Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (4): 404-419.DOI: 10.17521/cjpe.2021.0013
Special Issue: 光合作用
• Research Articles • Previous Articles Next Articles
WU Hong-Min1,2, SHUANG Sheng-Pu1,2, ZHANG Jin-Yan1,2, CUN Zhu1,2, MENG Zhen-Gui1,2, LI Long-Gen1,2, SHA Ben-Cai1, CHEN Jun-Wen1,2,*()
Received:
2021-01-12
Accepted:
2021-03-14
Online:
2021-04-20
Published:
2021-04-14
Contact:
CHEN Jun-Wen
Supported by:
WU Hong-Min, SHUANG Sheng-Pu, ZHANG Jin-Yan, CUN Zhu, MENG Zhen-Gui, LI Long-Gen, SHA Ben-Cai, CHEN Jun-Wen. Photodamage to photosystem in a typically shade-tolerant species Panax notoginseng exposed to a sudden increase in light intensity[J]. Chin J Plant Ecol, 2021, 45(4): 404-419.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0013
Fig. 3 Diurnal pattern of relative chlorophyll content (SPAD value) in shade treatment and full sunlight treatment (mean ± SE, n = 7). *, significant difference between the two treatments at same measurement time ( p< 0.05).
Fig. 4 Diurnal pattern of net photosynthetic rate (A), intercellular CO2 concentration (B) and stomatal conductance (C) in shade treatment and full sunlight treatment (mean ± SE, n = 7). *, significant difference in gas exchange parameters between the two treatments at same measurement time ( p< 0.05).
Fig. 5 Water use efficiency (A) and light use efficiency (B) of Panax notoginseng exposed to shade and full sunlight conditions on the first, second and third day of the experiment, respectively (mean ± SE, n = 7). Different lowercase letters between shade and full sunlight conditions indicate significant difference (p< 0.05).
Fig. 6 Diurnal pattern of maximum quantum efficiency under light adaptation (A), maximum quantum efficiency under dark adaptation (B) and non-photochemical quenching of PSII (C) in shade treatment and full sunlight treatment (mean ± SE, n = 7). *, significant difference between the two treatments at same measurement time ( p< 0.05).
Fig. 7 The maximum quantum efficiency under dark adaptation (A), potential activity of PSII reaction center (B) and the maximum fluorescence signal of the P700 reaction center (C) of Panax notoginseng exposed to shade and full sunlight conditions on the first, second and third day of the experiment, respectively (mean ± SE, n = 7). *, significant difference between the two treatments at same measurement day ( p< 0.05).
Fig. 8 Changes in rapid fluorescence induction kinetic curves (WO-J and Δ WO-J) in leaves of Panax notoginseng transferred from a shade environment with 10% transmittance to full sunlight. The abscissa is plotted on a linear time scale. W,the characteristic point at 100 μs (K point). Day 0, Sunlight-day 1, Sunlight-day 2, Sunlight-day 3 represent the exposure to low light, and the transfer to full sunlight for one, two and three days. Different lowercase letters indicate significant differences ( p< 0.05).
Fig. 9 Daily pattern of parameters related to the rapid fluorescence induction kinetic curve in leaves of Panax notoginsengtransferred from a shade environment with 10% transmittance to full sunlight (mean ± SE, n = 7). Different letters indicate significant difference between shade and full sunlight conditions (p< 0.05).
Fig. 10 Effect of shade and full sunlight treatment on electron transfer and photosystem energy partitioning (mean ± SE, n = 7). LL, 10% transmittance-grown Panax notoginseng (230 μmol·m -2·s-1, 13:00); HL, full sunlight-grown Panax notoginseng (2 300 μmol·m -2·s-1, 13:00). Y(I), effective quantum yield of PSI; Y(ND), heat dissipation efficiency at the donors quantum yield of PSI; Y(NA), quantum yield of PSI non-photochemical energy dissipation due to acceptor; Y(II), effective quantum yield of PSII; Y(NPQ), quantum yield of energy dissipation in PSII; Y(NO), fraction of energy passively dissipated in forms of heat and fluorescence. ETR(I), electron transport rate of PSI; ETR(II), electron transport rate of PSII;CEF, cyclic electron flow around PSI. *, significant difference between the two treatments at same measurement day ( p< 0.05).
