Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (5): 559-569.doi: 10.17521/cjpe.2016.0248

• Research Articles • Previous Articles     Next Articles

Effects of light intensity variation on nitrogen and phosphorus contents, allocation and limitation in five shade-enduring plants

Hong-Tao XIE, Mu-Kui YU, Xiang-Rong CHENG*()   

  1. National Field Research Station of Eastern China Coastal Forest Ecosystem, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
  • Online:2017-06-22 Published:2017-05-10
  • Contact: Xiang-Rong CHENG E-mail:chxr@caf.ac.cn
  • About author:

    KANG Jing-yao(1991-), E-mail: kangjingyao_nj@163.com

Abstract:

Aims To enhance the understanding on nitrogen (N) and phosphorus (P) physiological responses to different light environments in shade-enduring plants and provide references to improve the stand structure and ecosystem functions of plantation forests.Methods We selected seedlings of five shade-enduring species with high ecological and economic value in subtropical area of China to study the effects of light intensity on leaf N and P contents, allocation and nutrient limitation in shade-enduring plants. A light intensity gradient of five different levels was set to simulate the varying understory light environment.Important findings With decreasing light intensity, the total biomass and total N and P accumulation of five shade-enduring plants all showed a decreasing trend, but N, P contents in different organs increased. Among them, Gardenia jasminoides (GJ) had the highest while Illicium henryi (IH) had the lowest N content; The P contents of Quercus phillyraeoides (QP) and GJ were significantly higher than Elaeocarpus sylvestris (ES), Ardisia crenata (AC) and IH. QP and GJ had the highest N, P contents under extremely low light intensity (6% natural light intensity) condition (LIC), while AC and IH had the highest N and P contents in low (15% natural light intensity) and moderate (33% and 52% natural light intensity) LIC. ES demanded differently for LIC on N and P, which were 52% and 6% natural light intensity, respectively. N and P allocation of ES, AC and IH followed leaf > root > stem, but for QP and GJ were root > leaf > stem. Decreasing LIC significantly affected N and P allocation. N content variations shown good consistency among different organs under higher LIC (100% natural light intensity) while distinct variability under lower LIC (15% and 6% natural light intensity) in all five species. Phosphorus contents exhibited good consistency in IH, QP and GJ but varied in ES and AC. Decreasing LIC significantly affected organ N/P ratios of shade-enduring plants, but the fundamental growth restriction patterns remained. Light intensity variation and tree species co-regulated N, P utilization and allocation in shade-enduring plants, and then affected the total biomass and total N, P accumulation, which might result from the change of N and P utilization strategy. Therefore, light intensity preference and N, P nutrient balances in shade-enduring plants should be taken into account when constructing multiple layer and uneven-aged forests.

Key words: light intensity, shade-enduring plant, N content, P content, allocation, adaptation strategy

Table 1

Species attributes and applications of five shade-enduring plants"

物种 Species 缩写 Abbreviation 科属 Family and genera 生活型 Life form 主要用途 Main applications
山杜英
Elaeocarpus sylvestris
ES 杜英科杜英属
Elaeocarpaceae Elaeocarpus
乔木
Tree
园林、木材、防护、药用等
Garden, timber, protection, medicine, etc.
朱砂根 Ardisia crenata AC 紫金牛科紫金牛属
Myrsinaceae Ardisia
灌木
Shrub
观赏、固土、药用等
Ornamental, soil fixing, medicine, etc.
红茴香 Illicium henryi IH 八角科八角属 Illiciaceae Illicium 乔木 Tree 观赏、药用等 Ornamental, medicine, etc.
栀子 Gardenia jasminoides GJ 茜草科栀子属 Rubiaceae Gardenia 灌木 Shrub 园林、食用、药用等 Garden, edible, medicine, etc.
乌冈栎 Quercus phillyraeoides QP 壳斗科栎属 Fagaceae Quercus 乔木 Tree 木材、酿酒、饲料等 Timber, wine, feed, etc.

Fig. 1

Experimental design."

