j.issn.1005-264x.2010.09.003
[1] Shitong Wang Yaozhan Xu Teng Yang Xinzeng Wei Mingxi Jiang. Impacts of microhabitats on leaf functional traits characteristics of Sinojackia huangmeiensis [J]. Biodiv Sci, 2020, 28(3): 0-0.
[2] Yibo Tan, Wenhui Shen, Zi Fu, Wei Zheng, Zhiyang Ou, Zhangqiang Tan, Yuhua Peng, Shilong Pang, Qinfei He, Xiaorong Huang, Feng He. Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests [J]. Biodiv Sci, 2019, 27(9): 970-983.
[3] LI Zi-Jing, SHA Na, SHI Ya-Bo, TONG Xu-Ze, DONG Lei, ZHANG Xiao-Qing, SUN Qiang, LIANG Cun-Zhu. Classification and characteristics of Helianthemum songaricum communities in western Erdos region, Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(9): 806-816.
[4] CHEN Chan,ZHANG Shi-Ji,LI Lei-Da,LIU Zhao-Dan,CHEN Jin-Lei,GU Xiang,WANG Liu-Fang,FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2019, 43(8): 658-671.
[5] JIA Bing-Rui. Litter decomposition and its underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(8): 648-657.
[6] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China [J]. Chin J Plant Ecol, 2019, 43(5): 427-436.
[7] LÜ Zhong-Cheng, KANG Wen-Xing, HUANG Zhi-Hong, ZHAO Zhong-Hui, DENG Xiang-Wen. Reuse of retranslocated nutrients in tissues of Chinese fir in plantations of different ages [J]. Chin J Plant Ecol, 2019, 43(5): 458-470.
[8] YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(4): 352-364.
[9] GAO Yu-Qiu, DAI Xiao-Qin, WANG Jian-Lei, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations [J]. Chin J Plant Ecol, 2019, 43(3): 258-272.
[10] TANG Dan-Dan, WU Yi, LIU Wen-Yao, HU Tao, HUANG Jun-Biao, ZHANG Ting-Ting. Ecological stoichiometry of two common hemiparasite plants and their relationship with host trees in Ailao Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2019, 43(3): 245-257.
[11] ZOU Xian-Hua, HU Ya-Nan, WEI Dan, CHEN Si-Tong, WU Peng-Fei, MA Xiang-Qing. Correlation between endogenous hormone and the adaptability of Chinese fir with high phosphorus-use efficiency to low phosphorus stress [J]. Chin J Plant Ecol, 2019, 43(2): 139-151.
[12] MOU Jing, BIN Zhen-Jun, LI Qiu-Xia, BU Hai-Yan, ZHANG Ren-Yi, XU Dang-Hui. Effects of nitrogen and silicon addition on soil nitrogen mineralization in alpine meadows of Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(1): 77-84.
[13] TIAN Da-Shuan. Effects of the supply levels and ratios of nitrogen and phosphorus on seed traits of Chenopodium glaucum [J]. Chin J Plan Ecolo, 2018, 42(9): 963-970.
[14] GAO Chen-Guang, QIAO Xian-Guo, WANG Zi, LU Shuai-Zhi, HOU Dong-Jie, LIU Chang-Cheng, ZHAO Li-Qing, GUO Ke. Distribution, community characteristics and classification of Thymus mongolicus steppe in China [J]. Chin J Plan Ecolo, 2018, 42(9): 971-976.
[15] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
Full text



[1] . [J]. Chin Bull Bot, 2002, 19(01): 121 -124 .
[2] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chin Bull Bot, 1999, 16(04): 429 -432 .
[3] HE Wei-Ming and ZHONG Zhang-Cheng. Effects of Soil Fertility on Gynostemma pentaphyllum Makino Population Behavior[J]. Chin Bull Bot, 1999, 16(04): 425 -428 .
[4] SHE Chao-WenSONG Yun-Chun LIU Li-Hua. Analysis on the G_banded Karyotypes and Its Fluctuation at Different Mitotic Phases and Stages in Triticum tauschii (Aegilops squarrosa)[J]. Chin Bull Bot, 2001, 18(06): 727 -734 .
[5] Guijun Yang, Wenjiang Huang, Jihua Wang, Zhurong Xing. Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data[J]. Chin Bull Bot, 2010, 45(05): 566 -578 .
[6] Man Chen, YishengTu, Linan Ye, Biyun Yang. Effect of Amino Acids on Thallus Growth and Huperzine-A Accumulation in Huperzia serrata[J]. Chin Bull Bot, 2017, 52(2): 218 -224 .
[7] Yefei Shang, Ming Li, Bo Ding, Hao Niu, Zhenning Yang, Xiaoqiang Chen, Gaoyi Cao, Xiaodong Xie. Advances in Auxin Regulation of Plant Stomatal Development[J]. Chin Bull Bot, 2017, 52(2): 235 -240 .
[8] CUI Xiao-Yong, Du Zhan-Chi, Wang Yan-Fen. Photosynthetic Characteristics of a Semi-arid Sandy Grassland Community in Inner Mongolia[J]. Chin J Plan Ecolo, 2000, 24(5): 541 -546 .
[9] LI Wei, ZHANG Ya-Li, HU Yuan-Yuan, YANG Mei-Sen, WU Jie, and ZHANG Wang-Feng. Research on the photoprotection and photosynthesis characteristics of young cotton leaves under field conditions[J]. Chin J Plan Ecolo, 2012, 36(7): 662 -670 .
[10] HU Bao-Zhong, LIU Di, HU Guo-Fu, ZHANG A-Ying, JIANG Shu-Jun. Random Amplified Polymorphic DNA Study of Local Breeds in Chinese lfalfa[J]. Chin J Plan Ecolo, 2000, 24(6): 697 -701 .