Fig. 11 Changes in electron transfer ratio in leaves of Panax notoginseng exposed to shade and full sunlight conditions on the first, second and third day of the experiment, respectively (mean ± SE, n = 7). ETR(I), electron transport rate of PSI; ETR(II), electron transport rate of PSII;CEF, cyclic electron flow around PSI. *, significant difference between the two treatments ( p< 0.05).
[1] |
Allakhverdiev SI, Nishiyama Y, Takahashi S, Miyairi S, Suzuki I, Murata N (2005). Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystem II in Synechocystis. Plant Physiology, 137, 263-273.
PMID |
[2] |
Almeida-Rodríguez AM, Gómes MP, Loubert-Hudon A, Joly S, Labrecque M (2016). Symbiotic association between Salix purpurea L. and Rhizophagus irregularis: modulation of plant responses under copper stress. Tree Physiology, 36, 407-420.
DOI PMID |
[3] |
Bai KD, Liao DB, Jiang DB, Cao KF (2008). Photosynthetic induction in leaves of co-occurring Fagus lucida and Castanopsis lamontii saplings grown in contrasting light environments. Trees, 22, 449-462.
DOI URL |
[4] | Barth C, Krause GH, Winter K (2001). Responses of photosystem I compared with photosystem II to high-light stress in tropical shade and sun leaves. Plant, Cell & Environment, 24, 163-176. |
[5] |
Chen JW, Kuang SB, Long GQ, Meng ZG, Li LG, Chen ZJ, Zhang GH, Yang SC (2014). Steady-state and dynamic photosynthetic performance and nitrogen partitioning in the shade-demanding plant Panax notoginseng under different levels of growth irradiance. c Acta Physiologiae Plantarum, 36, 2409-2420.
DOI URL |
[6] |
Chen JW, Kuang SB, Long GQ, Yang SC, Meng ZG, Li LG, Chen ZJ, Zhang GH (2016). Photosynthesis, light energy partitioning, and photoprotection in the shade-demanding species Panax notoginseng under high and low level of growth irradiance. Functional Plant Biology, 43, 479-491.
DOI URL |
[7] | Dong LH, Han QH, Yang Y, Yuan M ( 2015). Photosynthetic characteristics of Chlorophytum capense var. medio- pictum under short duration high light intensity . Acta Prataculturae Sinica, 24, 245-252. |
[ 董立花, 韩巧红, 杨勇, 袁明 ( 2015). 短时强光处理对金心吊兰光合特性的影响. 草业学报, 24, 245-252.] | |
[8] | Gong XY, Rao XQ, Zhou LX, Wang XL, Zhu XL, Cai XA ( 2018). Dynamics of shade tolerance, biomass, and individual growth of five understory plant species in Eucalyptus urophylla plantations . Acta Ecologica Sinica, 38, 1124-1133. |
[ 公绪云, 饶兴权, 周丽霞, 王晓玲, 朱小林, 蔡锡安 ( 2018). 尾叶桉林下5种植物的耐阴性、生物量及其个体消长. 生态学报, 38, 1124-1133.] | |
[9] | Guo LW, Shen YG ( 1996). Protective mechanisms of higher plants avoid photodamage in photosynthetic apparatus. Plant Physiology Communications, 32, 1-8. |
[ 郭连旺, 沈允钢 ( 1996). 高等植物光合机构避免强光破坏的保护机制. 植物生理学报通讯, 32, 1-8.] | |
[10] |
Hallik L, Niinemets Ü, Kull O (2012). Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field. Plant Biology, 14, 88-99.
DOI PMID |
[11] |
Hu WH, Zhang SS, Xiao YA, Yan XH ( 2015). Physiological responses and photo-protective mechanisms of two Rhododendron plants to natural sunlight after long term shading . Chinese Journal of Plant Ecology, 39, 1093-1100.
DOI URL |
[ 胡文海, 张斯斯, 肖宜安, 闫小红 ( 2015). 两种杜鹃花属植物对长期遮阴后全光照环境的生理响应及其光保护机制. 植物生态学报, 39, 1093-1100.] | |
[12] | Huang W ( 2012). The Significant Role of Cyclic Electron Flow in Plants Adaptation to Environmental Stresses . PhD dissertation, University of Science and Technology of China, Hefei. |
[ 黄伟 ( 2012). 环式电子传递在植物抗环境胁迫过程中的重要作用. 博士学位论文, 中国科学技术大学, 合肥.] | |
[13] |
Huang W, Tikkanen M, Zhang SB (2018a). Photoinhibition of photosystem I in Nephrolepis falciformis depends on reactive oxygen species generated in the chloroplast stroma. Photosynthesis Research, 137, 129-140.