Fig. 2

Total N, P accumulations and biomass of five shade- enduring plants under varying light intensity condition (mean ± SD). AC, Ardisia crenata; ES, Elaeocarpus sylvestris; GJ, Gardenia jasminoides; IH, Illicium henryi; QP, Quercus phillyraeoides. 100R, 52R, 33R, 15R and 6R represent 100%, 52%, 33%, 15% and 6% of the natural light intensity, respectively. Different lowercase letters indicate significant differences between light intensity conditions of the same species at p < 0.05 levels. Different capital letters indicate significant differences between species of the same light intensity condition at p < 0.05 levels."

Fig. 3

Total N content and organ N contents of five shade-enduring plants under varying light intensity condition (mean ± SD). AC, Ardisia crenata; ES, Elaeocarpus sylvestris; GJ, Gardenia jasminoides; IH, Illicium henryi; QP, Quercus phillyraeoides. 100R, 52R, 33R, 15R and 6R represent 100%, 52%, 33%, 15% and 6% of the natural light intensity, respectively. Different lowercase letters indicate significant differences between light intensity conditions of the same species at p < 0.05 levels. Different capital letters indicate significant differences between species of the same light intensity condition at p < 0.05 levels."

Fig. 4

Coefficients of variation of N and P contents in plant organs under varying light intensity condition. AC, Ardisia crenata; ES, Elaeocarpus sylvestris; GJ, Gardenia jasminoides; IH, Illicium henryi; QP, Quercus phillyraeoides."

Fig. 5

Total P content and organ P contents of five shade-enduring plants under varying LIC (mean ± SD). AC, Ardisia crenata; ES, Elaeocarpus sylvestris; GJ, Gardenia jasminoides; IH, Illicium henryi; QP, Quercus phillyraeoides. 100R, 52R, 33R, 15R and 6R represent 100%, 52%, 33%, 15% and 6% of the natural light intensity, respectively. Different lowercase letters indicate significant differences between light intensity conditions of the same species at p < 0.05 levels. Different capital letters indicate significant differences between species of the same light intensity condition at p < 0.05 levels."

Table 2

Nitrogen/phosphorus ratio (N:P) of five shade-enduring plant species under varying light intensity condition (mean ± SD)"