DOI URL |
[14] |
Huang W, Yang YJ, Hu H, Zhang SB (2015a). Different roles of cyclic electron flow around photosystem I under sub-saturating and saturating light intensities in tobacco leaves. Frontiers in Plant Science, 6, 923. DOI: 10.3389/ fpls.2015.00923.
DOI |
[15] |
Huang W, Yang YJ, Zhang JL, Hu H, Zhang SB (2017). Superoxide generated in the chloroplast stroma causes photoinhibition of photosystem I in the shade-establishing tree species Psychotria henryi. Photosynthesis Research, 132, 293-303.
DOI PMID |
[16] |
Huang W, Yang YJ, Zhang SB (2019). Photoinhibition of photosystem I under fluctuating light is linked to the insufficient ΔpH upon a sudden transition from low to high light. Environmental and Experimental Botany, 160, 112-119.
DOI |
[17] |
Huang W, Yang YJ, Zhang SB, Liu T (2018b). Cyclic electron flow around photosystem I promotes ATP synthesis possibly helping the rapid repair of photodamaged photosystem II at low light. Frontiers in Plant Science, 9, 239. DOI: 10.3389/fpls.2018.00239.
DOI URL |
[18] |
Huang W, Zhang SB, Cao KF ( 2012). Physiological role of cyclic electron flow in higher plants. Plant Science Journal, 30, 100-106.
DOI URL |
[ 黄伟, 张石宝, 曹坤芳 ( 2012). 高等植物环式电子传递的生理作用. 植物科学学报, 30, 100-106.] | |
[19] |
Huang W, Zhang SB, Liu T (2018c). Moderate photoinhibition of photosystem II significantly affects linear electron flow in the shade-demanding plant Panax notoginseng. Frontiers in Plant Science, 9, 637. DOI: 10.3389/fpls.2018.00637.
DOI URL |
[20] |
Huang W, Zhang SB, Zhang JL, Hu H (2015b). Photoinhibition of photosystem I under high light in the shade-established tropical tree species Psychotria rubra. Frontiers in Plant Science, 6, 801. DOI: 10.3389/fpls.2015.00801.
DOI |
[21] |
Kim JH, Kim SJ, Cho SH, Chow WS, Lee CH (2005). Photosystem I acceptor side limitation is a prerequisite for the reversible decrease in the maximum extent of P700 oxidation after short-term chilling in the light in four plant species with different chilling sensitivities. Physiologia Plantarum, 123, 100-107.
DOI URL |
[22] |
Kitajima K (1994). Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia, 98, 419-428.
DOI PMID |
[23] |
Krause GH, Grube E, Koroleva OY, Barth C, Winter K (2004). Do mature shade leaves of tropical tree seedlings acclimate to high sunlight and UV radiation? Functional Plant Biology, 31, 743. DOI: 10.1071/FP03239.
DOI URL |
[24] |
Li G, Gao HY, Zhao B, Dong ST, Zhang JW, Yang JS, Wang JF, Liu P ( 2009). Effects of drought stress on activity of photosystems in leaves of maize at grain filling stage. Acta Agronomica Sinica, 35, 1916-1922.
DOI URL |
[ 李耕, 高辉远, 赵斌, 董树亭, 张吉旺, 杨吉顺, 王敬锋, 刘鹏 ( 2009). 灌浆期干旱胁迫对玉米叶片光系统活性的影响. 作物学报, 35, 1916-1922.] | |
[25] | Li PM, Gao HY, Strasser R ( 2005). Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Acta Photophysiologica Sinica, 31, 559-566. |
[ 李鹏民, 高辉远, Strasser R ( 2005). 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 31, 559-566.] | |
[26] | Li XX, Liu BX, Guo ZT, Chang YX, He L, Chen F, Lu BS ( 2013). Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensisleaves . Chinese Journal of Applied Ecology, 24, 2479-2484. |
[ 李旭新, 刘炳响, 郭智涛, 常越霞, 贺磊, 陈芳, 路丙社 ( 2013). NaCl胁迫下黄连木叶片光合特性及快速叶绿素荧光诱导动力学曲线的变化. 应用生态学报, 24, 2479-2484.] | |
[27] |
Li ZZ, Liu DH, Zhao SW, Jiang CD, Shi L ( 2014). Mechanisms of photoinhibition induced by high light in Hosta grown outdoors . Chinese Journal of Plant Ecology, 38, 720-728.
DOI |
[ 李志真, 刘东焕, 赵世伟, 姜闯道, 石雷 ( 2014). 环境强光诱导玉簪叶片光抑制的机制. 植物生态学报, 38, 720-728.] | |
[28] | Liang Y, Li YT, Che XK, Li YN, Luo J, Zhang KH, Zhang ZS, Zhao SJ ( 2018). Effect of PSI photoinhibition on photosynthetic electron transport chain in wheat ( Triticum aestivum) leaves. Plant Physiology Journal, 54, 1426-1432. |
[ 梁英, 李玉婷, 车兴凯, 李月楠, 罗蛟, 张珂豪, 张子山, 赵世杰 ( 2018). 小麦叶片PSI光抑制对光合电子传递链的影响. 植物生理学报, 54, 1426-1432.] | |
[29] |
Liu SL, Ma MD, Pan YZ, Wei LL, He CX, Yang KM ( 2012). Effects of light regimes on photosynthetic characteristics and antioxidant system in seedlings of two alder species. Chinese Journal of Plant Ecology, 36, 1062-1074.
DOI URL |
[ 刘柿良, 马明东, 潘远智, 魏刘利, 何成相, 杨开茂 ( 2012). 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响. 植物生态学报, 36, 1062-1074.] | |
[30] |
Lu CM, Zhang JH (2000). Heat-induced multiple effects on PSII in wheat plants. Journal of Plant Physiology, 156, 259-265.
DOI URL |
[31] | Lu T ( 2016). The Response Mechanisms of Photoinhibiton and Photoprotection Intomato (Solaunm Lycopersicum L.) Leaves to Sub-high Temperature and High Light Intensity Stress. PhD dissertation, Shenyang Agricultural University , Shenyang. |
[ 路涛 ( 2016). 亚高温强光胁迫下番茄幼苗光抑制及光保护机制研究. 博士学位论文, 沈阳农业大学, 沈阳.] | |
[32] |
Ma ZY, Behling S, Ford ED (2014). The contribution of dynamic changes in photosynthesis to shade tolerance of two conifer species. Tree Physiology, 34, 730-743.
DOI URL |
[33] |
Maxwell K, Johnson GN (2000). Chlorophyll florescence—A practical guide. Journal of Experimental Botany, 51, 659-668.
PMID |
[34] |
Miyake C, Miyata M, Shinzaki Y, Tomizawa KI (2005). CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves—Relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of chl fluorescence. Plant and Cell Physiology, 46, 629-637.
DOI URL |
[35] | Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007). Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta (BBA): Bioenergetics, 1767, 414-421. |
[36] |
Oliveira MG, Oliosi G, Partelli FL, Ramalho JC (2018). Physiological responses of photosynthesis in black pepper plants under different shade levels promoted by intercropping with rubber trees. Ciência e Agrotecnologia, 42, 513-526.
DOI URL |
[37] | Pan RC, Wang XJ, Li NH ( 2004). Plant Physiology. Higher Education Press, Beijing. |
[ 潘瑞炽, 王小菁, 李娘辉 ( 2004). 植物生理学. 高等教育出版社, 北京.] | |
[38] |
Parker WC, Mohammed GH (2000). Photosynthetic acclimation of shade-grown red pine (Pinus resinosaAit.) seedlings to a high light environment. New Forests, 19, 1-11.
DOI URL |
[39] |
Rascher U, Nedbal L (2006). Dynamics of photosynthesis in fluctuating light. Current Opinion in Plant Biology, 9, 671-678.
PMID |
[40] |
Sae-Tang P, Hihara Y, Yumoto I, Orikasa Y, Okuyama H, Nishiyama Y (2016). Overexpressed superoxide dismutase and catalase act synergistically to protect the repair of PSII during photoinhibition in Synechococcus elongatus PCC 7942. Plant and Cell Physiology, 57, 1899-1907.
DOI PMID |
[41] |
Shimizu M, Ishida A, Hogetsu T (2005). Root hydraulic conductivity and whole-plant water balance in tropical saplings following a shade-to-sun transfer. Oecologia, 143, 189-197.