物种 Species 相对光强 Relative light intensity
100R 52R 33R 15R 6R
山杜英
Elaeocarpus sylvestris
总N:P Total N:P 9.01 ± 0.59Cd 15.95 ± 0.53Aa 16.48 ± 1.19Aa 14.50 ± 0.29Ab 10.87 ± 0.38ABc
叶片N:P Leaf N:P 15.90 ± 1.19Aab 18.96 ± 0.59Aab 19.11 ± 3.11Aa 17.31 ± 0.45Aab 15.67 ± 1.79Bb
枝干N:P Stem N:P 6.79 ± 0.60Dc 15.70 ± 0.02Aa 16.14 ± 0.40Aa 12.23 ± 0.37Bb 6.66 ± 0.10Cc
根系N:P Root N:P 5.17 ± 1.08Db 8.72 ± 0.59Ba 9.31 ± 0.83Aa 9.39 ± 1.34Aa 8.28 ± 1.06Ba
朱砂根
Ardisia crenata
总N:P Total N:P 13.57 ± 0.45Aa 12.62 ± 0.11Bb 12.26 ± 0.34Bbc 12.67 ± 0.41Bb 11.57 ± 0.47Ac
叶片N:P磷 Leaf N:P 16.15 ± 0.71Ab 16.59 ± 0.48Bb 17.63 ± 2.80Bab 16.61 ± 1.17Ab 19.41 ± 0.11Aa
枝干N:P Stem N:P 15.28 ± 1.18Aa 10.27 ± 0.01Bb 9.63 ± 0.25Cbc 8.75 ± 0.44Ccd 8.28 ± 0.85Bd
根系N:P Root N:P 11.61 ± 0.92Aa 10.26 ± 0.09Abc 9.64 ± 0.23Ac 9.58 ± 0.08Ac 10.58 ± 0.17Ab
红茴香
Illicium henryi
总N:P Total N:P 10.14 ± 0.73Ca 8.16 ± 0.28Da 11.11 ± 0.04Ca 11.51 ± 0.07BCa 10.37 ± 0.02Ba
叶片N:P Leaf N:P 10.73 ± 1.06Cb 9.91 ± 0.28Db 12.24 ± 0.68Da 12.09 ± 0.05Ca 11.87 ± 0.40Ca
枝干N:P Stem N:P 13.22 ± 1.00Bab 8.16 ± 0.44Cc 14.05 ± 0.34Bab 14.53 ± 1.07Aa 12.37 ± 1.39Ab
根系N:P Root N:P 7.97 ± 0.28Bb 6.33 ± 0.15Cd 8.24 ± 0.51Bb 8.92 ± 0.27Aa 7.19 ± 0.13Bc
栀子
Gardenia
jasminoides
总N:P Total N:P 12.47 ± 0.24Ba 10.30 ± 0.15Cb 11.59 ± 0.91Ca 9.86 ± 0.42Cb 11.83 ± 0.29Aa
叶片N:P Leaf N:P 15.75 ± 0.51Aa 14.22 ± 0.34Cb 15.12 ± 0.91Cab 15.62 ± 1.26Bab 16.30 ± 0.48Ba
枝干N:P Stem N:P 10.24 ± 0.72Ca 6.41 ± 0.39Dc 8.15 ± 0.55Cb 5.84 ± 0.06Dcd 5.14 ± 0.09Dd
根系N:P Root N:P 7.05 ± 0.15Ca 5.29 ± 0.01Ccd 5.88 ± 0.89Cbc 4.75 ± 0.36Bd 6.48 ± 0.31Cab
乌冈栎
Quercus
phillyraeoides
总N:P Total N:P 5.38 ± 0.01Da 5.41 ± 0.04Ea 4.39 ± 0.04Db 5.23 ± 0.25Da 4.54 ± 0.05Cb
叶片N:P Leaf N:P 11.64 ± 0.23Ba 9.84 ± 0.15Dbc 9.24 ± 0.85Ec 10.39 ± 0.13Db 9.92 ± 0.16Dbc
枝干N:P Stem N:P 3.65 ± 0.12Ea 3.32 ± 0.05Eb 2.98 ± 0.03Dc 3.57 ± 0.14Ea 3.59 ± 0.02Ea
根系N:P Root N:P 3.82 ± 0.12Ea 3.52 ± 0.02Da 2.79 ± 0.37Db 3.54 ± 0.35Ca 2.65 ± 0.02Db
[1] Bao SD (2000). Soil Agro-chemistrical Analysis. 3rd edn. Agricultural Press of China, Beijing. 42. (in Chinese)[鲍士旦 (2000). 土壤农化分析. 第三版.中国农业出版社, 北京. 42.]
[2] Cheng XR, Zhou JH, Chen YH, Wu KZ, Yu MK (2016). Effects of light intensity on phenotypic plasticity ofGardenia jasminoides seedlings. Acta Agriculturae Universitatis Jiangxiensis, 38, 180-186. (in Chinese with English abstract)[成向荣, 周俊宏, 陈永辉, 武克壮, 虞木奎 (2016). 山栀子幼苗表型可塑性对不同光环境的响应. 江西农业大学学报, 38, 180-186.]
[3] Donovan LA, Maherali H, Caruso CM, Huber H, Kroon HD (2011). The evolution of the worldwide leaf economics spectrum.Trends in Ecology & Evolution, 26, 88-95.
[4] Groot DC, Boogaard R, Marcelis LM, Harbinson J, Lambers H (2003). Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation.Journal of Experimental Botany, 54, 1957-1967.
[5] Guan M, Jin ZX, Wang Q, Li YL, Zuo W (2012). Response of photosynthesis traits of dominant plant species to different light regimes in the secondary forest in the area of Qiandao Lake, Zhejiang, China.Chinese Journal of Applied Ecology, 25, 1615-1622. (in Chinese with English abstract)[管铭, 金则新, 王强, 李月灵, 左威 (2012). 千岛湖次生林优势种植物光合特性对不同光环境的响应. 应用生态学报, 25, 1615-1622.]
[6] Guan YX, Lin B, Ling BY (2000). Interaction effects of light density and nitrogen on maize leaf pigments, chlorophyll fluorescence and energy transition.Plant Nutrition and Fertilizer Science, 6, 152-158. (in Chinese with English abstract)[关义新, 林葆, 凌碧莹 (2000). 光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响. 植物营养与肥料学报, 6, 152-158.]
[7] Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266.
[8] Ingestad T, Ågren GI (1988). Nutrient uptake and allocation at steady-state nutrition.Physiologia Plantarum, 72, 450-459.
[9] Kang M, Xie YM, Xu Y, Xu YL, Yan ER (2013). Within- community variability of plant leaf N and P contents in Tiantong, Zhejiang Province.Journal of East China Normal University (Natural Science), (2), 20-29. (in Chinese with English abstract)[康蒙, 谢一鸣, 许月, 徐艺露, 阎恩荣 (2013). 浙江天童植物叶片氮磷含量的群落内变异. 华东师范大学学报(自然科学版), (2), 20-29.]
[10] Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450.
[11] Li DF, Yu SL, Wang GX, Fang WW (2015). Environmental heterogeneity and mechanism of stoichiometry properties of vegetative organs in dominant shrub communities across the Loess Plateau.Chinese Journal of Plant Ecology, 39, 453-465. (in Chinese with English abstract)[李单凤, 于顺利, 王国勋, 方伟伟 (2015). 黄土高原优势灌丛营养器官化学计量特征的环境分异和机制. 植物生态学报, 39, 453-465.]
[12] Li YL, Mao W, Zhao XY, Zhang TH (2010). Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China.Environmental Science, 31, 1716-1725. (in Chinese with English abstract)[李玉霖, 毛伟, 赵学勇, 张铜会 (2010). 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究. 环境科学, 31, 1716-1725.]
[13] Li ZA, Wang BS, Kong GH, Zhang ZP, Weng H (1999). The element content of plant inCryptocarya concinna community in Dinghushan evergreen monsoon broad-leaf forest. Acta Phytoecologica Sinica, 23, 411-417. (in Chinese with English abstract)[李志安, 王伯荪, 孔国辉, 张祝平, 翁轰 (1999). 鼎湖山季风常绿阔叶林黄果厚壳桂群落植物元素含量特征. 植物生态学报, 23, 411-417.]
[14] Liu C, Wang Y, Wang N, Wang GX (2012). Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: A review.Chinese Journal of Plant Ecology, 36, 1205-1216. (in Chinese with English abstract)[刘超, 王洋, 王楠, 王根轩 (2012). 陆地生态系统植被氮磷化学计量研究进展. 植物生态学报, 36, 1205-1216.]
[15] Liu GS, Yun F, Shi HZ, Wang K, Zhang CH, Song J (2010). Effects of cooperation of light and nitrogen on the content of nitric compound, antioxidant system and quality of flue- cured tobacco.Scientia Agricultura Sinica, 43, 3732-3741. (in Chinese with English abstract)[刘国顺, 云菲, 史宏志, 王可, 张春华, 宋晶 (2010). 光、氮及其互作对烤烟含氮化合物含量、抗氧化系统及品质的影响. 中国农业科学, 43, 3732-3741.]
[16] Liu WF, Fan HB (2008). Characteristics of nitrogen cycles in the ecosystem of mixed stands of Masson pine and broadleaved forests.Journal of Beijing Forestry University, 30(6), 52-58. (in Chinese with English abstract)[刘文飞, 樊后保 (2008). 马尾松阔叶树混交林生态系统的氮素循环特征. 北京林业大学学报, 30(6), 52-58.]
[17] Liu XZ, Kang SZ (2002). Effects of shading on photosynthesis, dry matter partitioning and N, P, K concentrations in leaves of tomato plants at different growth stages.Acta Ecologica Sinica, 22, 2264-2271. (in Chinese with English abstract)[刘贤赵, 康绍忠 (2002). 不同生长阶段遮荫对番茄光合作用、干物质分配与叶N、P、K的影响. 生态学报, 22, 2264-2271.]
[18] Matzek V, Vitousek PM (2009). N:P stoichiometry and protein: RNA ratios in vascular plants: An evaluation of the growth-rate hypothesis.Ecology Letters, 12, 765-771.
[19] Qiao XR (2007). Effects of Light Intensity on Growth Photosynthetic Characteristics and Quality of Flue-cured Tobacco. Master degree dissertation, Henan Agricultural University, Zhengzhou. (in Chinese with English abstract)[乔新荣 (2007). 光照强度对烤烟生长发育、光合特性及品质的影响. 硕士学位论文, 河南农业大学, 郑州.]
[20] Shi JG, Zhu KL, Cao HY, Dong ST, Liu P, Zhao B, Zhang JW (2015). Effect of light from flowering to maturity stage on dry matter accumulation and nutrient absorption of summer maize.Chinese Journal of Applied Ecology, 26, 46-52.(in Chinese with English abstract). [史建国, 朱昆仑, 曹慧英, 董树亭, 刘鹏, 赵斌, 张吉旺 (2015). 花粒期光照对夏玉米干物质积累和养分吸收的影响. 应用生态学报, 26, 46-52.]
[21] Shi JZ, Wang TD (1994). A mechanistic model describing the photosynthate partitioning during vegetative phase.Acta Botanica Sinica, 36, 181-189. (in Chinese with English abstract)[施建忠, 王天铎 (1994). 植物营养生长期同化物分配的机理模型. 植物学报, 36, 181-189.]
[22] Sims L, Pastor J, Lee T, Dewey B (2012). Nitrogen, phosphorus and light effects on growth and allocation of biomass and nutrients in wild rice.Oecologia, 170, 65-76.
[23] Suriyagoda LB, Lambers H, Renton M, Renton M, Ryan MH (2012). Growth, carboxylate exudates and nutrient dynamics in three herbaceous perennial plant species under low, moderate and high phosphorus supply.Plant and Soil, 358, 105-117.
[24] Thompson K, Parkinson JA, Band SR, Spencer RE (1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora.New Phytologist, 136, 679-689.
[25] Valladares F, Martinez FE, Balaguer L, Corona EP, Manrique E (2000). Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: A conservative resource- use strategy?New Phytologist, 148, 79-91.
[26] Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions.Ecological Applications, 20, 5-15.
[27] Wang H, Cai ZQ, Cai CT, Zhang SX (2008). A comparative study of two tropical pioneer species with different life span under different light and nutrient conditions.Journal of Wuhan Botanical Research, 26, 134-141. (in Chinese with English abstract)[王辉, 蔡志全, 蔡传涛, 张硕新 (2008). 不同光照和营养条件下两种不同寿命热带先锋种的对比研究. 武汉植物学研究, 26, 134-141.]
[28] Wang SQ, Yu GR (2008). Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus element.Acta Ecologica Sinica, 28, 3937-3947. (in Chinese with English abstract)[王绍强, 于贵瑞 (2008). 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28, 3937-3947.]
[29] Wang ZN, Yang HM (2013). Response of ecological stoichiometry of carbon, nitrogen and phosphorus in plants to abiotic environmental factors.Pratacultural Science, 30, 927-934. (in Chinese with English abstract)[王振南, 杨惠敏 (2013). 植物碳氮磷生态化学计量对非生物因子的响应. 草业科学, 30, 927-934.]
[30] Xu QX (2013). Effect of Thinning on Soil Physicochemical Property and Parbon Ptorage of the Patural Larix gmelinii Forest in Great Xing’an Mountains. Master degree dissertation, Northeast Forestry University, Harbin. (in Chinese with English abstract)[徐庆祥 (2013). 抚育间伐对大兴安岭兴安落叶松天然林碳储量的影响. 硕士学位论文, 东北林业大学, 哈尔滨.]
[31] Xu XY, Xiao L, Wang MH, Zhang HX (2015). A comprehensive evaluation system for anti-typhoon performance of trees in coastal areas.Journal of Zhejiang A & F University, 32, 516-522. (in Chinese with English abstract)[许秀玉, 肖莉, 王明怀, 张华新 (2015). 沿海抗台风树种评价体系构建与选择. 浙江农林大学学报, 32, 516-522.]
[32] Yan YF, Fang SZ, Tian Y, Song H, Tun XJ (2014). The response of understory plant diversity and nutrient accumulation to stand structure of poplar plantation.Chinese Journal of Ecology, 33, 1170-1177. (in Chinese with English abstract)[燕亚飞, 方升佐, 田野, 宋浩, 囤兴建 (2014). 林下植物多样性及养分积累量对杨树林分结构的响应. 生态学杂志, 33, 1170-1177.]
[33] Yang X, Tang ZY, Ji C, Liu HY, Ma WH, Mohhamot A, Shi ZY, Sun W, Wang T, Wang XP, Wu X, Yu SL, Yue M, Zheng CY (2014). Scaling of nitrogen and phosphorus across plant organs in shrub land biomes across Northern China.Scientific Reports, 4, 5448. doi: 10.1038/srep05448.
[34] Yin HJ, Lai T, Cheng XY, Jiang XM, Liu Q (2008). Warming effects on growth and physiology of seedlings of Betula albo-sinensis and Abies faxoniana under two contrasting light conditions in subalpine coniferous forest of western Sichuan, China. Journal of Plant Ecology (Chinese Version), 32, 1072-1083. (in Chinese with English abstract)[尹华军, 赖挺, 程新颖, 蒋先敏, 刘庆 (2008). 增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响. 植物生态学报, 32, 1072-1083.]
[35] Zhao P, Kriebitzseh W, Zhang ZQ (1999). Gas exchange, chlorophyll and nitrogen contents in leaves of three common trees in middle Europe under two contrasting light regime.Journal of Tropical and Subtropical Botany, 7, 133-139. (in Chinese with English abstract)[赵平, Kriebitzseh W, 张志权 (1999). 欧洲3种常见乔木幼苗在两种光环境下叶片的气体交换、叶绿素含量和氮素含量. 热带亚热带植物学报, 7, 133-139.]
[36] Zheng SX, Shangguan ZP (2007). Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China.Trees, 21, 357-370.
[1] ZHU Qi-Lin, XIANG Rui, TANG Li, LONG Guang-Qiang. Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition [J]. Chin J Plan Ecolo, 2018, 42(6): 672-680.
[2] YANG Hao-Tian, WANG Zeng-Ru, JIA Rong-Liang. Distribution and storage of soil organic carbon across the desert grasslands in the southeastern fringe of the Tengger Desert, China [J]. Chin J Plan Ecolo, 2018, 42(3): 288-296.
[3] ZHANG Jing, LIU Yun-Hua, SHENG Jian-Dong, CHAI Qiang, LI Rui-Xia, ZHAO Dan. Carbon and nitrogen traits of typical shrubs in grassland of northern Xinjiang, China [J]. Chin J Plan Ecolo, 2018, 42(3): 307-316.
[4] ZHANG Na, ZHU Yang-Chun, LI Zhi-Qiang, LU Xin, FAN Ru-Qin, LIU Li-ZhuTONG , Fei, CHEN Jing, MU Chun-Sheng, ZHANG Zhen-Hua. Effect of Pb pollution on the growth, biomass allocation and photosynthesis of Phragmites australis in flood and drought environment [J]. Chin J Plan Ecolo, 2018, 42(2): 229-239.
[5] YE Zi-Piao, DUAN Shi-Hua, AN Ting, KANG Hua-Jing. Construction of CO2-response model of electron transport rate in C4 crop and its application [J]. Chin J Plant Ecol, 2018, 42(10): 1000-1008.
[6] Xiao-Lan ZHENG, Rui-Jiao WANG, Qun-Fa ZHAO, Yong-Peng LIU, Yuan-Yuan WANG, Zhi-Qiang SUN. Ecophysiological mechanisms of plant growth under the influence of rhizosphere oxygen concentration: A review [J]. Chin J Plan Ecolo, 2017, 41(7): 805-814.
[7] Wu Renye, Sun Yuanfen, Zheng Jingui, Deng Chuanyuan, Ye Dapeng, Wang Qingshui. Relationship Between Negative Air Ion Generation by Plants and Stomatal Characteristics Under Stimulation of Pulsed Electrical Field [J]. Chin Bull Bot, 2017, 52(6): 744-755.
[8] Jin Guo, Xiaoyan Yang, Hongping Deng, Qin Huang, Yunting Li, Huayu Zhang. Sex Expression and Reproduction Allocation in Eurya loquaiana [J]. Chin Bull Bot, 2017, 52(2): 202-209.
[9] Qiang ZHANG, Jia-Xiang LI, Wen-Ting XU, Gao-Ming XIONG, Zong-Qiang XIE. Estimation of biomass allocation and carbon density of Rhododendron simsii shrubland in the subtropical mountainous areas of China [J]. Chin J Plan Ecolo, 2017, 41(1): 43-52.
[10] Linhui Jiang,Ling Luo,Zhenggao Xiao,Daming Li,Xiaoyun Chen,Manqiang Liu,Feng Hu. Effects of soil biota influenced by long-term organic and chemical fertilizers on rice growth and resistance to insects [J]. Biodiv Sci, 2016, 24(8): 907-915.
[11] Zhaoning Gong, Yunbao Fan, Hui Liu, Wenji Zhao. Chlorophyll Fluorescence Response Characteristics of Typical Emergent Plants Under Different Total Nitrogen Gradient [J]. Chin Bull Bot, 2016, 51(5): 631-638.
[12] Yuwei Jia, Ruilin Yang, Yang Zhang, Juanjuan Fang, Hui Chen. An Optimized Method to Determine Silicon Content in Rice [J]. Chin Bull Bot, 2016, 51(5): 679-683.
[13] Wen-Qiang XU, Liao YANG, Xi CHEN, Ya-Qi GAO, Lei WANG. Carbon storage, spatial distribution and the influence factors in Tianshan forests [J]. Chin J Plan Ecolo, 2016, 40(4): 364-373.
[14] Chun-Nan FAN, Shi-Jie HAN, Zhong-Ling GUO, Jin-Ping ZHENG, Yan CHENG. Present status and rate of carbon sequestration of forest vegetation in Jilin Province, Northeast China [J]. Chin J Plan Ecolo, 2016, 40(4): 341-353.
[15] Wei ZHAO, Zhong-Min HU, Hao YANG, Lei-Ming ZHANG, Qun GUO, Zhi-Yan WU, De-Yi LIU, Sheng-Gong LI. Carbon density characteristics of sparse Ulmus pumila forest and Populus simonii plantation in Onqin Daga Sandy Land and their relationships with stand age [J]. Chin J Plan Ecolo, 2016, 40(4): 318-326.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wenxia Wang;Shuguang Li;Xiaoming Zhao;Bingcheng Lin;Yuguang Du. Effects of Oligochitosan on Transcription of Genes Involved in Jasmonic Acid Biosynthesis in Tobacco Suspension Cells[J]. Chin Bull Bot, 2008, 25(05): 526 -532 .
[2] Yuan Gao;Li Tian;Song Qin* . Positive Selection in Plant Evolution[J]. Chin Bull Bot, 2008, 25(04): 401 -406 .
[3] Lei Zhang Baoshi Zhang. Mapping and Cloning of Quantitative Trait Genes in Plants[J]. Chin Bull Bot, 2007, 24(04): 553 -560 .
[4] Cai Ji-jing. Scanning Electron Microscopy Method for the Direct Observation of Fresh Plant Specimen[J]. Chin Bull Bot, 1983, 1(02): 55 -56 .
[5] LI AI-Fen;CHEN Min and ZHOU Bai-Cheng. Studies on Characterization of Fluorescence Emission Spectra of Brown Algae at 77K[J]. Chin Bull Bot, 1999, 16(03): 274 -279 .
[6] Huan Feng, Shuli Yi, Jiaheng Xie, Mengqi Lei, Xuan Huang. Callus Induction and Plant Regeneration of Rosa hybrida[J]. Chin Bull Bot, 2014, 49(5): 595 -602 .
[7] Meishan Zhang, Bao Liu. Epigenetic Regulation in Plant Endosperm Development[J]. Chin Bull Bot, 2012, 47(2): 101 -110 .
[8] Zhangxiong Han, Li Li, Xinwen Xu, Xiangfang Lü, Hongxia Yue, Zhen Bian, Lizheng Li. Effect of NaCl on Physiological Features of 4 Legume Seedlings in Desert Areas of Xinjiang, China[J]. Chin Bull Bot, 2012, 47(5): 491 -499 .
[9] Jin Guo, Xiaoyan Yang, Hongping Deng, Qin Huang, Yunting Li, Huayu Zhang. Sex Expression and Reproduction Allocation in Eurya loquaiana[J]. Chin Bull Bot, 2017, 52(2): 202 -209 .
[10] Chen Guoliang, Liu Duhui. A Preliminary Study on the Rational Eco-Economic Structure Model of Agriculture, Forestry and Animal Husbandry in the Loess Hilly Regions[J]. Chin J Plan Ecolo, 1983, 7(3): 215 -221 .