DOI URL |
[42] | Srivastava A, Guissé B, Greppin H, Strasser RJ (1997). Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochimica et Biophysica Acta (BBA): Bioenergetics, 1320, 95-106. |
[43] | Strasser RJ, Srivastava A, Tsimilli-Michael M (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples//Yunus M, Pathre U, Mohanty P. Probing Photosynthesis: Mechanism, Regulation and Adaptation. Taylor and Francis Press,London. 445-480. |
[44] | Strasser RJ, Tsimilli-Michael M, Srivastava A (2004). Analysis of the Chlorophyll a Fluorescence Transient. Chlorophyll a Fluorescence. Springer,Netherlands. 321-362. |
[45] | Sun GC, Zhao P, Zeng XP ( 2004). Photosynthetic acclimation to growth-irradiance in two tree species of Magnoliaceae. Acta Ecologica Sinica, 24, 1111-1117. |
[ 孙谷畴, 赵平, 曾小平 ( 2004). 两种木兰科植物叶片光合作用的光驯化. 生态学报, 24, 1111-1117.] | |
[46] |
Valladares F, Pearcy RW (1998). The functional ecology of shoot architecture in sun and shade plants of Heteromeles arbutifolia M. Roem., a Californian chaparral shrub. Oecologia, 114, 1-10.
DOI PMID |
[47] |
van Heerden PDR, Strasser RJ, Krüger GHJ (2004). Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiologia Plantarum, 121, 239-249.
DOI URL |
[48] |
Way DA, Pearcy RW (2012). Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiology, 32, 1066-1081.
DOI URL |
[49] |
Xie HT, Yu MK, Cheng XR ( 2017). Effects of light intensity variation on nitrogen and phosphorus contents, allocation and limitation in five shade-enduring plants. Chinese Journal of Plant Ecology, 41, 559-569.
DOI URL |
[ 颉洪涛, 虞木奎, 成向荣 ( 2017). 光照强度变化对5种耐阴植物氮磷养分含量、分配以及限制状况的影响. 植物生态学报, 41, 559-569.] | |
[50] | Xu DQ, Zhang YZ, Zhang RX ( 1992). Photoinhibition of photosynthesis in plants. Plant Physiology Communications, 28, 237-243. |
[ 许大全, 张玉忠, 张荣铣 ( 1992). 植物光合作用的光抑制. 植物生理学通讯, 28, 237-243.] | |
[51] | Xu DQ (2013). Photosynthesis. Science Press, Beijing. |
[ 许大全 (2013). 光合作用学. 科学出版社, 北京, | |
[52] | Xu XZ, Zhang JY, Zhang GH, Long GQ, Yang SC, Chen ZJ, Wei FG, Chen JW ( 2018). Effects of light intensity on photosynthetic capacity and light energy allocation in Panax notoginseng . Chinese Journal of Applied Ecology, 29, 193-204. |
[ 徐祥增, 张金燕, 张广辉, 龙光强, 杨生超, 陈中坚, 魏富刚, 陈军文 ( 2018). 光强对三七光合能力及能量分配的影响. 应用生态学报, 29, 193-204.] | |
[53] | Yamaguchi N, Makino A, Mae T (2001). Responses of Rubisco activity in vivoto light intensity and CO2 in rice leaves. Science Access, 3(1), 1-4. |
[54] |
Yamamoto H, Shikanai T (2019). PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides. Plant Physiology, 179, 588-600.
DOI PMID |
[55] |
Yamori W (2016). Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. Journal of Plant Research, 129, 379-395.
DOI URL |
[56] | Yamori W, Kusumi K, Iba K, Terashima I (2020). Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice. Plant, Cell & Environment, 43, 1230-1240. |
[57] |
Yamori W, Makino A, Shikanai T (2016). A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Scientific Reports, 6, 20147. DOI: 10.1038/srep20147.
DOI URL |
[58] | Yang H, Han WD, Gao XM ( 2019). Diurnal photosynthetic characteristics of Uvaria grandiflora Roxb. and its correlation with environmental factors . Ecological Science, 38, 92-97. |
[ 杨浩, 韩维栋, 高秀梅 ( 2019). 山椒子光合特性日变化与其环境因子的相关性分析. 生态科学, 38, 92-97.] | |
[59] |
Yang YJ, Ding XX, Huang W (2019a). Stimulation of cyclic electron flow around photosystem I upon a sudden transition from low to high light in two angiosperms Arabidopsis thaliana and Bletilla striata. Plant Science, 287, 110166. DOI: 10.1016/j.plantsci.2019.110166.
DOI URL |
[60] |
Yang YJ, Zhang SB, Wang JH, Huang W (2019b). Photosynthetic regulation under fluctuating light in field-grownCerasus cerasoides: a comparison of young and mature leaves. Biochimica et Biophysica Acta (BBA): Bioenergetics, 1860, 148073. DOI: 10.1016/j.bbabio.2019.148073.
DOI |
[61] | Yu HX ( 2017). The Effects on the Growth of Hosta Cultivar under Shading and Interactive Effects of Nitrogen and Light Condition and Comprehensive Evaluation about Hosta Cultivar . Master degree dissertation, Shenyang Agricultural University,Shenyang. |
[ 于瀚翔 ( 2017). 遮阴与光氮互作对玉簪品种生长影响及引种玉簪品种综合评价. 硕士学位论文, 沈阳农业大学, 沈阳.] | |
[62] |
Zhang Q, Zhang TJ, Chow WS, Xie X, Chen YJ, Peng CL (2015). Photosynthetic characteristics and light energy conversions under different light environments in five tree species occupying dominant status at different stages of subtropical forest succession. Functional Plant Biology, 42, 609-619.
DOI URL |
[63] |
Zhang SP, Scheller HV (2004). Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant and Cell Physiology, 45, 1595-1602.
DOI URL |
[64] | Zheng F, Li ZJ, Qiu ZJ, Zhao HB, Zhou GY ( 2020). Effects of understory light on functional traits of evergreen broad- leaved forest saplings in Nanling Mountains, Guangdong Province. Acta Ecologica Sinica, 40, 4516-4527. |
[ 郑芬, 李兆佳, 邱治军, 赵厚本, 周光益 ( 2020). 广东南岭天然常绿阔叶林林下光环境对林下幼树功能性状的影响. 生态学报, 40, 4516-4527.] | |
[65] |
Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI (2015). Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynthesis Research, 126, 449-463.
DOI PMID |
[1] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[2] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[3] | ZHANG Jin-Yan, CUN Zhu, SHUANG Sheng-Pu, HONG Jie, MENG Zhen-Gui, CHEN Jun-Wen. Steady-state and dynamic photosynthetic characteristics of shade-tolerant species Panax notoginseng in response to nitrogen levels [J]. Chin J Plant Ecol, 2023, 47(3): 331-347. |
[4] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[5] | LIU Hai-Yan, ZANG Sha-Sha, ZHANG Chun-Xia, ZUO Jin-Cheng, RUAN Zuo-Xi, WU Hong-Yan. Photochemical reaction of photosystem II in diatoms under phosphorus starvation and its response to high light intensity [J]. Chin J Plant Ecol, 2023, 47(12): 1718-1727. |
[6] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[7] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[8] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[9] | JIN Chuan, LI Xin-Hao, JIANG Yan, XU Ming-Ze, TIAN Yun, LIU Peng, JIA Xin, ZHA Tian- Shan. Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2021, 45(8): 870-879. |
[10] | YE Zi-Piao, YU Feng, AN Ting, WANG Fu-Biao, KANG Hua-Jing. Investigation on CO2-response model of stomatal conductance for plants [J]. Chin J Plant Ecol, 2021, 45(4): 420-428. |
[11] | LI Jing, WANG Xin, WANG Zhen-Hua, WANG Bin, WANG Cheng-Zhang, DENG Mei-Feng, LIU Ling-Li. Effects of ozone and aerosol pollution on photosynthesis of poplar leaves [J]. Chin J Plant Ecol, 2020, 44(8): 854-863. |
[12] | LI Xu, WU Ting, CHENG Yan, TAN Na-Dan, JIANG Fen, LIU Shi-Zhong, CHU Guo-Wei, MENG Ze, LIU Ju-Xiu. Ecophysiological adaptability of four tree species in the southern subtropical evergreen broad-leaved forest to warming [J]. Chin J Plant Ecol, 2020, 44(12): 1203-1214. |
[13] | LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207. |
[14] | LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898. |
[15] | CHENG Han-Ting, LI Qin-Fen, LIU Jing-Kun, YAN Ting-Liang, ZHANG Qiao-Yan, WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plant Ecol, 2018, 42(5): 585-594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn